On the recursive sequence \(x_{n+1} = (\alpha - \beta x_{n-k})/g(x_n, x_{n-1}, \ldots, x_{n-k+1}) \)

Alaa E. Hamza *

Department of Mathematics, Faculty of Science, Cairo University, Giza, 12211, Egypt

Article Info

Article history:
Received 19 March 2009
Accepted 3 August 2010

Keywords:
Difference equations
Stability
Attractivity

Abstract

This paper is devoted to investigating the asymptotic behavior of the recursive sequence

\[x_{n+1} = \frac{\alpha - \beta x_{n-k}}{g(x_n, x_{n-1}, \ldots, x_{n-k+1})}, \quad n = 0, 1, \ldots \]

where \(\alpha \geq 0 \) and \(\beta > 0 \) and \(g \) is continuous on \(\mathbb{R}^k \). We show that under certain conditions this equation has a unique positive (negative) equilibrium point which is a global attractor with some basin \(S \subset \mathbb{R}^{k+1} \). Also we establish the oscillation of all solutions with initial conditions \(\{x_{-i}\}_{i=0}^k \) such that \((x_0, x_{-1}, \ldots, x_{-k}) \in S \). We apply these results to the recursive sequence

\[x_{n+1} = \frac{\alpha - \beta x_{n-k}}{\gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} \pm b_i x_n^2)}, \quad n = 0, 1, \ldots \]

where \(\alpha, \gamma, a_i, b_i \geq 0, i = 0, \ldots, k-1 \), and \(\beta > 0 \).

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Studying the asymptotic behavior of the rational sequence

\[x_{n+1} = \frac{\alpha + \beta x_n}{\gamma + \sum_{i=1}^{k} \gamma x_{n-i}}, \quad n = 0, 1, \ldots \]

(1.1)

when some of the coefficients are negative was suggested by Kocić and Ladas in [1]. The difficulty in such problems is finding the good set, that is, the largest domain \(D \) in which solutions exist for any set of initial conditions \(\{x_{-i}\}_{i=0}^{k} \) such that \((x_0, \ldots, x_{-k}) \in D \). Problems of finding good sets are still open; for example, the good set for the rational recursive sequence

\[x_{n+1} = \alpha + \frac{x_{n-k}}{x_n}, \quad n = 0, 1, \ldots \]

(1.2)

when \(\alpha \) is negative is unknown. See [2,3]. Aboutaleb et al. [4] studied the asymptotic stability of the rational recursive sequence

\[x_{n+1} = \frac{\alpha - \beta x_n}{\gamma + x_{n-1}}, \quad n = 0, 1, \ldots \]

(1.3)

* Tel.: +20 235849774.
E-mail address: hamzaaeg2003@yahoo.com.
where \(\alpha, \beta \) and \(\gamma \) are non-negative with arbitrary initial conditions \(x_{-1} \) and \(x_0 \). An interesting (Lyness-type) special case of Eq. (1.3) was investigated in [5]. Li and Sun [6] extended the results of [4] to the \(k + 1 \)-order rational recursive sequence
\[
x_{n+1} = \frac{\alpha - \beta x_n}{\gamma + x_{n-k}}, \quad n = 0, 1, \ldots
\]
(1.4)
The global asymptotic stability of the rational recursive sequence (1.1) was investigated for when the coefficients \(\alpha, \beta, \gamma \) and \(\gamma_1 \) are non-negative (see [7,18,9]). For other related results see [10,11,6,12–14]. For the terminology used here, we refer the reader to [15,8].

In this paper we extend the results of [16] concerning the equation
\[
x_{n+1} = \frac{\alpha - \beta x_{n-k}}{\gamma + x_n}, \quad n = 0, 1, \ldots
\]
(1.5)
to the more general equation of the form
\[
x_{n+1} = \frac{\alpha - \beta x_{n-k}}{g(x_n, x_{n-1}, \ldots, x_{n-k+1})}, \quad n = 0, 1, \ldots
\]
(1.6)
where \(\alpha, \gamma \geq 0, \beta \geq 0 \) and \(g(u_1, \ldots, u_k) \) is continuous. We investigate sufficient conditions for the unique positive (negative) equilibrium point to be a global attractor with some basin. Also the oscillation of all solutions with initial conditions \(\{x_n\}_{n=0}^\infty \) such that \((x_0, x_{-1}, \ldots, x_{-k}) \) lies in that basin will be obtained.

