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SUMMARY

Responses of neurons in early visual cortex change
little with training and appear insufficient to account
for perceptual learning. Behavioral performance,
however, relies on population activity, and the accu-
racy of a population code is constrained by corre-
lated noise among neurons. We tested whether
training changes interneuronal correlations in the
dorsal medial superior temporal area, which is
involved in multisensory heading perception. Pairs
of single units were recorded simultaneously in two
groups of subjects: animals trained extensively in
a heading discrimination task, and ‘‘naive’’ animals
that performed a passive fixation task. Correlated
noisewas significantly weaker in trained versus naive
animals, which might be expected to improve coding
efficiency. However, we show that the observed
uniform reduction in noise correlations leads to little
change in population coding efficiency when all
neurons are decoded. Thus, global changes in corre-
lated noise among sensory neurons may be insuffi-
cient to account for perceptual learning.

INTRODUCTION

Perceptual learning enhances sensory perception and leads to

improved behavioral performance (Goldstone, 1998), but the

neural basis of this phenomenon remains incompletely under-

stood. One hypothesis is that responses of sensory neurons are

altered by learning to increase the information that is encoded.

In this case, one would expect to observe neural correlates of

increased sensitivity in early sensory areas. However, previous

studies have found little or no change in the tuning properties of

single neurons in early visual cortex, and it remains unclear

whether these changes could account for perceptual learning

(Chowdhury and DeAngelis, 2008; Crist et al., 2001; Ghose

et al., 2002; Law and Gold, 2008; Raiguel et al., 2006; Schoups

et al., 2001; Yang andMaunsell, 2004; Zohary et al., 1994a). Alter-

natively, perceptual learning may arise from changes in how

sensory information is decoded and interpreted by higher brain

areas (Dosher and Lu, 1999; Law and Gold, 2008; Li et al., 2004).
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Most neurophysiological studies of perceptual learning

focused on the activity of individual neurons; however, behavior

arises from population activity. By pooling information from

many cells, the noise inherent in responses of single neurons

could be reduced, thus improving coding efficiency. Theorists

have shown that the information capacity of a population code

depends on the correlated noise among neurons (Abbott and

Dayan, 1999; Averbeck et al., 2006; Oram et al., 1998; Sompolin-

sky et al., 2001; Wilke and Eurich, 2002). In general, correlated

noise could either decrease or increase the information trans-

mitted by a population of neurons, depending on how correlated

noise varies with the similarity of tuning between neurons

(‘‘signal correlations’’; Averbeck et al., 2006; Oram et al., 1998;

Wilke and Eurich, 2002). The impact of correlations could be

strong when the relevant neuronal population is large (Bair

et al., 2001; Shadlen et al., 1996; Smith and Kohn, 2008; Zohary

et al., 1994b).

Whether perceptual learning improves population coding effi-

ciency through changes in the correlated variability among

sensory neurons remains unknown. Modest noise correlations

have been measured in a number of cortical areas (V1: Bach

and Krüger, 1986; Gutnisky and Dragoi, 2008; Poort and Roelf-

sema, 2009; Reich et al., 2001; Smith and Kohn, 2008) (but see

Ecker et al., 2010) (V4: Cohen and Maunsell, 2009; Mitchell

et al., 2009) (IT: Gawne et al., 1996; Gawne and Richmond,

1993) (MT: Cohen and Newsome, 2008; Huang and Lisberger,

2009; Zohary et al., 1994b), but how these correlations differ

between untrained and trained animals has not, to our knowl-

edge, been tested.

To examine the effect of training on correlated noise, we simul-

taneously recorded pairs of single neurons in the dorsal medial

superior temporal area (MSTd), a multisensory area thought

to be involved in heading perception based on optic flow

and vestibular signals (Angelaki et al., 2009; Britten, 2008).

Correlated noise among pairs of neurons was examined in two

groups of animals: one group (‘‘naive’’) was only trained to fixate;

the other group (‘‘trained’’) also learned to perform a fine heading

discrimination task. Noise correlations were significantly weaker

in trained than naive animals, whereas tuning curves, response

variability, and discrimination thresholds of individual neurons

were similar. Importantly, training reduced noise correlations

uniformly, regardless of tuning similarity between pairs of

neurons. As a result, if all neurons contribute equally to percep-

tion, this change in correlated noise is unlikely to account for

improvements in perceptual sensitivity with training.
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Figure 1. Measuring Noise Correlation

(rnoise) between Pairs of Single Neurons in

Area MSTd

(A) Response time courses for populations of

neurons with significant tuning (p < 0.05, ANOVA)

in the visual (solid curve, n = 231) and vestibular

(dashed curve, n = 118) conditions. Gray curve

represents the Gaussian velocity profile of the

stimulus. Vertical dashed lines bound the time

window over which spikes were counted for

analysis.

(B and C) Visual and vestibular heading tuning

curves, respectively, for a pair of simultaneously

recorded MSTd neurons (black and gray curves).

Error bars: SEM.

(D and E) Normalized responses from the same

two neurons were weakly correlated across trials

during visual (D) and vestibular (E) stimulation, with

noise correlation values of 0.29 and 0.14,

respectively.

(F) Comparison of noise correlations measured

during visual and vestibular stimulation (n = 179).

Arrow heads indicate mean values.
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RESULTS

Monkeys were presented with two types of heading stimuli while

maintaining fixation on a head-fixed target: inertial motion deliv-

ered by amotion platform in the absence of optic flow (vestibular

condition) and optic flow stimuli presented while the animal was

stationary (visual condition, see Experimental Procedures for

details). Consistent with previous findings (Gu et al., 2006; Taka-

hashi et al., 2007), many MSTd neurons were tuned to heading

direction, and their responses mainly followed the Gaussian

velocity profile of the stimulus (Figure 1A). We analyzed re-

sponses obtained during the middle 1 s of the stimulus period,

during which neuronal activity was robust. Tuning curves of

two simultaneously recorded cells are shown in Figures 1B

and 1C. The similarity of heading tuning between pairs of

neurons was quantified as the Pearson correlation coefficient

of mean responses across all stimulus directions (‘‘signal corre-

lation’’, rsignal). For this example pair of neurons, rsignal = 0.83 and

0.79 for the visual and vestibular conditions, respectively.

