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Abstract

In 1960, C. Domb published a paper entitled On the Theory of Cooperative Phenomena in
Crystals in which he presented an expression for the number of cycles of length l in a triangular
lattice. This expression was erroneous. We present a correct expression and we show that it is
linked, in social choice theory, to the probability that all candidates are tied in an election with
the Borda rule. ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1960, C. Domb published a massive paper (212 pp.) entitled On the Theory
of Cooperative Phenomena in Crystals [2]. In this paper, he addressed many di9erent
problems. One of them, related to the magnetic properties of crystals, was the following.
Consider the lattice 1 presented in Fig. 1.

A cycle in this lattice is a path starting from some node, travelling along some
edges and coming back to the same node. The length of a cycle is the number of
edges contained in it. E.g. the shortest cycle has length 2; it starts from some node,
travels along one edge and directly comes back along the same edge. The next shortest
cycle has length 3. It travels along the 3 edges delimiting a small triangle. How many
di9erent cycles, with length l, starting from a given node, are there?
The answer given by Domb [2, pp. 344] was

∑
s; t

1
s!t!

s∑
q=0

2s−q
(t + q)!

((t + q)=2!)2
1

q!(s− q)! ; (1)

E-mail address: thierry.marchant@rug.ac.be (T. Marchant).
1 In classical graph theory, lattice has a di9erent meaning. We use it here in its crystallography meaning

which is close to the concept of pavement in geometry.
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Fig. 1. Triangular lattice.

with s; t=0; 1 : : : l, satisfying the conditions (2s+ t)= l and (t+q) even. He called this
number rl. On p. 345, he also computed some values of rl for l=2–9. Unfortunately
expression (1) for rl is incorrect although numerical values given on p. 345 are correct.
In Section 2, we present a correct expression for rl. In the last section, we present
some links with social choice theory.

2. A correct expression for the number of cycles

At each node, there are six possible edges. Let us call them x;−x; y;−y; z;−z as in
Fig. 2.
In a cycle, an edge of any kind can be compensated by a corresponding edge of

the opposite sign. E.g. a x edge can be compensated by a −x edge; a −z edge by a z
edge, and so on. But an edge of any kind can also be compensated by two other edges
of di9erent kinds and same sign. E.g., a y edge can be compensated by a x edge and
a z edge; a −z edge by a −x edge and a −y edge and so on.
Hence, in any cycle, we can sort the edges into two parts: (a) those compensating 2

by 2 and (b) those that do not compensate 2 by 2 (thus compensating 3 by 3). In (a),
we necessarily have 2s edges (s integer between 0 and l=2). In (b), we necessarily have
3t edges (t integer between 0 and l=3) and they have the same sign, otherwise some
of them could compensate 2 by 2. Obviously, 2s+3t= l. In (a), s edges are positive,
while s edges are negative. Among the s positive edges, there is any repartition between

Fig. 2. Names of the edges.



T. Marchant /Discrete Applied Mathematics 119 (2002) 265–271 267

x; y and z. Among the s negative edges, there is the same repartition between −x;−y
and −z. Hence, if 2s edges among l are chosen, the number of possible conIgurations
of these 2s edges, such that they all compensate 2 by 2 (case (a)), is given by

(
2s
s

) s∑
q=0

s−q∑
r=0

(s!)2

((s− q− r)!r!q!)2 : (2)

In this expression, q represents the number of x edges, r the number of y edges
and (s− q− r) the number of z edges. Let us come back to (b). Among the 3t edges,
we necessarily have the same number of x; y; z or (exclusive) −x;−y;−z. Thus, if we
choose 3t edges, the number of possible conIgurations such that they compensate 3
by 3 and not 2 by 2, is given by

2[t¿0] (3t)!
(t!)3

; (3)

where [t ¿ 0] equals 1 if t ¿ 0 and 0 otherwise.
For given s and t, the number of possible cycles is not just the product of expressions

(2) and (3). It would be equivalent to considering as di9erent some cycles just because
we arbitrarily separated some edges of the same kind and sign in the (a) and (b) parts.
Thus we have to take into account the number of ways to choose t edges of kind x (or
−x) among the whole number of x edges. And there are q+ t such edges. The number
of ways to make this choice is thus ( q+tt ). For y and z edges, we must consider ( r+tt )
and ( s−q−r+tt ).
Hence, for given s and t, the number of possible cycles is given by

(
l
2s

)(
2s
s

) s∑
q=0

s−q∑
r=0

(s!)2

((s−q−r)!r!q!)2
2[t¿0](3t)!