The special case of Eq. (1.6) when \(\alpha = 0 \), that is the equation
\[
x_{n+1} = \frac{-x_{n-k}}{g(x_n, x_{n-1}, \ldots, x_{n-k+1})}, \quad n = 0, 1, \ldots
\]
(1.7)
will be studied in Section 2. We show that if there exists \(a > 0 \) such that either \(g(u_1, \ldots, u_k) \geq 1 \) or \(g(u_1, \ldots, u_k) \leq -1, u_i \in [-a, a], i = 1, \ldots, k \), then the zero equilibrium point is a global attractor with basin \([-a, a]^{k+1}\). In Section 3 we apply the results of Section 2 to the rational recursive sequence
\[
x_{n+1} = \frac{-x_{n-k}}{\gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} + b_i x_{n-i}^2)}, \quad n = 0, 1, \ldots
\]
(1.8)
where \(\gamma, a_i, b_i \in \mathbb{R} \), such that \(a_i^2 + b_i^2 \neq 0 \) for some \(i \in \{0, 1, \ldots, k-1\} \). In Section 4, we establish sufficient conditions for an equilibrium point of the general equation
\[
x_{n+1} = f(x_n, x_{n-1}, \ldots, x_{n-k}), \quad n = 0, 1, \ldots
\]
(1.9)
to be a global attractor with basin \(I^{k+1} \), where \(I \) is an invariant interval of Eq. (1.9) in the sense that \(\{x_n\}_{n=0}^\infty \subset I \) for any set of initial conditions \(\{x_{-k}\}_{k=0}^\infty \subset I \). Here \(f \) is continuous and non-increasing in each argument. Also we obtain sufficient conditions for the oscillation of solutions of Eq. (1.9). In Section 5, we use the general results of Section 4 to investigate the asymptotic behavior of solutions of Eq. (1.6), for when \(\alpha, \beta > 0 \).

In Section 6 we apply the results of Section 5 to the rational recursive sequence
\[
x_{n+1} = \frac{\alpha - \beta x_{n-k}}{\gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} \pm b_i x_{n-i}^2)}, \quad n = 0, 1, \ldots
\]
(1.10)
where \(\alpha, \beta > 0 \) and \(\gamma, a_i, b_i \geq 0, i = 0, 1, \ldots, k, k \), such that \(a_i^2 + b_i^2 \neq 0 \) for some \(i \), and prove the global attractivity of the positive (negative) equilibrium point of Eq. (1.10) with some basin that depends on the coefficients.

2. The recursive sequence \(x_{n+1} = -x_{n-k}/g(x_{n}, x_{n-1}, \ldots, x_{n-k+1}) \)

This section is devoted to investigating the attractivity of the zero equilibrium point of the rational recursive sequence
\[
x_{n+1} = \frac{-x_{n-k}}{g(x_n, x_{n-1}, \ldots, x_{n-k+1})}, \quad n = 0, 1, \ldots
\]
(2.1)
where \(g \) is a continuous function. For \(a > 0 \), define
\[
I^a_0 = [-a, 0], \quad I^+_a = [0, a] \quad \text{and} \quad I^-_a = [-a, a].
\]
We assume that one of the following conditions:
\[
g(u_1, \ldots, u_k) > 1, \quad u_i \in I_a, i = 1, \ldots, k,
\]
and
\[
g(u_1, \ldots, u_k) < -1, \quad u_i \in I_a, i = 1, \ldots, k
\]
holds. We need the following lemma in proving the attractivity of the zero equilibrium.
Lemma 2.1. If $|g(u_1, \ldots, u_k)| \geq 1$, $u_i \in I_a$, $i = 1, \ldots, k$, then I_a is an invariant of Eq. (2.1).

Proof. The proof is straightforward and will be omitted. □

Theorem 2.2. Assume there exists $a > 0$ such that condition (2.2) holds. Let $\{x_n\}_{n \geq -k}$ be a solution of Eq. (2.1) with initial conditions in the interval I_a. If $x_i \in I_a^0$ (respectively I_a^1) for some $i \in \{0, \ldots, k\}$, then $\{x_{i+n(k+1)}\} \subset I_a^0$ (respectively I_a^1) and increases (respectively decreases) when n is even (respectively odd) to 0.