Noise Correlations in Area MSTd
As in other cortical areas, the spike counts of MSTd neurons in

response to an identical stimulus vary from trial to trial, as illus-

trated in Figure 1D (visual condition) and Figure 1E (vestibular

condition). Each datum in these plots represents the spike

counts of the two neurons from a single trial. Because heading

direction varied across trials, spike counts from individual trials

have been z-scored to remove the stimulus effect and allow

pooling of data across directions (see Experimental Procedures).

‘‘Noise correlation’’ is then computed as the Pearson correlation

coefficient of the normalized trial-by-trial spike counts, and

reflects the degree of correlated variability across trials. For

this example pair of cells, there was a weak positive correlation,

such that when one neuron fired more spikes, the other neuron
did as well (visual condition: rnoise = 0.29, p = 0.04, Figure 1D;

vestibular condition: R = 0.14, p = 0.3, Figure 1E).

We first examined whether correlated noise in MSTd depends

on stimulus modality (Figure 1F). Noise correlations computed

from visual and vestibular responses were significantly corre-

lated across 179 pairs of neurons (R = 0.38, p << 0.001,

Spearman rank correlation), and their means were not signifi-

cantly different (vestibular: 0.035 ± 0.014 SEM, visual: 0.039 ±

0.015, p > 0.8, paired t test). Thus, to gain statistical power,

we recomputed rnoise by pooling z-scored responses across

stimulus conditions, thereby obtaining a single value of rnoise
for each pair of neurons.

As observed in other visual areas (Huang and Lisberger, 2009;

Smith and Kohn, 2008), noise correlations depended on the

distance between two simultaneously recorded MSTd neurons,

as illustrated in Figure S1, which shows distributions of rnoise for

three distance groups: <0.05 mm, 0.05–1 mm, and >1 mm.

Average noise correlations were significantly greater than zero

for the first two groups (<0.05 mm: 0.042 ± 0.021 SEM, p =

0.049, t test; 0.05–1 mm: 0.062 ± 0.024, p = 0.011), but not for

the group of distant pairs (>1 mm: 0 ± 0.15, p = 0.9). Thus, the

following analyses were focused on 127 neuronal pairs sepa-

rated by <1 mm (results were similar for the whole data set).

Comparison of Noise Correlations in Trained
and Naive Animals
Our main goal was to examine whether training modifies inter-

neuronal correlations. Five animals were previously trained to

perform a heading discrimination task, in which they reported

whether their heading was leftward or rightward relative to

straight ahead (Gu et al., 2007, 2008a). These monkeys’ heading

discrimination thresholds (corresponding to 84% correct) were

high (>10�) at early stages of training, and gradually decreased

to a plateau of only a few degrees (1�3�), as illustrated in
Neuron 71, 750–761, August 25, 2011 ª2011 Elsevier Inc. 751



A B C Figure 2. Training Effects on Behavior and

Interneuronal Correlations

(A) Vestibular psychophysical thresholds from five

monkeys (denoted by different symbol shapes)

decreased gradually during training on a heading

discrimination task. Solid curves: best fitting

exponential functions for each animal. Thresholds

are shown for the vestibular condition, not the

visual condition, because optic flow stimuli were

introduced later in training, and also because

visual motion coherence varied across sessions

to match visual and vestibular sensitivity (Gu

et al., 2008a).

(B) Distributions of noise correlations for naive

(top, n = 38) and trained (bottom, n = 89) animals. Black bars indicate rnoise values that are significantly different from zero. Arrows: population means.

(C) Average (±SEM) time course of noise correlations in trained (red, n = 89) and naive animals (blue, n = 38).
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Figure 3. Training Does Not Affect the Time Courses of Mean

Responses and Response Variability during Visual (top) and Vestib-

ular (bottom) Stimulation

(A and C) Time course of the average response to stimuli presented at each

cell’s preferred heading in trained (red, n = 146) and naive animals (blue,

n = 64). Error bands: SEM.

(B and D) Time course of Fano factor in trained (red) and naive (blue) animals.

Error bands: 95% confidence intervals. Data were derived from the same

127 pairs of neurons as in Figures 2B and 2C.
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Figure 2A (Fetsch et al., 2009; Gu et al., 2007, 2008a). We

measured noise correlations after these ‘‘trained’’ animals had

reached asymptotic performance, and we compared them with

correlations measured in three ‘‘naive’’ animals that had never

been trained to perform any task other than visual fixation.

Our most conspicuous finding was a difference in mean rnoise
between trained and naive animals (Figure 2B). Correlations in

trained animals were shifted toward zero, as compared with

those in naive animals. The mean noise correlation in the trained

group (0.023 ± 0.017 SEM, n = 89) was significantly smaller than

that for naive animals (0.116 ± 0.031, n = 38, p = 0.006, t test).

Note that, for both groups of animals, rnoise wasmeasured during

an identical passive fixation task (see Experimental Procedures).

Because the stimulus was dynamic (Figure 1A, gray curve), we

examined the time course of noise correlation in trained and

naive animals by computing rnoise in 500 ms sliding windows

(with 50 ms steps). As illustrated in Figure 2C, rnoise was signifi-

cantly greater in naive than trained animals throughout the time

course of the neural response (p = 0.002, permutation test, see

Experimental Procedures). The difference in rnoise between naive

and trained animals was largest at the beginning of the trial and

gradually decreased with time (R = �0.9, p < < 0.001, Spearman

rank correlation, Figure S2A). Importantly, these observations

held true when correlations were examined for individual animals

(Figure S2B). Thus, the overall reduction in correlated noise

among MSTd neurons was a robust finding in trained animals.

Effects of Training on Tuning Curves, Variability,
and Sensitivity of Single Neurons
It is possible that the difference in correlated noise between

naive and trained animals could be an indirect effect of training

on the response properties of individual neurons. Moreover,

training-related changes in correlated noise might emerge in

parallel with changes in the heading sensitivity of single neurons.

To address these issues, we examined the effect of training on

the time courses of firing rates and response variability. As illus-

trated in Figures 3A and 3C, the time course of the population-

average response to the preferred heading was indistinguishable

between trained and naive animals (p = 0.8, permutation test,

see Experimental Procedures). There was also no significant

effect (p = 0.5, permutation test) of training on the time course

of the Fano factor, which measures the ratio of response vari-

ance to mean response (Figures 3B and 3D, see also Experi-
752 Neuron 71, 750–761, August 25, 2011 ª2011 Elsevier Inc.
mental Procedures and Figure S3). This finding contrasts with

a previous report that Fano factor in area V4 was significantly

reduced after animals were trained to discriminate orientation

(Raiguel et al., 2006). In MSTd, the difference in noise correlation

between naive and trained animals does not appear to be linked

to changes in firing rates or Fano factors.

