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It is shown that a Banach space E has the Radon-Nikodym property 
(equivalently, every bounded subset of E is dentable) if and only if every 
bounded closed convex subset of E is the closed convex hull of its strongly 
exposed points. Using recent work of Namioka, some analogous results are 
obtained concerning weak* strongly exposed points of weak* compact convex 
subsets of certain dual Banach spaces. 

The notion of a dentable subset of a Banach space was introduced by 
Rieffel[16] in conjunction with a Radon-Nikodym theorem for Banach 
space-valued measures. Subsequent work by Maynard [12] and by 
Davis and Phelps [6] (also by Huff [S]) has shown that those Banach 
spaces in which Rieffel’s Radon-Nikodym theorem is valid are 
precisely the ones in which every bounded closed convex set is 
dentable (definition below). Diestel [7] observed that the classes of 
spaces (e.g., reflexive spaces, separable conjugate spaces) which are 
known to have this property (the “Radon-Nikodym property”) 
appear to coincide with those which are known to have the property 
that every bounded closed convex subset is the closed convex hull 
of its extreme points (the “Krein-Milman property”) and he raised 
the question as to whether the two properties are equivalent. Quite 
recently, Lindenstrauss showed (Theorem 2) that the Radon- 
Nikodym property does indeed imply the Krein-Milman property. 
(The converse remains an open question.) In the present paper we 
prove a stronger result, in which “extreme point” is replaced by 
“strongly exposed point.” Our methods also permit us to extend a 
recent theorem by Namioka [13], give an alternative proof of a result 
of Collier and Edelstein [5] and generalize some results of John and 
Zizler [9]. 

* Work on this paper supported by an NSF Grant. 
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We want to thank Professors Richard Bourgin, William J. Davis, 
Joseph Diestel and Ka-Sing Lau for helpful and stimulating con- 
versations related to the subject matter of this paper. An important 
step in the argument (Lemma 7) is due to Errett Bishop, who com- 
municated it to us in a letter a number of years ago. Above all, we are 
deeply indebted to Isaac Namioka. In addition to suggesting numerous 
simplifications in the proofs and better formulations of the theorems 
themselves, he pointed out that the technique of Lemma 6 (which we 
had used earlier in an unnecessary detour in the proof of Theorem 5) 
could be combined with Bishop’s lemma to prove Theorem 9, which 
is the main result of this paper. Moreover, it was his enthusiasm and 
suggestions which led us to formulate our results so as to make them 
applicable to dual spaces, thus leading to an extension of part of his 
own recent work [13]. 

We first establish some notation, Throughout this paper, the letter 
C will denote a nonempty, bounded closed and convex subset of the 
Banach space E. Iff E E* we let 

and 

M(f, C) = sup(f(x) : X E c> 

M(C) = sup{II X 11 : s E c>. 

If llfll = 1 and 01 > 0, then we define 

S(f, OL, C) = (Lx : x E c and f(x) 2 M(f, C) - 4. 

Such a set is called a s&e of C and the fact that ]/fll = 1 and cy > 0 
will always be understood when we refer to a “slice of C.” We let U 
denote the unit ball of E, i.e., 

u = (x E E : II x [I < 1). 

DEFINITION. Let E be a Banach space and let F be a linear sub- 
space of E* which separates points of E. A subset A C E is said to be 
F-dentable if for each E > 0 there is a point x E A such that x is not in 
the a(E, F)-closed convex hull of A\(x + EU). In the case when 
F = E*, we say A is dentable. 

It should be noted that a set is dentable if its closed convex hull 
is dentable [16]. (Th e converse is true for bounded sets.) 

PROPOSITION 1. A subset A of E is F-dentable if and only if for 
each E > 0 there is a slice S(f, CL, A) of A of diameter less than E, 
where f E F. 
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The above proposition is an easy consequence of the separation 
theorem, and we omit the proof. 

DEFINITION. (i) A point x E A C E is called an F-denting point 
of A if for each E > 0 there is a slice S(f, 01, A) of diameter less than E 
which contains x and is determined by a functional f E F. If F = E*, 
we simply call x a denting point. 

(ii) A point x E A C E is called an F-strongly exposed point of A 
if there exists an f E F of norm one such that, for each E > 0, there is 
an cy > 0 such that the slice S(f, 01, A) contains x and has diameter 
less than E. The functional f is said to strongly expose x. If F = E*, 
we say that x is a strongly exposed point. 

