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1. Introduction

The study of anti-periodic solutions for nonlinear evolution equations is closely related to the study of periodic solutions,
and it was initiated by [1]. Anti-periodic problems have been studied by many authors; see [2-23] and references therein.
In [24] Okochi showed that

{x/(t) € —3p(x(t)) +f(t), ae.teRr,

x(t)=—x(t+T), teR (E1.1)

has a solution, where ¢ : D(¢) € H — H is an even lower semi-continuous convex function, and f (t) : R — H satisfies
f(t+T)=—f(t)and f(-) € [(0, T). It is of interest to ask whether

{x/(t) € —Ax(t) +f(t), ae.teR,

x(t)=—x(t+T), teR (E1.2)

has a solution, when A : D(A) € H — 2" is an odd maximal monotone mapping. The purpose of this work is to study
this problem and we show that this equation has a solution under a linear growth condition on A. Also we consider the
anti-periodic problem

{x’(t) € —Ax(t) + dG(x(t)) + f(t), ae.t R,

x(t)=—x(t+T), teR, (E1.3)

where G : H — H is a continuously differentiable mapping such that dG is a bounded mapping, i.e. 3G maps bounded
subsets to bounded subsets and f(-) € L*([0, T]; H). Under a linear growth condition on A and the condition that D(A) is
compactly embedded into H, we prove an existence result for (E1.3).
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2. Anti-periodic solutions for nonlinear equations associated with maximal monotone mappings

Lemma 2.1. Let H be a real Hilbert space, and let A : D(A) € H — 2M be an odd maximal monotone mapping, where D(A) is
symmetric and 0 € D(A), and f (-) : R — H is a function satisfying fOT If (©)]12dt < +oo0. In addition suppose «D(A) < D(A) for
some « € (0, 1). Then there exists a unique y,, € D(A) such that

X (t) € —Ax(t) +f(t), ae.t e (0,+00), (E2.1)
x(0) =yo, —ax(T) =Ya '
has a unique solution.
Proof. It is well known that
X (t) € —Ax(t) +f(t), ae.t e (0,+00), (E2.2)
x(0) =y € D(A) ’

has a unique solution x(t, y) for each y € D(A) and it depends continuously on the initial value y; see for example [25].
We define a mapping K, : D(A) — D(A) by

Kyy = —ax(T,y), y € D(A).
For y1, y» € D(A), we have

dilx(t, y1) — x(t, y2)|I?
de
Thus [|x(T, y1) —x(T,y2)|l < lly1 — 21|, so we have

= Z(X(t!yl) _X(t7 yz)vx/(tt .VI) _X,(tvyz)) =< 0.

IKay1 = Kay2ll < ellyr = y2|l,  forally:, y2 € D(A).
Banach’s contraction principle guarantees that there exists a unique y,, € D(A) such that
KaYo = Y-
That is, x(t, y,) is a solution of (E2.1). The uniqueness is obvious. [

Theorem 2.2. Let H be a real Hilbert space, and let A : D(A) € H — 2" be an odd maximal monotone mapping, where D(A)

is symmetric and convex, and f(-) : R — H is a function satisfying f(t + T) = —f(t) for t € Rand fOT If (©]2dt < 4o00.In
addition suppose ||g|| < M||x|| for all x € D(A), g € Ax, where M > 0 is a constant such that MT < 2. Then

X (t) € —Ax(t) + f(t), aet€R,
:x(t) = —Xx(t+T), teR (E23)
has a solution.
Proof. Since D(A) is symmetric and convex, 0 € D(A). Take a sequence o, € (0,1),n = 1,2, ..., such that o, — 1.By

Lemma 2.1, there exist y, € D(A) such that

X (t) € —Ax(t) +f(t), ae.t e (0,400),
x(0) =yn, —onx(T) = yn

has a unique solution x(t, y;,).
We claim that {y,}7° ; is bounded in H. Indeed, there exist f, (t) € Ax(t, y,) fora.e.t € (0, 4+00),n =1, 2, ..., such that

X (t,yn) = —fu(O) +f(t), ae.t e (0,T).
Take the inner product with X'(t, y,) and integrate over [0, T] and we get

T T T
/ X (e ym) Pt = — f (Fo(0). X (. y))dt + / (F0), X (E. y)dt.
0 0 0

From this and the assumption on A4, it immediately follows that

T T % T %
/ ||x’(r,yn)||2dtszw(/ ||x<t,yn>||2dr) (f ||x’(t,yn)||2dr>
0 0 0
, . !
+(f ||f(r)||2dt) (f ||x’(r,yn>||2dt) . 2.1)
0 0
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Since —apx(T, yn) = yn, we have

Qn T / ‘ / 1 ‘ / Qn T /
x(t,yn) = Tt X(s,yp)ds+ [ X(s,yn)ds = T a X (s, yn)ds — Tro X (s, yn)ds.
n Jo 0 n J0 nJt