Proof. Assume that $x_{-i} \in I_a^q$ for some $i \in \{0, \ldots, k\}$ and $r \in \{0, 1\}$. First, we prove by induction that $x_{-i+n(k+1)} \in I_a^r$ (respectively I_a^{-r}) when n is even (respectively odd). At $n = 0$, the statement is true. Assume that $x_{-i+2n(k+1)} \in I_a^r$. We have

$$x_{-i+(2n+2)(k+1)} = \frac{-x_{i-(2n+2)(k+1)} - x_{-i+2n(k+1)+1}}{g(x_{i-(2n+2)(k+1)-1}, \ldots, x_{-i+2n(k+1)+1})} \in I_a^r.$$

This implies that $x_{-i+n(k+1)} \in I_a^r$ when n is even. We can show similarly that $x_{-i+n(k+1)} \in I_a^{1-r}$ when n is odd. Assume now that $x_{-i} \in I_a^0$ for some $i \geq -k$. For n even, $x_{-i+n(k+1)} \in I_a^0$ and by Eq. (2.4) $x_{-i+(2n+2)(k+1)} \geq x_{-i+2n(k+1)}$, $n \in \mathbb{N}$. This implies that $\{x_{-i+2n(k+1)}\}_{n \geq -k}$ is increasing to a non-positive number, say $a_i \in I_a^0$. When n is odd, $x_{-i+n(k+1)} \in I_a^1$ and we can show that $x_{-i+(2n+1)(k+1)} \leq x_{-i+2n(k+1)}$, $n \in \mathbb{N}$. Then $\{x_{-i+(2n-1)(k+1)}\}_{n \geq -k}$ is decreasing to a non-negative number, say $b_i \in I_a^1$. Similarly, if $x_{-i} \in I_a^1$ for some $i \geq -k$, then $x_{-i+n(k+1)}$ is decreasing to a non-negative number, say $c_i \in I_a^1$, and $\{x_{-i+(2n-1)(k+1)}\}_{n \geq -k}$ is increasing to a non-positive number, say $d_i \in I_a^0$. Condition (2.2), relation (2.4) and the continuity of g imply that $a_i = c_i = d_i = 0$.

By the same argument we can show the following result.

Theorem 2.3. Assume there exists $a > 0$ such that condition (2.3) holds. Let $\{x_n\}_{n \geq -k}$ be a solution of Eq. (2.1) with initial conditions in the interval I_a. If $x_i \in I_a^0$ (respectively I_a^1) for some $i \in \{0, \ldots, k\}$, then $\{x_{i+n(k+1)}\} \subset I_a^0$ (respectively I_a^1) and decreases (respectively increases) when n is even (respectively odd) to 0.

As a direct consequence of Theorems 2.2 and 2.3, we get the following results:

Corollary 2.4. Assume that there is $a > 0$ such that either condition (2.2) or (2.3) holds. Then the zero equilibrium point of Eq. (2.1) is a global attractor with basin I_a^{k+1}.

Corollary 2.5. If one of the following conditions:

$$g(u_1, \ldots, u_k) > 1, \quad u_i \in \mathbb{R}, \quad i = 1, \ldots, k,$$

and

$$g(u_1, \ldots, u_k) < -1, \quad u_i \in \mathbb{R}, \quad i = 1, \ldots, k,$$

holds, then the zero equilibrium point of Eq. (2.1) is a global attractor.

Proof. Let $\{x_n\}_{n \geq -k}$ be a solution of Eq. (2.1) with initial conditions $\{x_{-i}\}_{i=0}^k$. There is $a > 0$ such that $x_{-i} \in I_a$, $i = 0, \ldots, k$. By the previous corollary, the zero equilibrium point is a global attractor. □

3. The recursive sequence $x_{n+1} = \frac{-x_{n-k} - \gamma}{\gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} + b_i x_{n-2i})}$

In this section we apply the results of Section 2 to the rational difference equation

$$x_{n+1} = \frac{-x_{n-k}}{\gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} + b_i x_{n-2i})}, \quad n = 0, 1, \ldots$$

where γ, a_i, $b_i \in \mathbb{R}$. Eq. (2.1) yields Eq. (3.1) on setting

$$g(x_n, x_{n-1}, \ldots, x_{n-k+1}) = \gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} + b_i x_{n-2i}).$$

Assume that there exists $a > 0$ such that either

$$\gamma > 1 + a \sum_{i=0}^{k-1} |a_i| + a^2 \sum_{i=0}^{k-1} |b_i|$$

(3.2)
or
\[\gamma < -1 - a \sum_{i=0}^{k-1} |a_i| - a^2 \sum_{i=0}^{k-1} |b_i|. \] \hfill (3.3)

Since conditions (3.2) and (3.3) imply conditions (2.2) and (2.3) respectively, by Theorems 2.2 and 2.3, we obtain the following results.