It will be immediate from Theorem 5 (below) that if E has the 
Radon-Nikodym property, then every C in E is the closed convex hull 
of its extreme points. This was first proved, in a much simpler way, 
by Joram Lindenstrauss and he has kindly given us permission to 
reproduce his argument here. 

THEOREM 2. (Lindenstrauss). If every bounded subset of the 
Banach space E is dentable and if C is a bounded closed convex subset of E, 
then C is the closed convex hull of its extreme points. 

Proof. By a support face of C we mean a set of the form 

qg, C) = {x E c : g(x) = M(g, c>>, 

where g E E* has norm 1. Note that any slice S(f, LY, C) of C contains 
a nonempty support face of C: If 0 < 6 < or[2M(C)]-l, then it is 
easily seen that F(g, C) C S(f, ~11, C) whenever 11 g Ij = 1 and 

llf - g II < 6. BY [4, C or. 41, there always exists a functional g 
satisfying these last two conditions such that F(g, C) is nonempty. 
Now, let S(f, 01, C) be any slice of C and choose a nonempty support 
face FI = F(g, C) C S(f, (Y, C). By hypothesis, there exists a slice of 
Fl of diameter less than 1 and the above argument (applied to FI) 
yields a nonempty support face F2 = F(g, , Fi) of FI contained in this 
slice. Obviously, diam F, < 1. Continuing by induction, there exists 
a nested sequence Fl 3 F2 3 F, I,..., of such sets (each one necessarily 
a face of C) with diam F, + 0. By completeness, their intersection is a 
single point which is contained in S(f, 01, C). This fact, in conjuncticn 
with the separation theorem, completes the proof. 
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LEMMA 3. Let T be an isomorphism (i.e., a linear bicontinuous 
biection) of E and let S(f, 01, C) be a slice of C of diameter d. Then 
T[S(f, 01, C)] is a slice of TC of diameter at most d 11 T 11. 

Proof. Let T* denote the adjoint of T and let f * = (T*)-lf. 
For any x in C we have f(x) = f *( TX); it follows that M(f, C) = 
M( f *, TC) and that 

The assertion about the diameter of the latter slice is easily verified. 

LEMMA 4. Suppose that every bounded subset of E is dentable and 
that g E E*, /I g /I = 1. If E > 0 and C\g-l(O) is nonempty, then there 
exists a slice of C of diameter less than E which misses the set 
D = C "g-l(O). 

Proof. We assume, of course, that D is nonempty. Let x E C\g-‘(0) 
(say g(x) > 0) and let r = g(z)-‘. For any x E D define T, by 

T3cY = Y - %(Y)(Z - 4, y E E. 

Each T, is a reflection of E through the hyperplane g-l(O) along the 
line through 0 determined by z - x; in particular, it is readily verified 
that for each x E D, 

T,-’ = T, , T,z = 2x - x, T, is the identity on g-l(O) 

and 
11 T, /I < 1 + 2~ 11 x - x I/ < 1 + 4rM(C) = M. 

Let X = {C} u {T.$ : x E D> and let 

Cl =cou{K:KEX}. 

Since M( T,C) < M * M(C) f or each x E D, the closed convex set 
C, is bounded. If x E D, then 

x = 1,‘2z + l/2 Ts 

so x is a midpoint of a segment in Cr of length 

II x - T/z II = 2 /I z - x II 3 2&z) > 0. 

By hypothesis, there exists a slice S(f, 01, C,) of C, of diameter d, 
where 

d < min(c/M,g(z)}. 
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NOW, M(f, Cl) = M(f, U {K: K E Y}), SO M(f, K,) > M(f, Cl) - a 
for at least one set K, E X. Thus 

B = M(fl KO) - pf(f, Cl) - 4 > 0 

and Stf, P, K,) C S(f, a, Cl), so diam S(f, /3, K,) < d. If S(f, 01, C,) 
were to contain a point x E D, it would also contain at least one end- 
point of the segment in C, of which x is the midpoint, contradicting 
the fact that d < g(x). Thus the smaller slice S(f, 8, K,) also misses D. 