We further explored whether training shaped the tuning prop-

erties of individual MSTd neurons. For this analysis, we only

included neurons with significant heading tuning in the horizontal

plane (p < 0.05, one-way ANOVA). To gain statistical power, we

exploited a much larger database of single-unit responses from
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Figure 4. Effects of Training on Heading Tuning in MSTd during Visual (top) and Vestibular (bottom) Stimulation

(A and E) Distributions of tuning width (full width at half-maximum response) for naive (blue) and trained (red) animals.

(B and F) Distributions of tuning curve amplitude (peak to trough modulation).

(C and G) Neurons preferring lateral headings are more sensitive to heading variations around straight ahead than neurons preferring fore-aft motion, with little

difference between naive and trained animals.

(D and H) Comparison of average neuronal sensitivity between fore-aft and lateral neurons (see G). Data were culled from a large database of MSTd neurons

recorded with a single electrode. Only neurons with significant heading tuning (p < 0.05, ANOVA) were included (visual: n = 992; vestibular: n = 556).

Error bars: SEM.
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naive and trained animals, recorded with a single electrode

(vestibular: n = 556; visual: n = 992). As shown in Figures 4A and

4E, distributions of tuning width (full width at half-height) were

very similar for naive and trained animals. Therewas no significant

difference in median tuning width for the visual condition (naive:

124.5� versus trained: 126�, p = 0.21, Wilcoxon rank- sum test).

The difference in median tuning width was significant for the

vestibular condition (naive: 121� versus trained: 131�, p = 0.045).

However, this effect was weak and, notably, training slightly

increased tuningwidth in the vestibular condition, an effect oppo-

site to that expected if training increases discriminability (e.g.,

Yang and Maunsell, 2004). Similarly, as shown in Figures 4B and

4F, training did not have any significant effect on the distribution

of tuning curve amplitudes in either the visual condition (naive:

35.4 spks/s versus trained: 31.8 spks/s, p = 0.24, Wilcoxon

rank-sum test) or the vestibular condition (naive: 17.4 spks/s

versus trained: 17.2 spks/s, p = 0.36). Thus, training animals to

perform a fine heading discrimination task did not significantly

shape the heading tuning of individual MSTd neurons.

However, it remains possible that training only shaped the

tuning of a subset of neurons that were most informative for

heading discrimination around the straight-forward reference

used in training (e.g., Raiguel et al., 2006; Schoups et al.,

2001). If so, then effects might only be seen for neurons most

sensitive to heading variations around straight forward, and

may have been missed in the above analysis. To examine this

further, we interpolated tuning curves and used Fisher informa-

tion analysis (Gu et al., 2010, see Experimental Procedures) to

compute the sensitivity of each neuron for discriminating

heading around straight forward. As shown in Figures 4C and
4G, the most sensitive neurons (lowest thresholds) are generally

those that prefer lateral headings, such that their tuning curves

have a steep slope around straight-ahead. For quantitative anal-

ysis, neurons were divided into two groups by heading prefer-

ence: ‘‘fore-aft’’ neurons with heading preferences within 45�

of forward (0�) or backward (±180�) motion, and ‘‘lateral’’

neurons with heading preferences within 45� of leftward (�90�)
or rightward (90�) movements. Consistent with previous findings

(Gu et al., 2008a, 2010), lateral neurons were significantly more

sensitive than fore-aft neurons for heading discrimination around

straight ahead (p << 0.001, Factorial ANOVA, Figures 4D and

4H). However, neuronal sensitivity was not significantly different

between naive and trained animals (p > 0.5, factorial ANOVA)

for either group of neurons, with no significant interaction effect

(p > 0.3). In summary, whereas heading discrimination training

clearly reduced correlated noise among MSTd neurons, we

find no clear evidence that training altered the basic tuning

properties or sensitivity of individual neurons, including those

neurons that are most informative for performing the task. This

result also generalizes to neuronal discrimination of heading

about any arbitrary reference (Figure S4).

Training Effects on the Noise-Signal
Correlation Structure
It is well established that rnoise is related to rsignal (Cohen and

Maunsell, 2009; Cohen and Newsome, 2008; Gutnisky and

Dragoi, 2008; Huang and Lisberger, 2009; Kohn and Smith,

2005; Smith and Kohn, 2008; Zohary et al., 1994b), so it is impor-

tant to evaluate whether training alters this relationship. Figures

5A and 5B show the relationship between rnoise and rsignal, with
Neuron 71, 750–761, August 25, 2011 ª2011 Elsevier Inc. 753
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Figure 5. Relationship between Noise Correlation (rnoise) and Signal Correlation (rsignal) in MSTd

(A and B) Noise correlations depend significantly on rsignal computed from visual (A) or vestibular (B) tuning curves. Lines represent regression fits (ANCOVA). Red:

data from trained animals (n = 89); blue: data from naive animals (n = 38).

(C and D) Regression slopes (C) and intercepts (D) obtained from the fits in (A) and (B). Error bars: 95% confidence intervals.
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each datum corresponding to a pair of MSTd neurons. This rela-

tionship was quantified using general linear models (analysis of

covariance, ANCOVA), with rsignal in each stimulus condition

(visual or vestibular) as a continuous variable and training group

(trained or naive) as a categorical factor. There was a significant

positive correlation between rnoise and rsignal in both stimulus

conditions (vestibular: p = 0.0001; visual: p = 0.0004, ANCOVA),

reflecting the fact that noise correlations tended to be positive for

pairs of neurons with similar tuning (rsignal > 0) and near zero or

negative for pairs with opposite tuning (rsignal < 0).

Importantly, the slope of the relationship between rnoise and

rsignal (Figures 5A and 5B) was not significantly affected by

training (vestibular: p = 0.9; visual: p = 0.9, ANCOVA interaction

effect), as also indicated by overlap of the 95% confidence inter-

vals around the regression slopes (Figure 5C, nearly identical

slopes were obtained by Type II regression). In contrast, training

had a significant main effect on rnoise (vestibular: p = 0.02; visual;

p = 0.008 ANCOVA), and the 95% confidence intervals around

the regression intercepts were non-overlapping for naive and

trained animals (Figure 5D). Thus, training reduced noise

correlations uniformly across all signal correlations, such that

the dependency of rnoise on rsignal remained unchanged.