Theorem 3.1. Assume that there exists \(a > 0 \) such that condition (3.2) holds. Let \(\{x_n\}_{n \geq -k} \) be a solution of Eq. (3.1) with initial conditions in the interval \(I_a \). If \(x_{-i} \in I_0 \) (respectively \(I_1 \)) for some \(i \in \{0, \ldots, k\} \), then \(x_{-i+n(k+1)} \in I_0 \) (respectively \(I_1 \)) and decreases (respectively increases) when \(n \) is even (respectively odd) to 0.

Theorem 3.2. Assume that there exists \(a > 0 \) such that condition (3.3) holds. Let \(\{x_n\}_{n \geq -k} \) be a solution of Eq. (3.1) with initial conditions in the interval \(I_a \). If \(x_{-i} \in I_0 \) (respectively \(I_1 \)) for some \(i \in \{0, \ldots, k\} \), then \(x_{-i+n(k+1)} \in I_0 \) (respectively \(I_1 \)) and increases (respectively decreases) when \(n \) is odd (respectively even) to 0.

As a direct consequence of Theorems 3.1 and 3.2, we get the following results.

Corollary 3.3. Assume that there is a \(a > 0 \) such that either condition (3.2) or (3.3) holds. Then the zero equilibrium point of Eq. (3.1) is a global attractor with basin \(I_0 \).

4. General results

In this section, we suppose that \([a, b]\) is an invariant interval for the general difference equation
\[x_{n+1} = f(x_n, x_{n-1}, \ldots, x_{n-k}), \quad n = 0, 1, \ldots \] \hfill (4.1)
where \(f \) is continuous. In the following theorem we obtain sufficient conditions for an equilibrium point to be a global attractor with basin \([a, b]\).

Theorem 4.1. Let \(f \) be non-increasing in each of its arguments. Assume that \(G \) has a fixed point \(\bar{x} \in (a, b) \) such that
\[a < \liminf_{n \to \infty} x_n \leq \bar{x} \leq \limsup_{n \to \infty} x_n < b, \]
for every solution \(\{x_n\} \) with initial conditions \(\{x_{-i}\} \subset [a, b] \). Then the following conditions are equivalent and each of them is sufficient for \(\bar{x} \) to be a global attractor of Eq. (4.1) with basin \([a, b] \):

(a) \(\bar{x} \) is the unique fixed point of \(G^2 \) in \([a, b]\).

(b) \(G^2(\bar{x}) > \bar{x}, \forall \bar{x} \in (a, \bar{x}) \).

(c) If \(\lambda, \Lambda \in [a, b] \) are such that
\[G(\Lambda) \leq \lambda \leq \bar{x} \leq \Lambda \leq G(\lambda), \] \hfill (4.2)
then
\[\lambda = \bar{x} = \Lambda. \] \hfill (4.3)

(d) The system
\[y = G(x) \quad \text{and} \quad x = G(y) \] \hfill (4.4)
has exactly one solution \((\bar{x}, \bar{x}) \in [a, b]^2\).

Proof. We prove that \((a \Rightarrow b \Rightarrow c \Rightarrow a \Rightarrow d \Rightarrow c)\).

\((a \Rightarrow b) \) Assume on the contrary that there exists \(x \in (a, \bar{x}) \) such that \(G^2(\bar{x}) \leq x \). Since \(G^2(a) > a \), then \(G^2 \) has a fixed point in \((a, \bar{x})\) which is a contradiction.

\((b \Rightarrow c) \) Assume that \(\lambda, \Lambda \in [a, b] \) are such that
\[G(\Lambda) \leq \lambda \leq \bar{x} \leq \Lambda \leq G(\lambda). \] \hfill (4.2)
Since \(G \) is non-increasing on \([a, b] \), then \(\lambda \geq G(\Lambda) \geq G^2(\lambda) \). Clearly \(\lambda = \bar{x} \), because if \(\lambda < \bar{x} \), then by \((b) \), \(G^2(\lambda) > \lambda \) which is impossible.