As aresult

1

T 2
ﬁ(/ ||x/(t,yn)||2dt) : (2.2)
0

max ||x(t, <
[max lIx(t, y) i o

From (2.1) and (2.2), we obtain

MT T 5 T 5 % T 5 %
(1 - ) | e mie < ( | v dt) ( | e dr) . 23)
1+ o, 0 0 0
Notice that MT < 2,and o, — 1. For n sufficiently large, there exists 8y > 0 such that 1 — % > Bo, and from this and

1+on

(2.3), we infer that {fOT Ix'(t, yn) ||2dt}§°:1 is bounded, and so by (2.2), {y,} is bounded. Thus the claim is true.
For simplicity we may assume thaty, — yo € H. (Otherwise, we may take a subsequence.) Notice that the convexity of
D(A) implies that yo € D(A). Next, we prove that x(t, yo) is a solution of (E2.3). To achieve the goal we note that

Wn +x(T,y0) =y —x(T,¥),yn—y) =0, forally € D(A),

since [x(T, yn) — x(T, Y|l < llyn —ylI.
Letting n — oo, and noting that y, + x(T, y,) — 0, we get

(—=y = x(T,y),y0—y) =0, forally € D(A). (2.4)
Fort € (0, 1), sety; = tyo — (1 — £)x(T, ¥o), and note that y, € D(A) since D(A) is convex. Now from (2.4) we get

(=tyo + (1 = O)x(T, yo) — x(T, tyo — (1 — O)x(T, yo)), Yo + X(T, yo)) = 0.
Again, notice that x(t, y) depends continuously on the initial value y € D(A), so by lettingt — 17, we get

~lyo +X(T, yo)|I* = 0.
Thus yo = —x(T, yo), S0 X(t, Yo) is a solution of (E2.3). O

In the following, let [?([0, T]; H) = {f(t) : [0,T] — H; fOT If()lI>ds < 400}, and the norm in L?([0, T]; H) is

denoted by |If ()|l = (fOT If (5)||2ds)?. We let C, = {v(t) : R — H is continuous and v(¢) = —uv(t + T), ¢ € R}, and
W, = {u(-) € C, : u'(-) € I?([0,T]; H)}. Now C, is a Banach space under the norm |v(:)|s = maxeqo,r] lu(t) ||, and by
Lemma 2.1 in [12] (see also [9]), W, is a Banach space under the norm ||u(-)|l, = ||u'(-) || 2.

Theorem 2.3. Let A : D(A) € H — 2" be an odd maximal monotone mapping, where D(A) is symmetric and convex, G : H — R
is a continuously differentiable even function such that dG is a bounded mapping, i.e. G maps bounded subsets to bounded subsets
inH, and f(t) : R — H satisfies f(t + T) = —f(t), fora.e.t € R and fOT If (©)]12dt < +o0. Also suppose D(A) is compactly
embedded into H, and ||g|| < M||x|| forallx € D(A), g € Ax, where M > 0is a constant such that MT < 2. Then the anti-periodic
problem

u'(t) € —Au(t) + oG(u(t)) + f(t), aet €R, (E2.4)
u(t)=—u(t+T), teR ’
has a solution u(-) € W,.
Proof. For each v(-) € C,, we consider the anti-periodic problem
u'(t) + u(t) € —Au(t) + aGu(t) +v(t) +f(t), ae.t €R, (E2.5)
u(t) = —u(t+T7). )
To prove that (E2.5) has a unique solution, we consider the initial value problem
u'(t) + u(t) € —Au(t) + 9Gu(t) +v(t) +f(t), ae.t €R, (E26)
u(0) =y € D(A). ’

Note that (E2.6) has a unique solution x(t, y) for eachy € D(A). We define K : D(A) — D(A) by Ky = —x(T, y). It is easy
to see that K is a contraction since I 4+ A is strongly monotone. Therefore there exists yo € D(A) such that Kyq = —x(T, yo).
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Thus x(t, ) is a solution to (E2.5). The uniqueness follows since I + A is strongly monotone. We denote the unique solution
of (E2.5) by Kv(-) for each v(-) € C,.
From (E2.5), taking the inner products with (Kv)'(t) and integrate over [0, T], we get

I(KvY Oz < MIKvO) 2 + 10602 + vz + I O]z (2.5)

From Lemma 2.1 in [12] we have
1

T T 2
Kv (oo < % ( / |(1<v>’(r)|2dr> .
0

Thus

) MT\ !
[(Kv)' ()2 =< (1 - 7) (I9Gv)ll2 + vz + IF O] (2.6)

From (2.6) and the bounded assumption of dG we infer that K maps bounded subsets of C, to bounded subsets of W,,.
Since D(A) is compactly embedded into H, K is a compact mapping.