Multisensory MSTd neurons can have matched visual and

vestibular heading preferences (‘‘congruent’’ cells) or mis-

matched preferences (‘‘opposite’’ cells) (Gu et al., 2006, 2008a).

Thus, we also tested whether rnoise depends on congruency.

Specifically, the two units in each pair could be (1) both con-

gruent, (2) both opposite, or (3) a mixture of congruent and

opposite cells. As illustrated in Figure S5, rnoise was not substan-

tially affected by congruency. Next, we incorporate these results

into an information analysis to investigate how the fidelity of

population activity changes between naive and trained animals.

Computation of Covariance Matrix
Although neurons were recorded pair-wise, our goal is to

determine whether population activity in MSTd can account

for the effect of training on behavioral sensitivity. For this

purpose, we need to estimate the covariance matrix that charac-

terizes correlations among the MSTd population in naive and

trained animals. This was done by assigning each value of the

covariance matrix according to the measured noise and signal
754 Neuron 71, 750–761, August 25, 2011 ª2011 Elsevier Inc.
correlation structures in our data set. Because rnoise depended

on rsignal in both the vestibular and visual conditions (Figures

5A and 5B), both relationships were taken into account when

constructing the covariance matrices. For simplicity, all neurons

in the simulations discussed below were assumed to have

congruent visual and vestibular heading preferences. Results

were similar when variable congruency was introduced into the

simulation, consistent with the observation that noise correla-

tions were not strongly influenced by congruency (Figure S5).

We constructed covariance matrices with two different

correlation structures (see Experimental Procedures): (1) rnoise
depended on rsignal with regression slopes and intercept speci-

fied according to data from naive animals: rnoise = 0.12 3

rsignal, vestibular+0.0913 rsignal, visual+0.072, and (2) rnoise depended

on rsignal with slopes and intercept derived from trained

animals: rnoise = 0.123 rsignal, vestibular+0.0913 rsignal, visual+0.005.

Note that the slopes were common across the two cor-

relation structures, since no significant difference in slopes

was found (Figure 5C). We then used these covariance

matrices to compute the precision with which a population of

MSTd neurons in naive or trained animals could discriminate

heading, as described below. Importantly, noise correlations

did not depend on whether trained monkeys performed

a passive fixation task or the heading discrimination task (p =

0.3, t test), as shown in Figure S6 for a subset of neuronal pairs

recorded in both tasks. Thus, we are justified in predicting

heading discrimination performance from population activity

measured during the fixation task for both trained and naive

animals.

Effect of Training on Population Coding Efficiency
We computed population discrimination thresholds from the

inverse of Fisher information (If), an upper bound on information

capacity that can be extracted by any unbiased estimator (Ab-

bott andDayan, 1999; Seung andSompolinsky, 1993). Predicted

thresholds from If define the performance that an ideal observer

could achieve, based on MSTd population activity, in a fine

heading discrimination task. For a simulated population of

neurons with independent noise, predicted thresholds de-

creased steadily with population size (Figure 6A, dashed black

curve). As expected from previous findings (Bair et al., 2001;
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Figure 6. Impact of Noise Correlations on Population Coding

Efficiency

(A) Population heading discrimination thresholds as a function of population

size. Each simulated population contained neurons with wrapped-Gaussian

tuning curves (bandwidth = 135�) and uniformly distributed heading prefer-

ences. Blue, dashed-red and dashed-black curves denote three correlation

structures that correspond to naive, trained, and independent (rnoise = 0)

neuronal cell pairs, respectively.

(B) Contour plot illustrating population (n = 256) discrimination thresholds

(color coded) as a function of the slope and intercept of the relationship

between rnoise and rsignal. Thewhite region corresponds to a parameter range in

which rnoise could exceed the allowable range of [�1 1]. Blue and white

symbols denote the parameters measured in naive and trained animals,

respectively.
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Cohen and Maunsell, 2009; Shadlen et al., 1996; Smith and

Kohn, 2008; Zohary et al., 1994b), correlated noise similar to

that seen in our naive animals degraded population coding effi-

ciency (Figure 6A, blue curve). For a simulated population of

2000 neurons, the predicted heading discrimination threshold

was �5-fold larger compared with the case of independent

noise. Surprisingly, the uniform reduction in rnoise that we

observed in trained animals (Figure 5) had little effect on

predicted discrimination thresholds, as compared with naive

animals (Figure 6A, red curve).

Why doesn’t the reduction in mean noise correlation seen in

trained animals improve the sensitivity of the population code?

We simulated performance of a population of neurons using

many covariance matrices that were constructed by systemati-

cally varying both the slope and intercept of the relationship

between rnoise and rsignal. As shown in Figure 6B, predicted

thresholds were very sensitive to changes in the slope of the

relationship between rnoise and rsignal. In contrast, changes in

the intercept of the rnoise versus rsignal relationship had weak

effects on predicted thresholds. Counterintuitively, a uniform

increase in rnoise (across all values of rsignal) produced a mild

decrease in population thresholds, improving performance

slightly (barely visible in Figure 6A, see also Abbott and Dayan,

1999; Wilke and Eurich, 2002). These simulations suggest that

a uniform reduction of noise correlations in trained animals is

expected to have little impact on discrimination performance.

This conclusion is based on the assumption that all neurons

contribute to discrimination performance. We can infer from

the simulations of Figure 6B that a change in noise correlation

produces different effects for neurons with positive and negative

signal correlations. To illustrate this, consider a population

consisting of a single pair of neurons, having rsignal that could

range from �1 (opposite heading preferences) to +1 (matched
preferences). As illustrated in Figure 7A, reducing the noise

correlation between this pair of neurons results in a lower popu-

lation threshold (red curve below blue curve) when the pair of

neurons has positive rsignal. In contrast, reducing noise correla-

tion increases the predicted threshold for negative rsignal (see

also Figure S7A). This simple prediction was confirmed when

decoding responses of pairs of MSTd neurons. For each pair

of neurons, we compute a discrimination threshold under the

assumption of correlated noise, as well as the assumption of

independent noise. As shown in Figure 7B, pairs of neurons

with positive rsignal yield discrimination thresholds that increase

with rnoise, whereas pairs with negative rsignal have discrimination

thresholds that decrease with rnoise (R = 0.49, p << 0.001,

Spearman rank correlation). Thus, in a population of neurons

with an even mixture of positive and negative signal correlations,

the opposite effects of correlated noise will counteract each

other.