\((c \Rightarrow a) \) Assume towards a contradiction that \(x_0 \neq \bar{x} \) is another fixed point of \(G^2 \) in \([a, b]\). If \(x_0 < \bar{x} \), take \(\lambda = x_0 \) and \(\Lambda = G(x_0) \). Then \((4.2) \) holds but not \((4.3) \). If \(x_0 > \bar{x} \), take \(\lambda = G(x_0) \) and \(\Lambda = x_0 \). Then \((4.2) \) holds but not \((4.3) \).

\((a \Rightarrow d) \) If system \((4.4) \) has a solution \((x, y) \neq (\bar{x}, \bar{x}) \in [a, b]^2 \), then \(G^2 \) has a fixed point different from \(\bar{x} \), which contradicts \((a) \).

\((d \Rightarrow c) \) Let \(\lambda, \Lambda \in [a, b] \) be such that \((4.2) \) holds. Set
\[U_1 = G(\lambda) \quad \text{and} \quad L_1 = G(\Lambda), \]
and for \(n = 1, 2, \ldots \) set
\[U_{n+1} = G(L_n) \quad \text{and} \quad L_{n+1} = G(U_n). \]
We can see by induction that
\[a \leq \cdots \leq L_n \leq \cdots \leq L_2 \leq L_1 \leq \bar{\lambda} \leq U_1 \leq U_2 \leq \cdots \leq U_n \leq \cdots \leq b. \]

Hence each of \(\{L_n\} \), \(\{U_n\} \) converges to a number, say \(L, U \in [a, b] \) respectively. Then \((L, U) \) is a solution of system \((4.4)\) and \(L = U = \bar{\lambda} \). Clearly \(U \geq \Lambda \geq \bar{\lambda} \geq \lambda \geq L \). Therefore \(\Lambda = \bar{\lambda} = \lambda \).

Let \(\{x_n\} \) be a solution of Eq. (4.1) with initial conditions \(x_{-i} \in [a, b] \), \(i = 0, \ldots, k \). Set
\[\lambda = \liminf_{n \to \infty} x_n \quad \text{and} \quad \Lambda = \limsup_{n \to \infty} x_n. \]

Let \(\epsilon > 0 \) be such that \(\epsilon < \min[b - \Lambda, \lambda - a] \). There exists \(n_0 \in \mathbb{N} \) such that
\[\lambda - \epsilon < x_n < \lambda + \epsilon, \quad \forall n > n_0. \]

Hence
\[f(\lambda + \epsilon, \ldots, \lambda + \epsilon) < x_{n+1} < f(\lambda - \epsilon, \ldots, \lambda - \epsilon) \quad \forall n > n_0 + k. \]

By continuity of \(G \), we get the following inequality:
\[G(\Lambda) \leq \lambda \leq \bar{\lambda} \leq \Lambda \leq G(\lambda). \]

By (c), \(\lambda = \Lambda = \bar{\lambda} \). □

The next theorem presents a detailed description of the semicycles of any solution of Eq. (4.1) about an equilibrium point \(\bar{\lambda} \) and also establishes the strict oscillation of solutions. For the definition of positive and negative semicycles we refer the reader to [5].

Theorem 4.2. Let \(f \) be decreasing in each of its arguments. Assume that \(G \) has a fixed point \(\bar{x} \in [a, b] \). Every non-trivial solution of Eq. (4.1) with initial conditions \(\{x_{-i}\} \subset [a, b] \) satisfies the following statements:

1. \(\{x_n\} \) cannot have \(k + 1 \) consecutive terms equal to \(\bar{x} \).
2. Every semicycle of \(\{x_n\} \) has at most \(k + 1 \) terms.
3. \(\{x_n\} \) is strictly oscillatory.

Proof. (1) If \(x_m = x_{m+1} = \cdots = x_{m+k} = \bar{x} \) for some \(m \geq -k \), then \(x_n = \bar{x} \), \(n \geq -k \) which contradicts the hypothesis.

