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Abstract

Coastal landfill sites not only offer an option for disposal but also create a new land space after the completion of landfilling. To perform
proper design on settlement, stability, and/or bearing capacity at landfill sites, the geotechnical properties of the waste layer such as deformation
and shear strength should be investigated. This research is focused on the mechanical properties of waste mixture sampled at a coastal landfill site
including municipal solid waste incinerator ash, slag, soil and others, to provide useful information on geotechnical properties in utilizing coastal
landfill sites after their closure. A series of triaxial consolidated undrained compression tests (CU) and hydraulic conductivity tests were carried
out on the reconstituted waste samples before and after being cured in simulated leachate water in coastal landfill sites for different periods, to
understand the aging effects on mechanical properties of waste mixture. It was shown that while curing results in an increase in the peak strength
and deformation modulus, the residual strength was not affected by the curing periods. Scanning electron microscope observations and X-ray
diffraction analysis on the waste samples after curing confirmed that the formation of ettringite and hydration products had a densification effect
on the microstructure. The higher peak shear strength and lower hydraulic conductivity of the waste samples were attributed to this effect.
& 2015 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Coastal landfilling is an important method for disposal of
municipal solid waste incinerator ash (MSWIA), slag, soil, and
others in Japan. According to the Ministry of the Environment,
Japan, approximately 20% MSW was disposed of in coastal
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landfill sites, and the weight ratio of MSWIA in landfilled
wastes reached almost 78% in 2003 (Shimaoka et al. 2007). In
general, coastal landfill sites are located at strategic points in
the port areas of Tokyo, Nagoya and Osaka with relatively
easy access from the metropolitan areas. Coastal landfill
reclamation is a key option considering the limited land
available in Japan. For this reason, it is important to investigate
the strength, bearing capacity, and deformation properties of
the waste mixture layers deposited in the coastal landfill.
However, limited research regarding the geotechnical proper-
ties of the waste mixture layers in coastal landfill sites has been
carried out, and the engineering properties of waste mixtures,
which include incinerator ash, slag, and surplus soil, remain
largely unknown. However, studies have been carried out in
Elsevier B.V. All rights reserved.
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Table 1
Chemical composition of the waste mixtures sample.

Chemicals CaO Fe2O3 SiO2 Al2O3 TiO2 SO3 K2O ZnO Others

Content (%) 51.6 20.4 9.1 4.3 3.3 2.8 1.7 1.9 4.9
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Fig. 1. Particle size distribution of the waste mixture sample after sieving.

L.C. Nguyen et al. / Soils and Foundations 55 (2015) 1441–14531442
the framework of the Osaka Bay Phoenix Project, which is an
extensive coastal landfill project that started in 1990 and has
45 million m3 of total capacity, geotechnical investigations
were carried out for the MSW landfill zone at Amagasaki
offshore disposal site to determine its physical and dynamic
properties (Aburatani et al. 1996). This research concluded that
the wet unit weight of the waste layer varied between 15 and
18 kN/m3, depending on the depth of waste layer, the internal
friction angle ranged from 24.51 to 351, and mechanical
properties of the MSW-reclaimed layers were equivalent to
those of loose alluvial sandy soil with an average SPT-N value
of 4.5.

Another important but poorly studied aspect is the time

dependency on the waste mixture properties, particularly the
changes in geotechnical properties of the waste mixture with

time in coastal landfill sites. Sato et al. (2001) conducted
consolidated drained triaxial tests on MSW incinerator ash

specimens, which were cured under three different conditions
including dry, wet and submerged conditions. The results

showed an increase in the strength of the MSW incinerator ash
samples with the longer curing periods due to the hydration

and pozzolanic reactions. An increase in the shear strength in
the incinerator ash samples that were submerged in water was

also reported by Itoh et al. (2005) and Towhata et al. (2010).
These previous works indicated that reduction in the pore

space and decrease in the hydraulic conductivity occurred by
the curing effects. A study carried out on the MSWIA cured in

a fully-sealed condition by Doi et al. (2000) showed that the
unconfined compression strength increased with time, while

hydraulic conductivity decreased by two orders of magnitude
together with a reduction in the compressibility of MSWIA.

The authors pointed out that ettringite generation and cementa-
tion with time influenced these mechanical properties.