Consider the possible choices for K, : Either K,, = C, in which 
case the proof is complete, or K, = T,C for some x E D. In the latter 
case, Lemma 3 (applied to T = T;‘) shows that T$S(f, /3, T,C) 
is a slice of C of diameter at most 11 T;l 11 d = jj T, 11 d < Md < 6. 
Moreover, this slice also misses D: If y E D, then y 4 S(f, fl, T,C), 
hence 

Y = T;ly $ T,-‘S(f, A T,C). 

THEOREM 5. Suppose that every bounded subset of E is dentable 
and that C is bounded, closed and convex. Then C is the closed convex 
hull of its denting points. 

Proof. By the separation theorem, it suffices to show that each 
slice S(g, fi, C) of C contains a denting point of C. By translation, 
we can assume that the origin is contained in the hyperplane 

lx E E : g(x) = Wg, C) - ,% 

i.e., that this is the same asgel( Let C, = S(g, p, C) and apply the 
previous lemma to get a slice of C, which misses Cr n g-l(O) and has 
diameter less than l/2. This slice is necessarily a slice of C and is 
contained in C, . We can continue by induction to get a nested 
sequence of slices of C whose diameters converge to 0; their inter- 
section is necessarily a denting point of C inside C, . 

We now show that with some further effort, we can replace “denting 
points” by “strongly exposed points” in the above result. For this 
purpose we prove two lemmas, which are stated in terms of F-denting 
points and F-strongly exposed points, where F is a point-separating 
linear subspace of E *. This added generality complicates the state- 
ments of the lemmas, but causes no difficulties whatsoever in their 
proofs. Moreover, it allows us subsequently to prove a result con- 
cerning weak*-strongly exposed points for subsets of E*, where, e.g., 
“weak*-dentable” means “F-dentable” when F is taken to be the 
canonical embedding of E into the dual of E*. Of course, for their 
application to subsets of E, we will take F = E*. 
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LEMMA 6. Suppose that F is a linear subspace of E* and that every 
bounded a(E, F)-closed convex subset of E is the a(E, F)- closed convex 
hull of its F-denting points. Suppose, moreover, that S(f, a, C) is a slice 
of the bounded u(E, F)-closed convex set C, with f E F, and that 0 < E < 1. 
Then there exists a slice S(g, 8, C) of diameter less than E such that 
gEF,Ilf-gll <Eand 

Sk, B, C) c m % c>. 
Proof. By translation we can assume that the origin is contained 

in the hyperplane 

H = {ix E E : f(x) = M(f, C) - a>; 

equivalently, H = f -l(O) and M(f, C) = OL > 0. Let M = M(C) and 
define C, to be the o(E, F)-closed convex hull of S(f, 01, C) u (AU n H), 
where A > ME-l. From the hypotheses it follows there is an F- 
denting point in C,\H, hence there is a slice S(g, p, C,) of C, of dia- 
meter less than E which misses AU n H and for which g E F. This 
implies that 

Sk, P, S(f, % C)) = qg, A c> 

is a slice of C of diameter less than E which is contained in S(f, a, C). 
It remains to show that Ilf - g Ij < E. 

Choose z E S(g, /3, C) with 

g(z) > Wg, Cl) - B b M(g, AU n H) a 0. 

Since AU A H is symmetric, we conclude that 

gW n HI C [-g(z), &)I. 

Equivalently, g[ U n f -l(O)] C [-A-lg(x), A-lg(z)]. By [4, Lemma 3.11, 
this implies that either 

or 
jjf- g jj < 2h-lg(z) = 2A-1M < E 

llf + g II < ~-w>. 

To see that this second possibility cannot occur, note thatf (,a) > 01 > 0 
[since x E S(g, /?, C) C S(f, OL, C)] and hence 

II f + g II 3 (f + g>(z II z II-‘) > &)ll 2 r1 b g(4 iwl 
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which would imply that ME-1 < h < 2M, contradicting the fact 
that E < 1. 

The following lemma is due to Errett Bishop (private communi- 
cation, 1967) and we are grateful to him for his permission to include 
it here. Since we deal with the same set C throughout the proof, we 
will use S(f, a) in place of S(f, (Y, C). 