With this intuition in hand, we consider larger pool sizes (e.g.,

n = 256 in Figure 7C). If the direction preferences of neurons in

the population are broadly distributed, roughly equal numbers

of cell pairs will have positive and negative rsignal (Figure 7C,

left inset) and population thresholds for naive and trained animals

will be similar. If we narrow the distribution of direction prefer-

ences to generate more cell pairs with positive rsignal, the weaker

noise correlations in trained animals substantially enhance

coding efficiency (Figure 7C, middle and right insets, see also

Figure S7B). Themore similar the heading tuning among neurons

in the population, the greater the benefit of reducing noise

correlations. At best, however, the predicted population discrim-

ination threshold for trained animals is �8% lower than for naive

animals (Figure 7C, right inset, see also Figure S7B). Clearly,

the effect of interneuronal correlations on population coding

depends critically on the structure of the correlations, which

involves both the relationship between rnoise and rsignal and the

distribution of tuning similarity among neurons.

Possible rsignal Distributions in Area MSTd
Might heading be decoded from a subpopulation of MSTd

neurons with similar tuning properties (positive rsignal), such

that the uniform reduction of rnoise in trained animals might

improve discrimination performance? Although we cannot firmly

exclude this possibility, two observations suggest that it is

unlikely. First, electrical microstimulation of multiunit clusters

with either leftward or rightward heading preferences can bias

choices during a heading discrimination task (Britten and van

Wezel, 1998, 2002; Gu et al., 2008b). Second, significant choice

probabilities, which may reflect the contribution of single cortical

neurons to behavior (Britten et al., 1996; Gu et al., 2007; Puru-

shothaman and Bradley, 2005) (but also see Nienborg and Cum-

ming, 2010), were reported for MSTd neurons preferring both

rightward and leftward headings (Gu et al., 2007, 2008a). Thus,

we further examined the dependence of choice probability and

noise correlation on heading preference.

Compared with neurons with lateral heading preferences,

neurons with a preference for fore-aft movement show signifi-

cantly smaller choice probabilities (p = 0.019, t test, Figures 8A

and 8B). This result is consistent with the notion that neurons

with direction preferences deviated away from straight ahead
Neuron 71, 750–761, August 25, 2011 ª2011 Elsevier Inc. 755
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Figure 7. Reduced Noise Correlations Improve Coding Efficiency

for Neurons with Similar Tuning and Reduce Coding Efficiency for

Neurons with Dissimilar Tuning

(A) Heading discrimination thresholds of a pair of neurons with various signal

correlations. One neuron has a fixed heading preference of �90�, while the

other cell’s heading preference varies from �90� (right inset) to 0� (middle

inset) to 90� (left inset).
(B) For each pair of MSTd neurons (each datum), we computed the ratio of

discrimination thresholds for rnoise = 0.1 and rnoise = 0. A ratio of 1 (dashed line)

indicates that correlated noise did not affect sensitivity.

(C) Predicted discrimination thresholds for a population of 256 neurons with

a variable distribution of heading preferences. From left to right, the range of

heading preferences narrowed from a uniform distribution ([�180� 180�]) to
only rightward headings near 90�. This generated varying distributions of

signal correlations, as illustrated for three cases with proportions of positive

rsignal values equal to 49% (heading preference range: [�180� 180�]), 75%

A B

C D

Figure 8. Relationships between Choice Probability, Noise Correla-

tion, and Heading Preferences in MSTd
(A) Choice probability tends to bemore deviated away from the chance level of

0.5 for neurons with lateral heading preferences. Filled symbols denote choice

probabilities significantly different from 0.5 (p < 0.05, permutation test).

Dashed lines denote category boundaries for lateral and fore-aft cells. Inset:

distribution of expected signal correlations when heading preferences are

drawn randomly from cells with significant choice probabilities.

(B) Mean ± SEM of the choice probability data from (A), sorted into groups for

lateral and fore-aft neurons (*p < 0.05). Data were collected from previous

experiments conducted with a single electrode (n = 311), and pooled across

vestibular and visual conditions.

(C) Noise correlations did not depend significantly on heading preference.

Pairs of cells denoted by gray circles and crosses were recorded during

fixation (n = 328) and discrimination tasks (n = 55), respectively. For each pair,

the noise correlation is plotted twice, at the preferred heading of each neuron.

(D) Mean ± SEM of the noise correlation data from (C).
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are more sensitive to small heading variations and thus con-

tribute more to perception (Gu et al., 2007; Purushothaman

and Bradley, 2005). Importantly, there was no significant differ-

ence in average choice probability between neurons preferring

leftward and rightward headings (p = 0.11, t test), suggesting

that the population of neurons that contributes to heading

perception includes cells with both positive and negative signal

correlations (inset in Figure 8A).

Interestingly, a similar dependence on heading preference

was not observed for noise correlations in trained animals.

As shown in Figures 8C and 8D, there was no significant
([0� 180�]), and 94% ([30� 150�]), as denoted by gray shading in insets. Blue,

red, and black curves represent correlation structures corresponding to naive,

trained, and independent, respectively.
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dependence of noise correlation on the heading preferences of

MSTd neurons (p = 0.2, t test). Indeed, the average noise corre-

lation for lateral neurons is a bit smaller than that for the fore-aft

neurons. This finding suggests that the variation in choice

probability with heading preference (Figures 8A and 8B) is not

driven just by correlated noise, but also depends on other factors

such as how the signals are read out by decision circuitry.

DISCUSSION

By recording simultaneously from pairs of neurons in macaque

area MSTd, we have shown that interneuronal correlations are

weaker, on average, in animals trained to perform a fine heading

discrimination task as compared with animals experienced only

in visual fixation tasks. Althoughwe did not record from the same

animals before and after training, the difference in correlated

noise between naive and trained subjects was highly significant

and consistent across animals within each group.

Our findings suggest that changes in the average strength of

noise correlations are not sufficient to account for the effect of

training on discrimination performance. The difference in rnoise
between naive and trained animals was uniform and indepen-

dent of tuning similarity. If all neurons are decoded uniformly,

the increased information capacity of neuronal pools with similar

tuning is counteracted by the decreased information capacity of

neuronal pools with dissimilar tuning curves. Thus, the effect of

correlated noise on discrimination performance is conditional

on both the relationship between rnoise and rsignal and on the

demands of the task which may recruit different neuronal pools

into play.