(2) Assume that a semicycle \(S \) starts with \(x_m, x_{m+1}, \ldots, x_{m+k} \). When \(S \) is a negative semicycle, then \(x_m, x_{m+1}, \ldots, x_{m+k} < \bar{x} \), whence
\[x_{m+k+1} = f(x_{m+k}, \ldots, x_m) > f(\bar{x}, \ldots, \bar{x}) = \bar{x}. \]

When \(S \) is a positive semicycle, then at least one term of \(\{x_m, x_{m+1}, \ldots, x_{m+k}\} \) is greater than \(\bar{x} \), and so \(x_{m+k+1} < \bar{x} \).

(3) By (1) and (2), the strict oscillation follows. □

5. The recursive sequence \(x_{n+1} = (\alpha - \beta x_{n-k})/g(x_n, \ldots, x_{n-k+1}) \)

In this section we study the asymptotic behavior of the difference equation
\[x_{n+1} = \frac{\alpha - \beta x_{n-k}}{g(x_n, \ldots, x_{n-k+1})}, \quad n = 0, 1, \ldots \quad (5.1) \]

where \(\alpha, \beta > 0 \) and \(g(u_0, \ldots, u_{k-1}) \) is a continuous function. We define
\[g(x) = g(x, x, \ldots, x). \]

We assume that \(g \) satisfies one of the following conditions:

(C1) \(g(u_0, \ldots, u_{k-1}) \) is non-decreasing in each argument \(u_i \in \mathbb{R}^+ \) and \(g(0) > \beta \).

(C2) \(g(u_0, \ldots, u_{k-1}) \) is non-decreasing in each argument \(u_i \in \mathbb{R}^+ \) and \(g(0) < -2\beta \).

We define
\[C = \frac{\alpha(g(0) - \beta)}{g(0)g(\alpha/\beta)} \quad \text{and} \quad D = \frac{\alpha}{g(0)}, \quad \text{when condition (C1) holds.} \quad (5.2) \]

and
\[C = \frac{2\alpha}{g(-\alpha/\beta)} \quad \text{and} \quad D = \frac{\alpha(g(0) + 2\beta)}{g(0)g(-\alpha/\beta)}, \quad \text{when condition (C2) holds.} \quad (5.3) \]

Clearly, in the two cases, \(C < D \). We need the following lemmas in proving the main result.

Lemma 5.1. If condition (C1) (respectively (C2)) holds, then Eq. (5.1) has a unique equilibrium point \(\bar{x} \in (0, \alpha/\beta) \) (respectively \(\bar{x} \in (-\alpha/\beta, 0) \)).
Proof. We can see that \bar{x} is an equilibrium point of Eq. (5.1) iff \bar{x} is a zero of the function

$$h(x) = x - \frac{\alpha}{\beta + g(x)}.$$

Assume that condition (C1) holds. Since $h(x)$ is an increasing continuous function on $\mathbb{R}_{>0}$, $h(0) < 0$, and $h(\alpha/\beta) > 0$, then $h(x)$ has a unique positive zero in $(0, \alpha/\beta)$; hence Eq. (5.1) has a unique positive equilibrium point in this interval. Now, assume that condition (C2) holds. The function h is increasing continuous on $\mathbb{R}_{>0}$, $h(0) > 0$ and $h(-\alpha/\beta) < 0$. Hence $h(x)$ has a unique negative zero in $(-\alpha/\beta, 0)$.

Lemma 5.2. Assume that either condition (C1) or (C2) holds. Then the interval $[C, D]$ is invariant for Eq. (5.1).

Proof. Let $x_{-i} \in [C, D], i = 0, 1, \ldots, k$. First, assume that condition (C1) holds. We have

$$\alpha \left(1 - \frac{\beta}{g(0)} \right) \leq \alpha - \beta x_{-k} \leq \alpha$$

and

$$1 \geq \frac{1}{g(\alpha/\beta)} \geq \frac{1}{g(\alpha/\beta)} \geq \frac{1}{g(\alpha/\beta)}.$$

Then $x_i \in [C, D]$. The result follows by induction. Now assume that condition (C2) holds. We have

$$\alpha - \beta D \leq \alpha - \beta x_{-k} \leq \alpha - \beta C$$

and

$$1 \geq \frac{1}{g(0)} \geq \frac{1}{g(\alpha/\beta)}.$$

This implies that

$$\frac{\alpha - \beta C}{g(0)} \leq x_1 \leq \frac{\alpha - \beta D}{g(\alpha/\beta)}.$$

Simple calculations show that $(\alpha - \beta D)/g(\alpha/\beta) < D$ and $(\alpha - \beta C)/g(0) \geq C$. Consequently, $x_1 \in [C, D]$. The result follows by induction.