Next, we prove that K : C; — C, is continuous. Let v,(-) — v(-) € C; as n — oo. (Consequently, v,(-) — v(-) €
L2([0, T]; H).) The same reasoning as in (2.6) yields

MT\ !
[(Kvy)'(-) — (Kv)' ()2 < <1 - 7) [9Gua(-) — G2 + llvn() — v()l2]- (2.7)

Thus [|(Kvy)'(-) — (Kv)'(-)||;2 — 0. Therefore ||[Kv,(-) — Kv(-)|l.c — 0, and K is continuous.
Finally, we prove that Kv(-) # ||Av()| forall A > 1, and v(:) € C; with |v(:)|cc = Tg, Where r, > (1 —

M- g(fOT If (£)[2dt)? is a constant.
If this is not true, there exist g > 1, vo(-) € Cq with |vg(+)|co = 1o sSuch that Kvg(-) = Agquo(+), i.e. vo(t) = —vo(t +T)
and

Ao(vg(t) + vo(t)) € —Ahouo(t) + dGug(t) + vo(t) + f(t), ae.t €R,
i.e. there exists g(t) € AAvg(t), for a.e.t € R such that

Aoy (t) 4+ vo(t)) = —g(t) + dGue(t) + vo(t) + f(t), ae.t €R. (2.8)

From (2.7), take the inner product with v (t), integrate over [0, T] and note that jOT(a Gug(t), vy(t))dt = 0; we get

T 7 T 7
Ao (/ Ivé(t)lzdt> < AMVT|vo()oo + (/ [f(f)lzdf> : (2.9)
0 0

Recall that

T T 2
()l < {(/ |vg<t>|2dt) ,
0

so we conclude from (2.8) that

MT T ([T :
Aolvo(Dloo < )»07|Uo(')|oo + % (/ lf(t)|2df> .
0

Therefore it follows that

MT\ ' T /(T 2
[Vo() oo < (1 - 7) % (/ Ig(t)lzdt> ,
0

which contradicts |vg(-)|eo = 1o > (1 — m)‘lg(fg [f(t)lzdt)%.
The homotopy property of the Leray—Szchauder degree implies that deg(I — K, B(0, rg), 0) = 1. Thus Kv(-) = v(-) has a
solution v(-) in B(0, rg), which is easily seen to be a solution of (E2.4). O

Corollary 2.4. Let B : R — 2R be an odd maximal monotone mapping, and |g| < M|x| forallx € Rand g € B(x), where
MT < 2,and f(-) : R — Rsatisfy f(t +T) = —f(t) for t € Rand fOTf(t)zdt < +4o00. Then

u'(t) € —Bu(t)) + 2u(t)e"2<” +f(t), aeteR, (E2.7)
u(t) =—u(t+T), teR )

has a solution.
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Remark. For A the sub-differential of a lower semi-continuous convex function, results similar to Theorem 2.3 were ob-
tained in [5,13].

3. An example

Example 3.1. Let 2 C R" be an open bounded subset with smooth boundary. Assume that a;, b; : R — [0, +00) are
continuous functions fori = 1, 2, ..., n. Suppose the following conditions are satisfied:

(1) ¢1 < a;(x) < ¢, forall (t, x) € R?, where ¢y, c; > 0 are constants;
(2) Y_i[bi(xi) — bi(y)1(x; — yi) > 0, where x = (x;),y = (¥;) € RV;
(3) |bi(t)| < Blt|forallt e Randi=1,2,...,n;

(4) bj(—t) = —b;i(t)fort e R,andi=1,2,...,n.

LetA : Hy(£2) — H* be defined as
(Au, v) :/ Zai(x)b,-(Diu)Div dx
2] i=1

forallu, v e H(} (£2). Then we have the following:

(@) [lAull < 28,/ [, (O i, IDul?)dx for allu € Hy(£2),

(b) (Au —Av,u—v) >0fort eRu,v, € H&(Q), and A is continuous and monotone and so it is maximal monotone,
(c) A(—u) = —Au, for u € Hj(£2).

Consider

n
(6, %) ==Y Dila(b(Dw)]+f(t,x), aeteRxe,
i=1 (E3.1)
u(t,x) =0, xe€d82, ae.t €R,
u(t,x) = —u(t+T,x), teRxe L,

where f(t, x) : R x R" — Ris continuous and f(t + T, x) = —f(t, x).
Suppose that c; BT < 2. Then by Theorem 2.2, (E3.1) has a generalized solution u(t, x), i.e. u(t,x) = —u(t + T, x) for
ae.t eRx e £2,and

f (£, (0 dx = / [ (OD:u(t X))Dru(x) + £ (£, Y0 Idx,
2 2
forae.t € R and v(-) € Hy(£2).
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