LEMMA 7. (Bishop). Let E be a Banach space, F a norm closed 
subspace of the dual space E* and C a bounded closed convex subset of E. 
Suppose that for each slice S( f, OJ) of C, where f E F, and for each E > 0, 
there exists a slice S(g, 8) of d iameter less than E such that g E F, 

sky P) c W? 4 and l!f-gll < 6. 

Then every slice S( f, a) of C (with f E F) contains a point of C which is 
strongly exposed by a functional from F. 

Proof. We will write M(f) for M(f, C) and we assume without 
loss of generality that M(C) = 1. Let S(f, a) be a slice of C, where 
f CF. Let g, = f, /3, = p and use the hypotheses inductively to 
construct a sequence of functionals g, , g, ,..., of norm one in F and 
a sequence of positive numbers & , pz ,..., such that 

i!gk+l - gkli < 2-kpk , Pk+l < 2-1Pk P 

diam s&k+, , flkfl) < 2-1bk and ‘%?k+l > hc+l) c ‘%k 7 !k). 

By the triangle inequality and a standard estimate we have 

11 gk+j - gk 11 < 2-k+‘pk for each k and j, (1) 

so (since /3, + 0) the sequence {glc} is Cauchy and hence converges 
to a functional g in F of norm one. Furthermore, the nested sequence 
of closed sets {S(g, , pk)) h as a nonempty intersection consisting of a 
single point x, E S(f, 01). W e will show that x, is strongly exposed by g. 
From (1) it follows that (by taking the limit as j -+ co) 

I/g - gk // < 2-k+1f4 

for each K. From this it follows that 

1 dx) - gk(dl G 2-k+1pk for XE C, k = 1, 2 ,...) . (4 

Thus, for x E C we have M(g) > g(x) >, gk(x) - zek+‘pk and hence 

M(d 2 M(gk) - 2-28k if k>3. (3) 
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Furthermore, if x E S(g, /Q/4), then by (2) and (3) we have (for 

k 3 3) 

so S(g, Pk/4) C S(g, , /3J if k > 3. It follows that n S(g, p,/4) = {x0} 
and diam S(g, fl,/4) ---f 0, so x0 is strongly exposed by g. 

The last two lemmas, together with the separation theorem, 
provide a proof of the following result. 

PROPOSITION 8. Suppose that E is a Banach space and that F is 
a norm closed subspace of E* which separates the points of E. Assume, 
moreover, that every bounded a(E, F)-closed subset of E is the a(E, F)- 
closed convex hull of its F-denting points. Then every such set is the 
a(E, F)-closed convex hull of its F-strongly exposed points. 

THEOREM 9. Let E be a Banach space. Then every bounded subset 
of E is dentable if and only tf every bounded closed convex subset of E is 
the closed convex hull of its strongly exposed points. 

The proof of this theorem needs little comment; we simply combine 
Theorem 5 with the case F = E* in the above proposition. 

THEOREM 10. Suppose that E is a Banach space and that every 
bounded weak*-closed subset of E* is the weak*-closed convex hull of 
its weak*-denting points. Then the same conclusion holds for its weak*- 
strongly exposed points. 

Again, the proof is immediate from Proposition 8, by taking 
F C E** to be the natural embedding of E. 

In order to apply this theorem, we first recall a definition. 

DEFINITION. A Banach space E is said to be weakly compactly 
generated (WCC) if there exists a weakly compact subset of E whose 
linear span is dense in E. 

(Note that to say that a dual Banach space E* is WCG means that it 
is generated by a a(E*, E**)-compact set.) 

Isaac Namioka [13] has recently shown, using topological methods, 
that if E’ is WCG, then every weak*-compact convex subset of E* is 
the weak*-closed convex hull of its weak*-denting points. Namioka did 
not use the term “weak*-denting point”, but the above assertion 
follows trivially from [13, Theor 4.81 and the methods of his earlier 
paper [14]. 
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COROLLARY 11. If E is a Banach space and if E* is WCG, then 
every weak*-compact convex subset of E* is the weak*-closed convex 
hull of its weak*-strongly exposed points. 