(t!)3(
q+ t
t

)(
r + t
t

)(
s− q− r + t

t

) : (4)

Finally, letting vary s and t so that 2s+ 3t= l, we obtain the following expression:

rl=
∑

2s+3t=l

(
l
2s

)(
2s
s

) s∑
q=0

s−q∑
r=0

(s!)2

((s−q−r)!r!q!)2
2[t¿0](3t)!

(t!)3(
q+ t
t

)(
r + t
t

)(
s− q− r + t

t

) : (5)

After some simpliIcation, rl is given by

l!
∑

2s+3t=l

2[t¿0]
s∑
q=0

s−q∑
r=0

1
q!r!(s− q− r)!(q+ t)!(r + t)!(s− q− r + t)! : (6)

Shortly after we found this expression, Domb (personal communication) found the
error in his expression: a multiplicative factor l! had disappeared from his formula
during the typing process ! Therefore, an alternate expression for (5) is

∑
s; t

l!
s!t!

s∑
q=0

2s−q
(t + q)!

((t + q)=2!)2
1

q!(s− q)! ; (7)
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with s; t=0; 1; : : : ; l, satisfying the conditions (2s+ t)= l and (t + q) even. So, Domb
knew the right expression in 1960. But, due to the fact that a proof of this expression
has never been published and that this result Inds some new applications in social
choice theory (see next section), we think that it is worth publishing our proof.

3. Some links with social choice theory

A very classical problem in social choice is the following. Suppose that l voters
{1; 2 : : : ; l} must elect a president and there are k candidates {a; b; c; : : :}. Each voter
expresses his preferences about the candidates by mean of a complete ranking, from
best to worst. We call proIle a vector containing the rankings of each voter. E.g.,

 a¿b¿c
b¿c¿a
c¿b¿a


 (8)

is a proIle with three voters and three candidates such that voter 1’s most preferred
candidate is a, voter 1’s last candidate is c and voter 2’s most preferred candidate is b.
How shall we derive from a proIle which candidate should be elected? This question
has been at the heart of social choice theory since the end of the 18th century. Many
methods have been proposed. For example,
• choose the candidate with most Irst positions,
• or the candidate with least last positions,
• or compute the ranking which is at minimum distance of the l rankings in the
proIle (a metric needs to be deIned over the set of the rankings). Then choose the
candidate in Irst position in this new ranking.

• A very popular method is the Borda method. A candidate receives one point for each
Irst position in the proIle, 2 points for each 2nd position, 3 points for each 3rd
position, : : : and k points for each last position. The candidate who has the fewest
points is elected.
Let us illustrate the Borda method by an example. In the proIle shown in (8), a

has 7 points, b, 5 points and c, 6 points. Hence, b is elected. In some cases the Borda
method does not help much as all candidates have the same number of points and are
tied, as in proIle (9) where they all have six points.

 a¿b¿c
b¿c¿a
c¿a¿b


 : (9)

Of course, most methods that have been devised lead to di9erent results. Which one
should we choose? Many criteria have been proposed to assess the merits of a method.
Hundreds of axiomatic studies have been conducted, characterizing the various methods
by a set of axioms.
A possible criterion to compare di9erent methods, is the probability that a method

yields a tie (by this, we mean a complete tie of all candidates). A method with a
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Table 1
Numerical values of the probability of ties for three candidates

l 2 3 4 5 6 7 8

Probability of ties 0.1667 0.0556 0.0694 0.0463 0.0437 0.0360 0.0326
Probability of Condorcet paradox 0.0556 0.0694 0.0750

l 9 19 29 39 49

Probability of ties 0.0288 0.0141 0.0093 0.0070 0.0056
Probability of Condorcet paradox 0.0780 0.0832 0.0848 0.0856 0.0860

high probability of tie might be considered as less interesting than a method with
a low probability because it more often fails to designate a winner. Of course, if the
di9erence of the probabilities is not very large, this disadvantage might be compensated
by other advantages. Hence, this criterion should be taken into account only for very
large di9erences of probabilities. We are going to show now that the probability that
the Borda method yields a tie is related to rl.

