
Applied Mathematics Letters 24 (2011) 302–307

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Anti-periodic solutions for evolution equations associated with maximal
monotone mappings
Yuqing Chen a, Juan J. Nieto b,∗, Donal O’Regan c

a Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
b Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
c Department of Mathematics, National University of Ireland, Galway, Ireland

a r t i c l e i n f o

Article history:
Received 26 November 2009
Accepted 3 October 2010

Keywords:
Evolution equation
Maximal monotone map
Periodic solution
Anti-periodic solution

a b s t r a c t

In this work, we study the anti-periodic problem for a nonlinear evolution inclusion where
the nonlinear part is an odd maximal monotone mapping and the forcing term is an anti-
periodic mapping. Several existence results are obtained under suitable conditions. An
example is presented to illustrate the results.
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1. Introduction

The study of anti-periodic solutions for nonlinear evolution equations is closely related to the study of periodic solutions,
and it was initiated by [1]. Anti-periodic problems have been studied by many authors; see [2–23] and references therein.
In [24] Okochi showed that

x′(t) ∈ −∂φ(x(t)) + f (t), a.e. t ∈ R,
x(t) = −x(t + T ), t ∈ R (E1.1)

has a solution, where φ : D(φ) ⊆ H → H is an even lower semi-continuous convex function, and f (t) : R → H satisfies
f (t + T ) = −f (t) and f (·) ∈ L2(0, T ). It is of interest to ask whether

x′(t) ∈ −Ax(t) + f (t), a.e. t ∈ R,
x(t) = −x(t + T ), t ∈ R (E1.2)

has a solution, when A : D(A) ⊆ H → 2H is an odd maximal monotone mapping. The purpose of this work is to study
this problem and we show that this equation has a solution under a linear growth condition on A. Also we consider the
anti-periodic problem

x′(t) ∈ −Ax(t) + ∂G(x(t)) + f (t), a.e. t ∈ R,
x(t) = −x(t + T ), t ∈ R, (E1.3)

where G : H → H is a continuously differentiable mapping such that ∂G is a bounded mapping, i.e. ∂G maps bounded
subsets to bounded subsets and f (·) ∈ L2([0, T ];H). Under a linear growth condition on A and the condition that D(A) is
compactly embedded into H , we prove an existence result for (E1.3).
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2. Anti-periodic solutions for nonlinear equations associated with maximal monotone mappings

Lemma 2.1. Let H be a real Hilbert space, and let A : D(A) ⊆ H → 2H be an odd maximal monotone mapping, where D(A) is
symmetric and 0 ∈ D(A), and f (·) : R → H is a function satisfying

 T
0 ‖f (t)‖2dt < +∞. In addition suppose αD(A) ⊆ D(A) for

some α ∈ (0, 1). Then there exists a unique yα ∈ D(A) such that
x′(t) ∈ −Ax(t) + f (t), a.e. t ∈ (0, +∞),
x(0) = yα, −αx(T ) = yα

(E2.1)

has a unique solution.

Proof. It is well known that
x′(t) ∈ −Ax(t) + f (t), a.e. t ∈ (0, +∞),

x(0) = y ∈ D(A)
(E2.2)

has a unique solution x(t, y) for each y ∈ D(A) and it depends continuously on the initial value y; see for example [25].
We define a mapping Kα : D(A) → D(A) by

Kαy = −αx(T , y), y ∈ D(A).

For y1, y2 ∈ D(A), we have

d‖x(t, y1) − x(t, y2)‖2

dt
= 2(x(t, y1) − x(t, y2), x′(t, y1) − x′(t, y2)) ≤ 0.

Thus ‖x(T , y1) − x(T , y2)‖ ≤ ‖y1 − y2‖, so we have

‖Kαy1 − Kαy2‖ ≤ α‖y1 − y2‖, for all y1, y2 ∈ D(A).

Banach’s contraction principle guarantees that there exists a unique yα ∈ D(A) such that

Kαyα = yα.

That is, x(t, yα) is a solution of (E2.1). The uniqueness is obvious. �

Theorem 2.2. Let H be a real Hilbert space, and let A : D(A) ⊆ H → 2H be an odd maximal monotone mapping, where D(A)

is symmetric and convex, and f (·) : R → H is a function satisfying f (t + T ) = −f (t) for t ∈ R and
 T
0 ‖f (t)‖2dt < +∞. In

addition suppose ‖g‖ ≤ M‖x‖ for all x ∈ D(A), g ∈ Ax, where M > 0 is a constant such that MT < 2. Then
x′(t) ∈ −Ax(t) + f (t), a.e. t ∈ R,
x(t) = −x(t + T ), t ∈ R (E2.3)

has a solution.