Properties of Noise Correlations in MSTd
Compared with noise correlations observed in area MT (Bair

et al., 2001; Cohen and Newsome, 2008; Huang and Lisberger,

2009; Zohary et al., 1994b), the average noise correlation in

our MSTd sample (distance <1 mm) was substantially weaker

(trained animals: 0.023; naive animals: 0.116). The average

correlation values we have seen in trained animals are similar

to those reported in a recent study of macaque primary visual

cortex (Ecker et al., 2010).

We found that noise correlations in MSTd are independent of

the sensory stimulus modality (visual or vestibular), but depend

ondistancesuch that nearbyneurons tend tohavestrongercorre-

lations than more distant pairs (Huang and Lisberger, 2009; Lee

et al., 1998; Smith and Kohn, 2008). Correlations in MSTd also

depend strongly on tuning similarity, such that neurons with

similar tuning curves tend to have greater correlated noise. In

addition, we observed that noise correlations decrease in the

presence of a stimulus as compared with prestimulus baseline

activity. This result is consistent with previous studies showing

that noise correlations decreased following stimulus onset (Smith

and Kohn, 2008) and increased with stimulus intensity (e.g.,

contrast) (Huang and Lisberger, 2009; Kohn and Smith, 2005).

Possible Explanations for the Effect of Training
on Correlated Noise
Before accepting the conclusion that correlated noise in MSTd

was reduced as a consequence of perceptual learning, we
consider some alternatives. One possibility is that naive

monkeys undergo larger fluctuations in behavioral state (e.g.,

arousal, attention) than trained animals, and this might cause

slow fluctuations in neuronal responses that can inflate noise

correlations (Bair et al., 2001; Ecker et al., 2010; Lampl et al.,

1999). To address this issue, we removed slow fluctuations in

neural responses by renormalizing the data before computing

noise correlations (see Experimental Procedures, Zohary et al.,

1994b). This operation had little effect on our measurements,

for both naive and trained animals (Figure S8). This suggests

that slow fluctuations in response driven by variations in behav-

ioral state do not account for the greater noise correlations

seen in naive animals.

Another possibility is that naive animals fixate the visual target

less reliably and make more frequent microsaccades that

could induce correlations among neural responses (e.g., Bair

and O’Keefe, 1998). However, we found that naive animals fixate

as accurately as trained animals (Figure S8A). Indeed, naive

monkeys as a group made significantly fewer microsaccades

than trained animals (Figure S8B). Hence, the reduction of

correlated noise in trained animals is unlikely to be explained

by differences in eye movements between the two groups of

animals.

Two recent studies have indicated that attention directed

toward the receptive field could reduce correlated noise among

pairs of neurons in area V4 (Cohen and Maunsell, 2009; Mitchell

et al., 2009). Although both naive and trained monkeys only

performed a passive fixation task in our study, trained animals

might have paid more attention to the heading stimuli due to their

relevance in the discrimination task. We cannot exclude this

possibility, but three aspects of our results are inconsistent

with an explanation based on attention. First, attention typically

increases neuronal activity (Desimone and Duncan, 1995;

Kastner and Ungerleider, 2000; Reynolds and Chelazzi, 2004;

Reynolds and Heeger, 2009; Treue and Maunsell, 1999), but

our analysis shows that mean responses were not significantly

different between naive and trained animals (Figure 3). Second,

the reduction in noise correlation with increased attention was

also accompanied by decreased neuronal variability (Fano

factor, Cohen and Maunsell, 2009; Mitchell et al., 2009).

However, we did not find a significant difference in Fano factor

between naive and trained animals. Finally, there was no differ-

ence in noise correlation between the fixation and discrimination

tasks for a subset of pairs of neurons that were recorded during

both tasks (Figure S6). This result is consistent with an earlier

study in which noise correlations in area MT were found to be

similar during a motion discrimination task and a visual fixation

task (Zohary et al., 1994b).

Any fluctuation in common inputs could cause correlated

variability among target neurons. It is thus possible that training

decreases the shared, common input to area MSTd, likely on

a long timescale during learning (Chowdhury and DeAngelis,

2008). The effect of training on neural circuitry may have

occurred at two levels. First, training may have altered the

feed-forward sensory input to MSTd from other cortical and

subcortical areas, without changing the average tuning proper-

ties of single neurons (Jenkins et al., 1990; Recanzone et al.,

1993; Weinberger, 1993). Second, training may have altered
Neuron 71, 750–761, August 25, 2011 ª2011 Elsevier Inc. 757
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feedback connections to MSTd, including feedback from deci-

sion circuitry. Our results are consistent with recent findings

that perceptual learning does not substantially alter sensory

cortical representations, but rather sculpts the decoding of

sensory signals by decision circuitry (Dosher and Lu, 1999;

Law and Gold, 2008). If training alters the read out of heading

signals fromMSTd, this, in turn, maymodify the shared feedback

to MSTd neurons from downstream circuitry. It is currently not

possible to discern which of these training-related changes

contributes most to the reduction in correlated noise that we

have observed.

Although our data suggest that learning does not alter the

sensory representation of heading in a manner that could

account for the improvement in behavioral sensitivity with

training, it is important to note that we cannot rule out the possi-

bility that training altered the heading tuning and sensitivity of

neurons in other brain areas that may also be involved in heading

perception, such as area VIP (Zhang and Britten, 2011). In

addition, although we assume that noise correlations in MSTd

were altered by perceptual learning, we cannot exclude the

possibility that some other aspect of training, such as learning

the operational rules of the task, may have driven the changes

in correlated noise that we have observed. Finally, it is unclear

whether the effect of training on correlated noise is specific to

tasks for which area MSTd is thought to provide critical input.

If we had trained animals to perform a task that was irrelevant

to self-motion perception, such as a somatosensory or auditory

discrimination task, we presumably would not expect to see

changes in correlated noise in MSTd. However, this possibility

remains to be tested.

Consequences for Population Coding Efficiency
Despite a robust effect of training on the average noise correla-

tion in MSTd, our simulations show that an optimal, unbiased

decoding of all neurons does not predict a substantial change

in performance due to learning. Indeed, theorists have shown

that correlated noise may or may not harm population coding

(Abbott and Dayan, 1999; Averbeck et al., 2006; Wilke and

Eurich, 2002). In general, positively correlated noise between

neurons with similar tuning (or more generally, any situation in

which both neurons fire more strongly under one stimulus/task

condition than another) harms the signal to noise ratio of the

population code because it cannot be removed by pooling

across neurons (Bair et al., 2001; Shadlen et al., 1996; Zohary

et al., 1994b). Reducing shared noise among neurons in such

cases is thus expected to improve population sensitivity.