3.1. The case of three candidates

For three candidates, there are 3!= 6 possible rankings and each voter can choose
any of the 6 rankings. Let us associate each ranking to one of the 6 di9erent kinds of
edges of our triangular lattice (see Fig. 2).

a¿b¿c : x;
b¿c¿a : y;
c¿a¿b : z;
c¿b¿a : −x;
a¿c¿b : −y;
b¿a¿c : −z:

(10)

Then any proIle corresponds to a path in the triangular lattice. For example, the proIle
in (9) corresponds to a path x; y; z. Remark that this path is in fact a cycle. It is not
diNcult to see that it is not a coincidence. A proIle will yield all candidates tied
(under the Borda method) if and only if the corresponding path in the triangular lattice
is a cycle. Hence, the number of proIles yielding all candidates tied under the Borda
method is rl. And the probability we were looking for is just rl divided by the number
of di9erent proIles, i.e. (3!)l. Some numerical values of the probability of ties are
given in Table 1.
The Condorcet method selects the candidate that beats every other candidates in

pairwise comparisons. It is well known that the Condorcet method can also fail to
produce a winner (Condorcet paradox) but for very di9erent reasons: the candidates are
not tied, the method just does not work. Nevertheless, from a practical point of view,
if all candidates win (tied), using the Borda method, or no candidate wins, using the
Condorcet one, the president of the committee where such an election happens is very



270 T. Marchant /Discrete Applied Mathematics 119 (2002) 265–271

Fig. 3. Linear lattice.

Table 2
Numerical values of the probability of ties for two candidates

l 2 4 6 8 10 20 50 ∞
Probability of ties 0.5000 0.3750 0.3125 0.2734 0.2461 0.1762 0.1123 0

embarrassed: he does not know what to choose. Therefore, it seems interesting to us to
compare the probabilities of ties for the Borda method to those of Condorcet paradox
for the Condorcet method (see Table 1), taken from [4]. The proportion of proIles
such that the president of the committee is not helped is larger with the Condorcet
method. Furthermore, the probability of ties decreases with l while the probability of
Condorcet paradox increases with l. From this viewpoint, the Borda method seems
more interesting that the Condorcet one. In fact, for very large number of voters and
candidates, the probability that the Condorcet method designates no winner approaches
1 [1].

3.2. The case of two candidates

Let us consider the lattice of Fig. 3, consisting of edges aligned on a straight line.
At each node of this lattice, there are two possible edges. Let us call them x and

−x. It is clear that we can describe any proIle with two candidates by a path in our
linear lattice. We just need to associate a¿b rankings to an edge, say x, and b¿a
rankings to the other edge, i.e. −x. It is obvious as well that all proIles such that a
and b are tied correspond to cycles in the linear lattice and the number of di9erent
cycles of length l is given by ( l

l=2 ) for l even and 0 for l odd. Some values of the
probability of ties are given in Table 2.
For larger number of candidates, other lattices must be used but they can no longer

be represented in two dimensions. Derivation of explicit formulas for rl is much more
diNcult.
In our computations of the probabilities, we considered that any proIle is as likely as

any other one (this condition is known as the impartial culture condition). Therefore,
it is obvious that our results must be taken with a pinch of salt for, in reality, such an
assumption is clearly questionable [3]. Nevertheless, they provide some hint.
Note that I discovered the similarity between the two problems thanks to the amazing

Encyclopedia of integer sequences [5, sequence M4101].
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