Proof. Since D(A) is symmetric and convex, 0 ∈ D(A). Take a sequence αn ∈ (0, 1), n = 1, 2, . . ., such that αn → 1. By
Lemma 2.1, there exist yn ∈ D(A) such that

x′(t) ∈ −Ax(t) + f (t), a.e. t ∈ (0, +∞),
x(0) = yn, −αnx(T ) = yn

has a unique solution x(t, yn).
We claim that {yn}∞n=1 is bounded in H . Indeed, there exist fn(t) ∈ Ax(t, yn) for a.e. t ∈ (0, +∞), n = 1, 2, . . . , such that

x′(t, yn) = −fn(t) + f (t), a.e. t ∈ (0, T ).

Take the inner product with x′(t, yn) and integrate over [0, T ] and we get∫ T

0
‖x′(t, yn)‖2dt = −

∫ T

0
(fn(t), x′(t, yn))dt +

∫ T

0
(f (t), x′(t, yn))dt.

From this and the assumption on A, it immediately follows that∫ T

0
‖x′(t, yn)‖2dt ≤ M

∫ T

0
‖x(t, yn)‖2dt

 1
2
∫ T

0
‖x′(t, yn)‖2dt

 1
2

+

∫ T

0
‖f (t)‖2dt

 1
2
∫ T

0
‖x′(t, yn)‖2dt

 1
2

. (2.1)



304 Y. Chen et al. / Applied Mathematics Letters 24 (2011) 302–307

Since −αnx(T , yn) = yn, we have

x(t, yn) = −
αn

1 + αn

∫ T

0
x′(s, yn)ds +

∫ t

0
x′(s, yn)ds =

1
1 + αn

∫ t

0
x′(s, yn)ds −

αn

1 + αn

∫ T

t
x′(s, yn)ds.

As a result

max
t∈[0,T ]

‖x(t, yn)‖ ≤
1

1 + αn

√
T

∫ T

0
‖x′(t, yn)‖2dt

 1
2

. (2.2)

From (2.1) and (2.2), we obtain
1 −

MT
1 + αn

 ∫ T

0
‖x′(t, yn)‖2dt ≤

∫ T

0
‖f (t)‖2dt

 1
2
∫ T

0
‖x′(t, yn)‖2dt

 1
2

. (2.3)

Notice thatMT < 2, and αn → 1. For n sufficiently large, there exists β0 > 0 such that 1−
MT

1+αn
≥ β0, and from this and

(2.3), we infer that {
 T
0 ‖x′(t, yn)‖2dt}∞n=1 is bounded, and so by (2.2), {yn} is bounded. Thus the claim is true.

For simplicity we may assume that yn ⇀ y0 ∈ H . (Otherwise, we may take a subsequence.) Notice that the convexity of
D(A) implies that y0 ∈ D(A). Next, we prove that x(t, y0) is a solution of (E2.3). To achieve the goal we note that

(yn + x(T , yn) − y − x(T , y), yn − y) ≥ 0, for all y ∈ D(A),

since ‖x(T , yn) − x(T , y)‖ ≤ ‖yn − y‖.
Letting n → ∞, and noting that yn + x(T , yn) → 0, we get

(−y − x(T , y), y0 − y) ≥ 0, for all y ∈ D(A). (2.4)

For t ∈ (0, 1), set yt = ty0 − (1 − t)x(T , y0), and note that yt ∈ D(A) since D(A) is convex. Now from (2.4) we get

(−ty0 + (1 − t)x(T , y0) − x(T , ty0 − (1 − t)x(T , y0)), y0 + x(T , y0)) ≥ 0.

Again, notice that x(t, y) depends continuously on the initial value y ∈ D(A), so by letting t → 1−, we get

−‖y0 + x(T , y0)‖2
≥ 0.

Thus y0 = −x(T , y0), so x(t, y0) is a solution of (E2.3). �

In the following, let L2([0, T ];H) = {f (t) : [0, T ] → H;
 T
0 ‖f (s)‖2ds < +∞}, and the norm in L2([0, T ];H) is

denoted by ‖f (·)‖L2 = (
 T
0 ‖f (s)‖2ds)

1
2 . We let Ca = {v(t) : R → H is continuous and v(t) = −v(t + T ), t ∈ R}, and

Wa = {u(·) ∈ Ca : u′(·) ∈ L2([0, T ];H)}. Now Ca is a Banach space under the norm |v(·)|∞ = maxt∈[0,T ] ‖u(t)‖, and by
Lemma 2.1 in [12] (see also [9]),Wa is a Banach space under the norm ‖u(·)‖a = ‖u′(·)‖L2 .