Considering that MSWIA is a major landfilled waste in
Japan, these previous studies suggest the importance of
considering the aging effects on the geotechnical properties
of waste mixtures submerged in landfill leachate or seawater.
However, there have been few works that evaluate the shear
strength and deformation properties of the waste mixture when
it interacts with actual or simulated coastal landfill leachate for
a long time. In this study, waste mixture immediately before
being disposed of in a coastal landfill site was collected, and
reconstituted specimens were cured in simulated leachate for
different time periods to simulate the interactions with the
leachate in a coastal landfill site. A series of triaxial con-
solidated undrained (CU) compression tests and hydraulic
conductivity tests were carried out on the specimens before
and after being cured. Scanning electron microscope (SEM)
and X-ray diffraction (XRD) analyzes were also conducted to
further understand of the changes in the microstructures of
waste mixture. Based on these experimental results and
observations, the aging effects on the mechanical properties
and microstructures of the waste mixture reclaimed in coastal
landfills were discussed.
2. Materials and methods

2.1. Material

The waste mixture used in this study was collected at a
coastal landfill site in Osaka Bay area, Japan, immediately
before reclamation. The composition of the waste mixture
collected was approximately 50% of MSWIA, 30% of gravel
materials like slags, and 20% surplus soil, based on the waste
acceptance record. Approximately 200 kg of the wet waste
mixture was collected and then air-dried in a laboratory at a
constant temperature of 20 oC. After that, large pieces of debris
such as glass and rocks were removed and the mixture was
sieved with a 9.5 mm opening sieve. The sample after sieving
was considered the mixture of MSWIA and soil containing
small slags and gravels (Table 1).
Fig. 1 shows the particle size distribution of the waste

mixture sample after sieving, determined according to JIS A
1204 (2009). The grain size distribution indicates this waste
mixture is composed of 85.9 % sand fraction (40.075 mm),
8.1% silt fraction (0.005–0.075 mm) and 6.0% clay fraction
(o0.005 mm). The uniformity and curvature coefficients were
127.8 and 2.63, respectively. The material was well graded
with a particle size distribution corresponding to SG-F (gravely
sand with fine fraction), according to the JGS 0051 (2009).
The specific gravity of the waste mixture sample was 2.67. The
chemical composition of the waste sample determined by the
X-ray florescence spectroscopy (XRF) is shown in Table 2.
The XRF shows that calcium oxide is the main component
(51.6% in CaO), which indicates a certain hydration ability of
the sample. Fig. 2 shows the compaction curve of the waste
mixture, according to the A–c method of Standard Proctor
Compaction Test, JIS A 1210 (2009).



Table 2
Conditions and results of CU triaxial compression tests

Sample ID Curing
period
(day)

Confining
pressure sc
(kPa)

Dry density
before curing
(g/cm3)

Dry density after curing
(g/cm3)

B-value
(–)

Peak deviator
stress, qp
(kPa)

Axial
strain at
qp (%)

Specific
gravity before
curing

Specific gravity after
curing

A1 50 1.02 0.95 242.6 15.0 2.67
A2 0 100 1.02 0.95 276.8 14.9 2.67
A3 150 1.02 0.95 320.3 14.9 2.67
B1 50 1.02 – – 360.2 8.0 – –

B2 7 100 1.02 – 0.95 388.9 5.6 – –

B3 150 1.02 – 0.96 411.1 8.0 – –

B4 50 1.02 1.02 0.95 329.5 10.1 2.67 2.66
B5 14 100 1.03 1.03 0.95 393.9 15.0 2.66 2.66
B6 150 1.02 – 0.94 429.2 8.3 – –

B7 50 1.02 – 0.98 373.4 12.0 – –

B8 28 100 1.03 – 0.96 427.9 10.1 – –

B9 150 1.02 – 0.95 438.6 13.7 – –

B10 50 1.02 1.03 0.95 357.8 14.8 2.66 2.67
B11 60 100 1.02 1.04 0.95 416.5 8.0 2.66 2.68
B12 150 1.02 – 0.97 444.3 9.6 – –