Theorem 5.3. Assume that $\alpha, \beta > 0$ are such that condition (C1) (resp. (C2)) holds. Let $\{x_n\}$ be a solution of Eq. (5.1) with initial conditions $x_{-i} \in [0, \alpha/\beta]$ (resp. $x_{-i} \in [-\alpha/\beta, 0]$), $i = 0, \ldots, k$. Then

$$C \leq x_{n+k+1} \leq D, \quad n \in \mathbb{N}, \quad (5.4)$$

and

$$\liminf_{n \to \infty} x_n \leq \bar{x} \leq \limsup_{n \to \infty} x_n, \quad (5.5)$$

Proof. Assume that condition (C1) holds. Let $\{x_n\}$ be a solution of Eq. (5.1) with initial conditions $\{x_{-i}\} \subset [0, \alpha/\beta]$. Since

$$0 \leq \alpha - \beta x_{-k} \leq \alpha \quad \text{and} \quad \frac{1}{g(x_0, \ldots, x_{k+1})} \leq \frac{1}{g(0)},$$

then $0 \leq x_1 \leq D < \alpha/\beta$. By induction we get $0 \leq x_i \leq D, i = 1, \ldots, k+1$. One can check that $C \leq x_{k+1+i} \leq D, i = 1, \ldots, k+1$. Inequality (5.4) follows by Lemma 5.2. Similarly we can get inequality (5.4) when condition (C2) holds. Set

$$\lambda = \liminf_{n \to \infty} x_n \quad \text{and} \quad \Lambda = \limsup_{n \to \infty} x_n.$$

For every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $\lambda - \epsilon \leq x_n \leq \lambda + \epsilon, n \geq n_0$. If $\lambda > \bar{x}$, take $\epsilon = \lambda - \bar{x}$. There exists $n_0 \in \mathbb{N}$ such that $\bar{x} < x_n, n \geq n_0$. Hence $\bar{x} > x_{n_0+k}, n \geq n_0$ which is a contradiction. Therefore $\lambda \leq \bar{x}$, Similarly we can show that $\bar{x} \leq \Lambda$.

We combine Theorem 4.1, Lemma 5.1 and Theorem 5.3 to obtain the following result which establishes sufficient conditions for the positive (resp. negative) equilibrium point \bar{x} to be a global attractor for Eq. (5.1) with basin $[0, \alpha/\beta]^{k+1}$ (resp. $[-\alpha/\beta, 0]^{k+1}$). Set

$$G(x) = \frac{\alpha - \beta x}{g(x)}.$$

Theorem 5.4. Assume that $\alpha, \beta > 0$ are such that condition (C1) (resp. (C2)) holds. Then the following conditions are equivalent and each of them is a sufficient condition for \bar{x} to be a global attractor of Eq. (5.1) with basin $[0, \alpha/\beta]^{k+1}$ (resp. $[-\alpha/\beta, 0]^{k+1}$):

(a) \bar{x} is the unique fixed point of G^2 in $[0, \alpha/\beta]$ (resp. $[-\alpha/\beta, 0]$).
Assume that x_1, \ldots, x_k satisfy the following statements:

If condition x_i is a global attractor for Eq. (6.1) then

$$G(\lambda) \leq x_i \leq \lambda \leq G(\lambda),$$

Theorem 4.2

Proof. (resp. Theorem 6.1.) One can see that the function $G(x)$ has exactly one solution: $(x, \lambda) \in [0, \alpha/\beta]^k$ (resp. $[-\alpha/\beta, 0]$).

The following result is a direct consequence of Theorem 4.2. It presents a detailed description of the semicycles of any solution $\{x_n\}$ of Eq. (5.1) about the positive (resp. negative) equilibrium point λ with initial conditions $x_{-i} \in [0, \alpha/\beta]$ (resp. $[-\alpha/\beta, 0]$), $i = 0, \ldots, k$. Also we establish the strict oscillation of such solutions.