Theorem 2.3. Let A : D(A) ⊆ H → 2H be an oddmaximalmonotonemapping, where D(A) is symmetric and convex, G : H → R
is a continuously differentiable even function such that ∂G is a boundedmapping, i.e. ∂Gmaps bounded subsets to bounded subsets
in H, and f (t) : R → H satisfies f (t + T ) = −f (t), for a.e. t ∈ R and

 T
0 ‖f (t)‖2dt < +∞. Also suppose D(A) is compactly

embedded into H, and ‖g‖ ≤ M‖x‖ for all x ∈ D(A), g ∈ Ax, whereM > 0 is a constant such that MT < 2. Then the anti-periodic
problem

u′(t) ∈ −Au(t) + ∂G(u(t)) + f (t), a.e. t ∈ R,
u(t) = −u(t + T ), t ∈ R (E2.4)

has a solution u(·) ∈ Wa.

Proof. For each v(·) ∈ Ca, we consider the anti-periodic problem
u′(t) + u(t) ∈ −Au(t) + ∂Gv(t) + v(t) + f (t), a.e. t ∈ R,
u(t) = −u(t + T ).

(E2.5)

To prove that (E2.5) has a unique solution, we consider the initial value problem
u′(t) + u(t) ∈ −Au(t) + ∂Gv(t) + v(t) + f (t), a.e. t ∈ R,
u(0) = y ∈ D(A).

(E2.6)

Note that (E2.6) has a unique solution x(t, y) for each y ∈ D(A). We define K : D(A) → D(A) by Ky = −x(T , y). It is easy
to see that K is a contraction since I + A is strongly monotone. Therefore there exists y0 ∈ D(A) such that Ky0 = −x(T , y0).
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Thus x(t, y0) is a solution to (E2.5). The uniqueness follows since I +A is strongly monotone. We denote the unique solution
of (E2.5) by Kv(·) for each v(·) ∈ Ca.

From (E2.5), taking the inner products with (Kv)′(t) and integrate over [0, T ], we get

‖(Kv)′(·)‖L2 ≤ M‖Kv(·)‖L2 + ‖∂Gv(·)‖L2 + ‖v(·)‖L2 + ‖f (·)‖L2 . (2.5)

From Lemma 2.1 in [12] we have

|Kv(·)|∞ ≤

√
T
2

∫ T

0
|(Kv)′(t)|2dt

 1
2

.

Thus

|(Kv)′(·)|L2 ≤


1 −

MT
2

−1

[‖∂Gv(·)‖L2 + ‖v(·)‖L2 + ‖f (·)‖L2 ]. (2.6)

From (2.6) and the bounded assumption of ∂G we infer that K maps bounded subsets of Ca to bounded subsets of Wa.
Since D(A) is compactly embedded into H , K is a compact mapping.

Next, we prove that K : Ca → Ca is continuous. Let vn(·) → v(·) ∈ Ca as n → ∞. (Consequently, vn(·) → v(·) ∈

L2([0, T ];H).) The same reasoning as in (2.6) yields

|(Kvn)
′(·) − (Kv)′(·)|L2 ≤


1 −

MT
2

−1

[‖∂Gvn(·) − ∂Gv(·)‖L2 + ‖vn(·) − v(·)‖L2 ]. (2.7)

Thus ‖(Kvn)
′(·) − (Kv)′(·)‖L2 → 0. Therefore ‖Kvn(·) − Kv(·)‖∞ → 0, and K is continuous.

Finally, we prove that Kv(·) ≠ ‖λv(·)‖ for all λ ≥ 1, and v(·) ∈ Ca with |v(·)|∞ = r0, where r0 > (1 −

MT
2 )−1

√
T
2 (

 T
0 |f (t)|2dt)

1
2 is a constant.