B13 50 1.02 1.09 0.95 401.6 15.0 2.67 2.70
B14 90 100 1.02 1.03 0.95 448.8 15.0 2.67 2.69
B15 150 1.02 1.09 0.95 485.5 15.0 2.67 2.67
B16 50 1.02 1.02 0.97 355.5 15.0 2.67 2.71
B17 120 100 1.03 1.03 0.98 458.0 7.2 2.67 2.68
B18 150 1.02 1.03 0.95 486.0 7.2 2.67 2.7
B19 50 1.02 1.04 0.96 410.5 8.1 2.67 2.71
B20 150 100 1.02 1.06 0.95 500.3 14.4 2.67 2.71
B21 150 1.02 1.17 0.97 630.6 10.2 2.67 2.69
B22 50 1.02 1.26 0.95 493.9 10.7 2.67 2.72
B23 180 100 1.02 1.05 0.95 546.3 11.6 2.67 2.70
B24 150 1.02 1.10 0.95 612.5 5.3 2.67 2.69
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Fig. 2. Proctor compaction curve for the waste mixture sample.
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To prepare a simulated leachate with a chemical composi-
tion equivalent to that of the leachate in a coastal landfill site
which could be used for the submerged curing of the speci-
mens, 30 L of seawater was collected in Osaka Bay, and then
mixed with the waste mixture sample in a tank, with the weight
ratio of the waste mixture to seawater of 0.1. The mixture was
stirred daily for 7 days and then was filtered through a sieve of
75 μm opening. After that, the calcium concentration and the
pH of the simulated leachate were measured, at 1,850 mg/L
and 7.95, respectively. To simulate the aging effects in a
coastal landfill site, the specimens were cured in the simulated
leachate for up to 180 days.
2.2. Methods

2.2.1. Preparation of waste mixture specimens
Araike et al. (2010) reported that in situ saturated density of

waste mixture reclaimed in the coastal landfill site of Osaka
Bay is approximately 1.6 Mg/m3. The waste mixture was
prepared with its optimum water content and degree of
compaction of 80%, which is equivalent to the saturated
density of 1.6 Mg/m3. In this study, 27 specimens were
prepared and tested in total. All the specimens were prepared
by compacting in 5 layers into a split cylindrical mold (50 mm
in diameter and 100 mm in height) with its degree of
compaction of 80% (ρd ¼ 1.02 Mg/m3) and optimum water
content of 34.5%.
CU tests were conducted for two series of specimens: series

A (A1–A3) for samples without curing and series B (B4–B24)
for samples that were cured in seawater for certain periods. For
series A, CU and hydraulic conductivity tests were conducted
immediately after preparing specimens. For series B, samples
were prepared as follows:



Sample

50 mm

h

Effluent

Infuent

100 mm

Loading
piston

Cell pressure

Cell
water Triaxial Cell

Fig. 3. Schematic setup of hydraulic conductivity tests by using the triaxial
testing apparatus.
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1) Samples were compacted in a split steel mold in the manner
explained above.

2) Each specimen was transferred from the mold into a split
acrylic mold (50 mm diameter and 100 mm in height).

3) Filter papers and porous disks were fixed on the top and
bottom surfaces of the specimen in an acrylic mold to allow
water intake and drainage during curing, but not to allow
volume expansion.

4) Specimens were submerged in the simulated leachate,
which was de-aired for 24 h in a vacuum desiccator to
facilitate saturation.

5) Saturated specimens were cured in the simulated leachate
under an average room temperature of 2072 oC for 7, 14,
28, 60, 90, 120, 150, or 180 days.

2.2.2. CU tests and hydraulic conductivity tests
Consolidated-undrained triaxial tests with pore water pressure

measurements were carried out on waste mixture specimens by
following JGS 0523 (2009). The specimens were prepared
following JGS 0520 (2009), and saturated by applying a vacuum
procedure under a constant effective confining pressure of 20 kPa
(Rad and Clough 1984). After reaching the final step (�70 kPa for
cell pressure and �90 kPa for back pressure), de-aired water was
circulated into the specimen for 3 h and then back pressure and cell
pressure were reduced to –20 kPa and 0 kPa, respectively. Back
pressure and cell pressure were increased step by step until they
reached 220 kPa and 240 kPa, respectively. After that, whether the
specimen had a pore pressure coefficient (B-value) higher than 0.95
was checked to ensure that specimen were fully saturated.