Proof. This is immediate from Namioka’s result and Theorem 10. 
The above result suggests an interesting question. It is relatively 

easy to prove that if E* is WCG, then every bounded subset of E* 
is dentable (cf. [7]). N ow the operators T, in Lemma 4 are, when 
defined in a dual space, the adjoints of operators of the same form. 
This fact makes it easy to see that Lemma 4 can be applied to dual 
spaces and weak * dentability, as can Theorem 5, so that (in con- 
junction with Theorem 10) it follows that for any dual space in which 
every bounded weak*-closed convex set is weak*-dentable, every 
such set is the weak*-closed convex hull of its weak*-strongly exposed 
points. Thus, an alternative proof of Corollary 11 above would follow 
from an affirmative answer to the following question. More generally, 
the conclusion to Corollary 11 would hold in any dual space having 
the Radon-Nikodym property. 

Question. Suppose that E is a Banach space and suppose that every 
bounded subset of E* is dentable. Is every bounded weak* closed 
convex subset of E* weak*-dentable ? 

It is not difficult, using the methods of [6], to see that it suffices to 
answer the question for every unit ball of E* which is defined by an 
equivalent dual norm in E*. (i.e., for every bounded symmetric 
weak*-closed convex subset of E* having nonempty norm-interior). 
Note that Bourgin’s example (below) shows that a strongly exposed 
point need not be weak*-strongly exposed. 

DEFINITION. A Banach space E is said to be a strong dzferentiability 
space (SDS) if every convex continuous function defined on an open 
convex subset of E is Frechet differentiable on a dense Ga subset of 
its domain. 

The SDS spaces were introduced by Asplund [l], who proved that 
E has this property if it admits an equivalent norm whose dual norm 
in E* is locally uniformly convex (rotund) (cf. [l] for the definition). 
He also showed that the conclusion to Corollary 11 holds (in E*) 
whenever E is an SDS. This raises the following question. 

Question. If E* is WCG, is E an SDS ? 
The converse is known to be false, since Asplund [2] has also shown 

that for any set r, the space c,(r) is an SDS, although its dual space, 
which is isometric to /r(r), is WCG only when r is countable [l 11. 
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COROLLARY 12. Suppose that E is a Banach space and that every 
weak*-compact convex set (i.e., every bounded weak*-closed convex set) 
in E* is weak*-dentable. Then every bounded closed convex subset C of 
E* is the norm-closed convex hull of its strongly exposed points. 

Proof. If C C E*, then the fact that its weak*-closure is weak*- 
dentable implies that C itself is dentable, and Theorem 9 applies. 

There is another approach, due to Namioka [13], to the above 
results of Asplund. 

DEFINITION. A dual Banach space E* is said to satisfy property 
(* *) provided 

(**) Whenever (fJ is a net in E*, f E E*, are such that 
Ilfa II + Ilf II andf, -f weak*, then II fw - f II--+ 0. 

It is evident that E* has property (**) if and only if the weak* 
and norm topologies agree on the unit sphere {f E E* : 11 f 11 = l> 
of E*. It is not difficult to show that {r(r) has property (**), as does 
any E* in which the norm is locally uniformly convex. From Namioka 
[ 13, Theor. 4.1 l] it follows that the conclusion to Corollary 11 is valid 
in any dual space which admits an equivalent dual norm having 
property (**). Another consequence of Namioka’s Theorem 4.11 and 
Corollary 12 is contained in the third part of the next corollary. The 
first part (concerning strong differentiability spaces) was first proved 
by Collier and Edelstein [5], by applying the methods of Asplund 
[l, 21 and Asplund and Rockafellar [3]. The second part of the 
corollary (concerning WCG spaces) is a generalization (via Namioka’s 
Theor. 4.8 [13]) f o a result by John and Zizler [9]. It should be noted 
that in their Corollary 3, John and Zizler assume that both E and 
E* are WCG, while Namioka [13] gets the same conclusion assuming 
that only E* is WCG. Lindenstrauss has informed us that he has an 
example of a Banach space E which is not WCG but for which E* 
is WCG. 

COROLLARY 13. Suppose that 

(i) E is an SDS, 

(ii) E* is WCG OY 

(iii) E* has an equivalent dual norm satisfying condition (**). 

Then every bounded closed convex subset of E* is the norm-closed convex 
hull of its strongly-exposed points. 
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Proof. Each part follows from Corollary 12 in conjunction with 
Asplund [l , 21 for part (i), or with Namioka [13] for parts (ii) 
and (iii). 