Indeed, the effect of attention on the fidelity of population

codes appears to follow this logic (Cohen and Maunsell,

2009). In a typical spatial attention task, most neurons with

receptive fields at the attended location will increase their

response. Because attention has a consistent polarity of effect

on the responses of nearby neurons, stronger attention will

tend to increase the responses of both neurons in a pair.

Hence, most pairs of nearby neurons will have positive signal

correlations with respect to the effect of attention. As a result,

a reduction in correlated noise due to attention can improve the

signal-to-noise ratio of the population code. However, in other

contexts for which signals are decoded from populations that
758 Neuron 71, 750–761, August 25, 2011 ª2011 Elsevier Inc.
include neurons with dissimilar tuning properties, increasing

correlated noise can improve the signal-to-noise ratio of a pop-

ulation code (Figure 7A), as differences in tuning effectively

cancel more of the noise in a population response (Abbott

and Dayan, 1999; Averbeck et al., 2006; Poort and Roelfsema,

2009; Wilke and Eurich, 2002). Reducing correlated noise in

the latter case can harm the coding efficiency of the population.

In our heading discrimination task, it is likely that responses

are decoded from neurons with a broad range of heading

preferences (Gu et al., 2008b, 2010); in this context, reducing

correlated noise uniformly across neurons with all signal

correlations (Figures 5A and 5B) does not improve the fidelity

of the neural code (Figure 6A). Thus, the impact of correlated

noise on population coding depends on (1) the structure of

noise correlations and their dependence on signal correlation,

and (2) the composition of neuronal pools upon which decoding

is based.

We conclude that the effects of training on heading discrim-

ination are not likely to be driven by the reduction in correlated

noise that we have observed in area MSTd. Combined with

previous observations that perceptual learning has little or no

effect on basic tuning properties of single neurons in visual

cortex (Chowdhury and DeAngelis, 2008; Crist et al., 2001;

Ghose et al., 2002; Law and Gold, 2008; Raiguel et al., 2006;

Schoups et al., 2001; Yang and Maunsell, 2004; Zohary et al.,

1994a), our results suggest that changes in sensory represen-

tations are not necessarily involved in accounting for the

improvements in behavioral sensitivity that accompany percep-

tual learning (at least for some sensory systems and tasks; see

also Bejjanki et al., 2011). Rather, our findings support the idea

that perceptual learning may primarily alter the routing and/or

weighting of sensory inputs to decision circuitry, an idea that

has recently received experimental support (Chowdhury and

DeAngelis, 2008; Law and Gold, 2008, 2009).

EXPERIMENTAL PROCEDURES

Subjects

Physiological experiments were performed in 8male rhesusmonkeys (Macaca

mulatta) weighing 4–8 kg. Animals were chronically implanted with a plastic

head-restraint ring that was firmly anchored to the apparatus to minimize

head movement. All monkeys were implanted with scleral coils for measuring

eye movements in a magnetic field (Robinson, 1963). Animals were trained

using standard operant conditioning to fixate visual targets for fluid reward.

All animal surgeries and experimental procedures were approved by the

Institutional Animal Care and Use Committee at Washington University and

were in accordance with NIH guidelines.

Motion Stimuli

Neurons were tested with two types of motion stimuli using a custom-built

virtual reality system (Gu et al., 2006, 2007, 2008b). In the ‘‘vestibular’’ stimulus

condition, monkeys were passively translated by a motion platform (Moog

6DOF2000E; East Aurora, NY) along a smooth trajectory (Gaussian velocity

profile with peak-acceleration of �1 m/s2 and duration of 2 s, Figure 1A). In

the ‘‘visual’’ stimulus condition, optic flow was provided by rear-projecting

images onto a tangent screen in front of the monkey using a 3-chip DLP

projector (Christie Digital Mirage 2000) that was mounted on the motion

platform. Visual stimuli (90 3 90�) depicted movement through a 3D cloud of

stars that occupied a virtual space 100 cm wide, 100 cm tall, and 50 cm

deep. The stimulus contained multiple depth cues, including horizontal

disparity, motion parallax, and size information.
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Experimental Protocol and Task

Animals were trained to maintain visual fixation on a head-fixed target at the

center of the screen. Eye position was required to stay within a 2� 3 2� elec-
tronic window throughout each trial in order to receive a water/juice reward.

The majority of the data presented here were recorded while passively fixating

animals experienced a range of different heading directions that spanned the

horizontal and/or vertical plane (Gu et al., 2006; Takahashi et al., 2007). Specif-

ically, headings relative to straight ahead were 0, ±22.5, ±45, ±90, ±135�,
±180�. Different heading directions and stimulus types (visual or vestibular)

were interleaved randomly within a single block of trials. Each distinct stimulus

was typically repeated five times (minimum of three repetitions for inclusion).

In each trial, a fixation point first appeared at the center of the screen. After

fixation was established for 100–200ms, themotion stimulus began and lasted

for 2 s. In the vestibular condition, the motion platform always began its

movement from a common central position. The animal was rewarded if

they maintained visual fixation throughout the duration of the stimulus. At

the end of the trial (or when fixation was broken), the fixation point disappeared

and the motion platform moved back to the original central position during

a 2 s intertrial interval. In the visual condition, the random-dot field appeared

on the display after fixation was established, and again moved for 2 s. The

dots then disappeared and the animal was rewarded for maintaining fixation,

followed again by a 2 s intertribal interval.

Three animals were trained only to perform the passive fixation task,

whereas five animals had been extensively trained to perform a heading

discrimination task (Fetsch et al., 2009; Gu et al., 2007, 2008a), in which

they were asked to report whether their perceived heading was leftward or

rightward relative to straight ahead by making a saccade to one of two choice

targets. For a subpopulation of neurons in these trained animals, responses

were obtained while the animals performed both the fixation task and the

heading discrimination task.

Electrophysiological Recordings

We conducted extracellular recordings of action potentials from single

neurons in area MSTd. For most recordings, 2 to 4 tungsten electrodes (Fred-

erick Haer, Bowdoinham, ME; tip diameter 3 mm, impedance 1–2 MU at 1 kHz)

were used to record multiple single neurons simultaneously. In some cases

(57 pairs), two to four electrodeswere placed insidemultiple guide tubes sepa-

rated by 0.8–25 mm (different hemispheres). In other cases (55 pairs), multiple

electrodes were placed inside a single guide tube. The distance between two

simultaneously recorded neurons was estimated from both the horizontal and

vertical (depth) coordinates (shank diameter = 75 mm).