According to the Ministry of the Environment, Japan, approxi-
mately 90% of coastal landfills in Japan have reclamation depths of
less than 15 m. Considering that the wet unit weight of waste layer
was about 17 kN/m3 above water table and 16 kN/m3 below water
table, which lies in 2 m below the ground level at the coastal landfill
site of Osaka Bay (Araike et al. 2010), the effective overburden
pressure at 5 m, 10 m and 15 m depth were approximately 53 kPa,
84 kPa and 115 kPa. With the assumption that the lateral effective
pressure was equal to the vertical effective pressure, the confining
pressures, sc, of 50, 100, and 150 kPa were employed in the triaxial
tests. After each specimen was consolidated with a designated
effective confining pressure, it was compressed at a constant axial
strain rate of 0.5%/min until the cumulative axial strain reached
15%. The axial strain was measured by a DDP-50A displacement
transducer (Tokyo Sokki Kenkyujo Co., Ltd.) with a capacity of
50 mm, and was automatically recorded by a data logger. Test
conditions and physical properties of the specimens for the CU tests
are summarized in Table 2.

Hydraulic conductivity tests were conducted on the waste mixture
specimens set up in a triaxial compression cell with a falling
headwater-constant tailwater system (see in Fig. 3). First, the
specimen with 100 mm height and 50 mm diameter was saturated
by using a double negative pressure method which was employed in
CU tests. Second, the constant cell pressure of 30 kPa was kept
without applying any back pressure to conduct the hydraulic
conductivity test under the effective confining pressure of 30 kPa.
Water head loss across the test specimen and effluent volume during
permeation was periodically measured and recorded to calculate the
hydraulic conductivity. The test was terminated when the changes in
hydraulic conductivity values with time were negligible.

2.2.3. XRD and SEM analyzes
The mineralogical structure of the waste mixture specimens

after curing were analyzed by a X-ray diffractometer (RAD-
2B, Rigaku Corporation, using a Cu target with a Ni filter and
input energy of 40 kV and 20 mA). After running the CU
triaxial test, the specimens were stored at a constant tempera-
ture of 3073 oC in an oven for 24 h for air-drying. Then, a
piece of each specimen around the core was taken and
grounded to powder with a maximum particle size smaller
than 75 μm. The powder-state sample was analyzed by XRD
with the diffraction angle (2 theta) ranging from 31 to 401.
Fragments of 5 mm3 from the specimens subjected to the triaxial

test were air-dried at 3070.1 oC in an oven for 24 h. Then the
SEM device (JSM-5510 LV, JEOL) was used to observe the
microstructure of the specimens. SEM images were taken at
magnifications of 100–5000 to identify crystallization and other
chemical reactions due to curing through visual observations.

3. Results and discussions

3.1. CU tests

3.1.1. Relationship between stress–strain and pore water
pressure
The peak deviator stress, qp, and axial strain, εa, when qp

was obtained are summarized in Table 2. Fig. 4 shows the
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Fig. 4. Deviator stress versus axial strain under various confining pressures, sc; (a) sc¼ 50 kPa, (b) sc¼100 kPa and (c) sc¼150 kPa.
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Fig. 5. Excess pore water pressure versus axial strain under various confining pressures, sc; (a) sc¼50 kPa, (b) sc¼100 kPa and (c) sc¼150 kPa.
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stress–strain curves for the specimens cured in the simulated
leachate for different curing periods (0–180 days). Overall, the
deviator stress, q, increased dramatically when εa was smaller
than approximately 2%, and reached a peak after εa became
6% or more. After that, q remained almost constant until εa
became 15%. The higher residual q was observed in specimens
which had been cured for longer periods. For the cases of
sc¼50 kPa (Fig. 4(a)), qp at the initial state (0 day curing) was
about 250 kPa, while qp after curing in the simulated leachate
ranged from 300–500 kPa. For the cases of sc ¼ 150 kPa (Fig.
4(c)), qp in the initial state was 300 kPa, while qp after 180
days curing was increased to approximately 600 kPa, which
was double the value of qp at the initial state.

Fig. 5 show the results of excess pore water pressure (PWP)
versus axial strain. For the initial state specimen under
sc¼50 kPa, excess PWP showed an increasing trend until it
reached a peak value (approximately 20 kPa), and then it
decreased steadily to about 0 kPa at εa¼15%. In contrast,
under sc¼100 and 150 kPa, excess PWP increased and
reached a maximum at εa¼2%, and then maintained a constant
value until εa reached 15%. The initial state specimens without
curing displayed a contractive behavior in shearing process, in
which the positive excess pore water pressure was maintained
during shearing.