If this is not true, there exist λ0 ≥ 1, v0(·) ∈ Ca with |v0(·)|∞ = r0 such that Kv0(·) = λ0v0(·), i.e. v0(t) = −v0(t + T )
and

λ0(v
′

0(t) + v0(t)) ∈ −Aλ0v0(t) + ∂Gv0(t) + v0(t) + f (t), a.e. t ∈ R,

i.e. there exists g(t) ∈ Aλv0(t), for a.e. t ∈ R such that

λ0(v
′

0(t) + v0(t)) = −g(t) + ∂Gv0(t) + v0(t) + f (t), a.e. t ∈ R. (2.8)

From (2.7), take the inner product with v′

0(t), integrate over [0, T ] and note that
 T
0 (∂Gv0(t), v′

0(t))dt = 0; we get

λ0

∫ T

0
|v′

0(t)|
2dt

 1
2

≤ λ0M
√
T |v0(·)|∞ +

∫ T

0
|f (t)|2dt

 1
2

. (2.9)

Recall that

|v0(·)|∞ ≤

√
T
2

∫ T

0
|v′

0(t)|
2dt

 1
2

,

so we conclude from (2.8) that

λ0|v0(·)|∞ ≤ λ0
MT
2

|v0(·)|∞ +

√
T
2

∫ T

0
|f (t)|2dt

 1
2

.

Therefore it follows that

|v0(·)|∞ ≤


1 −

MT
2

−1 √
T
2

∫ T

0
|g(t)|2dt

 1
2

,

which contradicts |v0(·)|∞ = r0 > (1 −
MT
2 )−1

√
T
2 (

 T
0 |f (t)|2dt)

1
2 .

The homotopy property of the Leray–Schauder degree implies that deg(I − K , B(0, r0), 0) = 1. Thus Kv(·) = v(·) has a
solution v(·) in B(0, r0), which is easily seen to be a solution of (E2.4). �

Corollary 2.4. Let β : R → 2R be an odd maximal monotone mapping, and |g| ≤ M|x| for all x ∈ R and g ∈ β(x), where
MT < 2, and f (·) : R → R satisfy f (t + T ) = −f (t) for t ∈ R and

 T
0 f (t)2dt < +∞. Then

u′(t) ∈ −β(u(t)) + 2u(t)eu
2(t)

+ f (t), a.e. t ∈ R,
u(t) = −u(t + T ), t ∈ R

(E2.7)

has a solution.
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Remark. For A the sub-differential of a lower semi-continuous convex function, results similar to Theorem 2.3 were ob-
tained in [5,13].

3. An example

Example 3.1. Let Ω ⊂ Rn be an open bounded subset with smooth boundary. Assume that ai, bi : R → [0, +∞) are
continuous functions for i = 1, 2, . . . , n. Suppose the following conditions are satisfied:

(1) c1 ≤ ai(x) ≤ c2 for all (t, x) ∈ R2, where c1, c2 > 0 are constants;
(2)

∑
i[bi(xi) − bi(yi)](xi − yi) ≥ 0, where x = (xi), y = (yi) ∈ RN ;

(3) |bi(t)| ≤ β|t| for all t ∈ R and i = 1, 2, . . . , n;
(4) bi(−t) = −bi(t) for t ∈ R, and i = 1, 2, . . . , n.

Let A : H1
0 (Ω) → H∗ be defined as

(Au, v) =

∫
Ω


n−

i=1

ai(x)bi(Diu)Div


dx

for all u, v ∈ H1
0 (Ω). Then we have the following:

(a) ‖Au‖ ≤ c2β


Ω
(
∑n

i=1 |Diu|2)dx for all u ∈ H1
0 (Ω),

(b) (Au − Av, u − v) ≥ 0 for t ∈ R, u, v,∈ H1
0 (Ω), and A is continuous and monotone and so it is maximal monotone,

(c) A(−u) = −Au, for u ∈ H1
0 (Ω).

Consider
u′(t, x) = −

n−
i=1

Di[ai(x)bi(Diu)] + f (t, x), a. e. t ∈ R, x ∈ Ω,

u(t, x) = 0, x ∈ ∂Ω, a.e. t ∈ R,
u(t, x) = −u(t + T , x), t ∈ R, x ∈ Ω,

(E3.1)

where f (t, x) : R × Rn
→ R is continuous and f (t + T , x) = −f (t, x).

Suppose that c2βT < 2. Then by Theorem 2.2, (E3.1) has a generalized solution u(t, x), i.e. u(t, x) = −u(t + T , x) for
a.e. t ∈ R, x ∈ Ω , and∫

Ω

u′(t, x)v(x)dx =

∫
Ω

[ai(x)Di(u(t, x))Div(x) + f (t, x)v(x)]dx,

for a.e. t ∈ R, and v(·) ∈ H1
0 (Ω).
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