If we replace E and E* by E* and E** (resp.) in the above corollary, 
then we can conclude that every C in EC E** is dentable, hence is 
the closed convex hull of its strongly exposed points, by Theorem 9. 
In case (ii), this generalizes another result of John and Zizler [9], 
who assumed that both E* and E** were WCG. This remark also 
follows from the fact that any WCG dual space (in this case, E**) 
has the Radon-Nikodym property [7], together with Theorem 9. 

It is natural to ask whether the conclusion to Corollary 13 can be 
strengthened to the assertion that C is the norm-closed convex hull 
of its weak*-strongly exposed points. (By considering the weak* 
closure of C, it can be seen that such points will exist.) That the 
answer is negative is shown by the following example, which was 
provided to us by Richard Bourgin. 

EXAMPLE. Let E = c, and let C, C E* = tl be those real sequences 
x = (xn) such that X, :, ) 0 for each n and ZX~ = 1. Let y = 
(l/2, 0, O,...,) and let C be the norm-closed convex hull of C, u { y}. 
Then C is the norm-closed convex hull of its strongly exposed points, 
but not of its weak* strongly exposed points, nor is it the weak*- 
closed convex hull of the latter. Furthermore, the point y is strongly 
exposed but not weak*-strongly exposed. 

Proof. The first assertion follows either by direct verification or 
from at least two different general arguments, since C, is both WCG 
(being separable) and the dual of an SDS. The second assertion follows 
from the fact that all of the weak*-strongly exposed points of C are 
in C, . Indeed, the only other candidate is the point y. But, since y 
is in the weak*-closure of C, , no weak*-closed hyperplane can 
separate it from C, , hence no weak*-slice of C contains y and misses 
C, . The fact that the origin is in the weak*-closure of C but not in 
C proves the assertion about the weak*-closed convex hull. Finally, 
the functional defined by the element (1, 1, I,...,) E t= strongly 
exposes y. 

Lindenstrauss [lo] has shown that if a Banach space E has the 
property that every bounded closed nonempty convex set has an 
extreme point, then E has the Krein-Milman property. (A very 
simple proof has been given by Richard Bourgin, cf. [15, Lemma 11.) 
We can add the following related (and obvious) corollary to 
Theorem 9. 



DENTABILITY IN BANACH SPACES 89 

COROLLARY 14. If every bounded closed nonempty convex subset of 
the Banach space E has a denting point, then every such set is the closed 
convex hull of its strongly exposed points. 

We conclude with some related results and open questions. 
One of the main results in this area is Troyanski’s renorming 

theorem [18] which, when combined with a result of Lindenstrauss 
[ll], shows that every weakly compact convex subset of a Banach 
space is the closed convex hull of its strongly exposed points. We see 
no way of obtaining this result by our methods; although such a set 
generates a WCG Banach space, not every such space (e.g., the 
sequence space c,,) has the Radon-Nikodym property. 

Since we have considered dual spaces having the Radon-Nikodym 
property, we should mention Stegall’s [17] characterization of such 
spaces: E* has the Radon-Nikodym property if and only if every 
separable subspace of E has a separable dual space. 

As we mentioned in the introduction, the question still remains open 
as to whether the Krein-Milman property implies the Radon- 
Nikodym property. This can now be formulated in the following 
manner. If every bounded closed convex subset of the Banach space 
E is the closed convex hull of its extreme points, is every such set the 
closed convex hull of its strongly exposed points ? 

Note added in proof. R. Huff and P. D. Morris (“Dual spaces with the Krein- 
Milman property have the Radon-Nikadym property,” to appear in Proc. Amer. 
Math. Sot.) have ingeneously applied Stegall’s construction [17] to give a partial 
answer to the above question. The example mentioned before Corollary 13 will 
appear in W. B. Johnson and J. Lindenstrauss, “Some remarks on weakly compactly 
generated Banach spaces.” G. A. Edgar (“A noncompact Choquet theorem,” to 
appear in PYOC. Amer. Math. Sot.) has shown that the elements of a bounded closed 
convex separable subset of a Banach space with the Radon-Nikodym property admit 
integral representations by Bore1 probability measures on the extreme points. 
G. Choquet has informed me that this result can also be deduced from a theorem 
of his announced in “.ReprCsentations integrales dans les c6nes convexes sans base 
compacte” C. R. Acad. Sci. (Paris) 253 (1961), 1901-1903. 
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