Data from another 67 cell pairs were obtained from previous recordings with

a single electrode (Fetsch et al., 2007; Gu et al., 2006, 2007; Takahashi et al.,

2007), for which a second cell was isolated offline using spike sorting software

(Spike2, Cambridge Electronics Design). Only pairs of neurons from a single

electrode that showed clearly separate clusters in the first three principle

componentsof thespikewaveformwere included in thesample.Since theexact

distance between neurons recorded from a single electrode was unknown, we

arbitrarily assigned it to be 50 mm. Although noise correlations were slightly

greater for pairs of neurons recorded from a single electrode (0.042 ± 0.02)

than for pairs recorded from different electrodes (0.033 ± 0.015), this difference

wasmodest and not significant (p > 0.7, t test). Thus, data collected with single

and multiple electrodes were pooled for analysis, yielding 179 cell pairs from

a total of 270 neurons (maximum of 5 pairs in an experiment).

Area MSTd was located �15 mm lateral to the midline and �2–6 mm

posterior to the interaural plane, and was identified using both MRI scans

and neurophysiological response properties (see Gu et al., 2006 for details).

MSTd neurons had large receptive fields that typically occupied a quadrant

or a hemifield on the display screen and were often centered in the contralat-

eral visual field but could extend well into the ipsilateral field. Once the

electrodes were targeted to MSTd, we recorded from any neuron that was

spontaneously active or could be activated by patches of flickering dots.

Data Analysis

Noise and Signal Correlations

Noise correlation (rnoise) was computed as the Pearson correlation coefficient

(ranging between �1 and 1) of the trial-by-trial responses from a pair of
neurons driven by the same stimulus (Bair et al., 2001; Zohary et al., 1994b).

The response in each trial was taken as the number of spikes during themiddle

1 s of the stimulus period (Gu et al., 2006). For each heading direction,

responses were z-scored by subtracting the mean response and dividing by

the standard deviation. This operation removed the effect of heading on the

responses, such that the measured noise correlation reflected trial-to-trial

variability. To avoid artificial correlations caused by outliers, we removed

data points with z-scores larger than 3 (Zohary et al., 1994b). We then pooled

data across headings to compute rnoise; the corresponding p valuewas used to

assess the significance of correlation for each pair of neurons.

Because there was no significant difference in rnoise between visual and

vestibular stimulus conditions (Figure 1F), we pooled responses across condi-

tions to gain statistical power. To remove slow fluctuations in responsiveness

that could result from changes in cognitive state over time (e.g., arousal), we

renormalized the z-scored responses in blocks of 20 trials, as described by

Zohary et al. (1994b). This additional normalization had no significant effect

on rnoise (p > 0.3, paired t test; R = 0.9, p < < 0.001, Spearman rank correlation,

n = 127, Figure S8). More importantly, the effect of renormalization on noise

correlations was similar in naive and trained animals (p = 0.7, interaction effect,

p = 0.9, group effect, ANCOVA, Figure S8). This suggests that the greater noise

correlations in naive animals were not the result of larger slow fluctuations

in neural response (Ecker et al., 2010), such as might arise if naive animals

experienced greater fluctuations in arousal during the session.

Signal correlation (rsignal) was computed as the Pearson correlation coeffi-

cient (ranging between �1 and 1) between the tuning curves from two simul-

taneously recorded neurons. Tuning curves for each stimulus condition were

constructed by computing the mean response (average firing rate during the

middle 1 s of the stimulus duration) across trials for each heading direction.

Permutation Test

Permutation tests were applied to test for significant differences between

trained and naive animals with respect to: the difference in time courses of

noise correlation (Figure 2C), mean response (Figures 3A and 3C), and Fano

factor (Figures 3B and 3D). We first computed the sum of squared differences

between two time courses:

x2 =
Xn

i =1

ðTtrained; i � Tnaive; iÞ2 (1)

using a 500 ms sliding window moved in 50 ms steps, for a total of 31 data

points. We then created permuted naive and trained groups by randomly

drawing data from the original groups, pooled together. Within each cell, all

of the responses were preserved (no shuffling across trials). We computed

a new x2 value for each permutation (x2permuted), and this process was repeated

10,000 times. A p value was computed as the proportion of x2permuted > x2.

A difference between the two groups of animals was considered significant

if p < 0.05.

Fano Factor

Fano factor, or the variance/mean ratio, was computed from log-log scatter

plots of the variance of the spike count against the mean spike count, and

this was done for each 500 ms time window used to compute time courses.

The data were fit by minimizing the orthogonal distance to the fitted line

(type II regression). The slope was generally close to 1 and was thus forced

to be 1 for convenience, such that variance scaled linearly with mean spike

count. The Fano factor was then computed as 10^intercept (see Figure S3).

Population Coding

Fisher information (IF) provides an upper limit on the precision with which an

unbiased estimator can discriminate between small variations in a variable

(x) around a reference value (xref) (Pouget et al., 1998; Seung and Sompolinsky,

1993). We computed the smallest deviation in heading around straight ahead

(threshold, Dx) that could be reliably discriminated (at 84% correct) by an

ideal observer:

Dx =

ffiffiffi
2

p
ffiffiffi
If

p (2)

where IF was computed according to (Abbott and Dayan, 1999):

IF ðxref Þ= f 0ðxref ÞTQ�1ðxref Þf 0ðxref Þ+ 0:5Tr
h
Q0ðxref ÞQ�1ðxref ÞQ0ðxref ÞQ�1ðxref Þ

i
(3)
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Here, f0 denotes the derivative of a matrix of tuning curves; superscript

T denotes the matrix transpose, Tr represents the trace operation, and super-

script �1 indicates the matrix inverse. The reference heading was straight

ahead in our simulations (xref = 0�). Q represents the covariance matrix of

neural responses, which was given by

Qi; jðxref Þ= ri; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðxref Þfjðxref Þ

q
(4)

where ri,j denotes the noise correlation between the ith and jth neurons.When i =

j, ri,j was set to 1. When isj, ri,j was assigned according to a linear relationship

between noise and signal correlation:

ri; j = avestibular 3 rsignal;vestibular; i; j + avisual 3 rsignal;visual; i; j +b (5)

We minimized the orthogonal distance between the fit plane and the raw data

using type II regression.
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