Theorem 5.5. Assume that $\alpha, \beta > 0$ are such that condition (C1) (resp. (C2)) holds. Then every solution $\{x_n\}$ of Eq. (5.1) with initial conditions $x_{-i} \in [0, \alpha/\beta], i = 0, \ldots, k$ (resp. $[-\alpha/\beta, 0]$), which are not all equal to λ, satisfies the following statements:

(1) $\{x_n\}$ cannot have $k + 1$ consecutive terms equal to λ.
(2) Every semicycle of $\{x_n\}$ has at most $k + 1$ terms.
(3) $\{x_n\}$ is strictly oscillatory.

6. The recursive sequence $x_{n+1} = (\alpha - \beta x_{n-k})/(\gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} + b_i x_{n-i}^2))$

In this section we investigate the attractivity of the rational recursive sequences

$$x_{n+1} = \frac{\alpha - \beta x_{n-k}}{\gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} + b_i x_{n-i}^2)}; \quad n = 0, 1, \ldots$$

and

$$x_{n+1} = \frac{\alpha - \beta x_{n-k}}{\gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} - b_i x_{n-i}^2)}; \quad n = 0, 1, \ldots$$

where $\alpha, \beta, \gamma > 0$; $a_i, b_i \geq 0, i = 0, 1, \ldots, k - 1, \gamma + \sum_{i=0}^{k-1} (a_i + b_i) x_{n-i}^2 \neq 0$ for some i. Suppose that one of the following conditions holds:

$$\gamma > \alpha + \sum_{i=0}^{k-1} b_i \frac{\alpha^2}{\beta^2},$$

$$\gamma < -2 \beta - \sum_{i=0}^{k-1} b_i \frac{\alpha^2}{\beta^2}.$$

Eq. (6.1) (resp. (6.2)) can be written in the form (5.1) where

$$g(x_1, \ldots, x_{n-k+1}) = \gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} + b_i x_{n-i}^2)$$ \text{ for Eq. (6.1).}

and

$$g(x_1, \ldots, x_{n-k+1}) = \gamma + \sum_{i=0}^{k-1} (a_i x_{n-i} - b_i x_{n-i}^2)$$ \text{ for Eq. (6.2).}

One can see that the function $g(u_1, \ldots, u_k)$ is increasing in every positive (negative) variable $u_i, i = 1, \ldots, k$. By Lemma 5.1, Eq. (6.1) (resp. (6.2)) has a unique positive (resp. negative) equilibrium point $\lambda \in [0, \alpha/\beta]$ (resp. $(-\alpha/\beta, 0)$).

Theorem 6.1. If condition (6.3) (resp. (6.4)) holds, then λ is a global attractor for Eq. (6.1) (resp. (6.2)) with basin $[0, \alpha/\beta]^{k+1}$ (resp. $(-\alpha/\beta, 0)$).

Proof. Assume that condition (6.3) (resp. (6.4)) holds.

Set

$$G(x) = \frac{\alpha - \beta x}{\gamma + \sum_{i=0}^{k-1} (a_i x + b_i x^2)} \quad \text{resp.} \quad G(x) = \frac{\alpha - \beta x}{\gamma + \sum_{i=0}^{k-1} (a_i x - b_i x^2)}.$$
Let λ and Λ be non-negative numbers in $[0, \alpha/\beta]$ (resp. $[-\alpha/\beta, 0]$) such that (5.6) holds. Then
\[
\beta(\Lambda - \lambda) - \gamma(\Lambda - \lambda) + \sum_{i=0}^{k-1} b_i \Lambda \lambda (\Lambda - \lambda) \geq 0 \quad \text{resp.} \quad \beta(\Lambda - \lambda) - \gamma(\Lambda - \lambda) + \sum_{i=0}^{k-1} b_i \Lambda \lambda (\Lambda - \lambda) \leq 0.
\] (6.5)

If $\Lambda > \lambda$, then (6.5) yields
\[
\gamma - \beta \leq \sum_{i=0}^{k-1} b_i \Lambda \lambda \leq \sum_{i=0}^{k-1} b_i \alpha^2/\beta^2.
\]
which contradicts condition (6.3) (resp. (6.4)). Therefore $\lambda = \Lambda = \bar{x}$. \[\Box\]

We use Theorem 5.5 to get the following result.

Theorem 6.2. If condition (C1) (resp. (C2)) holds, then every non-trivial solution $\{x_n\}$ of Eq. (6.1) (resp. (6.2)) with initial conditions in $[0, \alpha/\beta]$ (resp. $[-\alpha/\beta, 0]$) is strictly oscillatory.

References