When the specimens cured in the simulated leachate, speci-
mens of the higher sc and the longer curing period had the
higher peak excess pore pressure. For the cases of sc ¼
50 kPa, excess PWP dramatically increased in the initial
shearing stage which indicated a contractive behavior (see
Fig. 5(a)). After reaching the peak value at εa of about 1%,
excess PWP decreased to a negative value for all the speci-
mens cured. For the specimen cured for 180 days, the peak
excess PWP was about 40 kPa and the largest negative excess
PWP was approximately -60 kPa. The increase in the negative
excess PWP showed a dilatancy behavior of the waste mixture,
which was induced by curing in the simulated leachate.

For the cases of sc ¼ 100 kPa (Fig. 5(b)), specimens cured
for more than 90 days also showed a dilatancy behavior, which
was clearly indicated by the generation of negative excess
PWP. The peak excess PWP was about 80 kPa and the largest
negative excess PWP was approximately -20 kPa for the
specimen cured for 180 days. The peak excess PWPs
mobilized were almost twice as large as those obtained under
sc ¼ 50 kPa, while the negative PWPs was about one third as
large as those under sc ¼ 50 kPa.

For the cases of sc¼150 kPa (Fig. 5(c)), excess PWP
profiles similar to those for sc¼50 and 100 kPa were obtained.
However, the excess PWP profile for the 7 days curing
specimen was similar to that at the initial state, which did
not indicate any dilatancy behavior.

From the stress–strain relationships and excess PWP profiles
obtained in CU tests, the shear strength of the waste mixture
increased by curing due to changes in microstructures, which
was indicated by PWP profiles. It can be considered that
formation of hydration products filling the pores in the waste
mixture fabric affected the PWP profiles. Since the specimens
with the denser structure had a higher dilatancy, larger negative
excess PWPs were generated, which led to the higher residual
strength in the specimens cured for longer periods of time.
3.1.2. Stress-path of waste mixture with curing time
The deviator stress, q, and the mean effective stress, p’, are

calculated by following Eqs. (1) and (2):

q¼ s
0
1�s

0
3 ð1Þ

p0 ¼ s
0
1þ2s

0
3

� �
=3 ð2Þ

where s1’ and s3’ are the effective axial and confining stress.
The effective stress paths were plotted in a p’ plane as shown
in Fig. 6. The effective stress paths showed a similar shape
except for some cases under sc¼150 kPa. From the initial
point, the stress paths showed a decrease in p, which shifted to
the left with the generation of excess PWP. After the PWP
reached its peak, p’ started to increase, and the stress paths
shifted to the right. As the shearing proceeded, the higher q’
was observed under a certain p’ for specimens cured for longer
periods of time. After q’ reached its peak, softening behavior
was observed in all but the specimens which had not been
subjected to curing.
3.1.3. Deformation modulus of waste mixture with curing time
The deformation modulus was determined from the stress–

strain curves. Since the stress–strain curves obtained were
nonlinear, the deformation modulus was calculated by follow-
ing the procedure proposed by Kondner (1963), in which the
stress–strain curve can be represented by hyperbolic equations:

s
0
1�s

0
3 ¼

εa
aþbεa

ð3Þ

Eq. (3) can also be rewritten as:

εa
s0
1�s0

3

¼ aþbεa ð4Þ

A plot of εa= s
0
1�s

0
3

� �
versus εa is subjected to a straight

line with a slope, b, and an intercept, a, with the ordinate.
Deformation modulus, E, is given by Eq. (5).

E¼ 1=a ð5Þ
Table 3 shows the E values determined for all the cases,

which vary between 25 and 65 MPa. The deformation modulus,
E, depended primarily on sc, as observed in typical dense sand.
In addition, although some exceptions existed in the lower sc
cases, E increased with the curing period. Fig. 7 shows the
relationship between E and the curing period for sc¼150 kPa. E
after curing for 180 days was about twice as large as that of the
specimen which had not been cured. The increase in the
deformation modulus with curing is consistent with other studies
for stabilized soil, sand and bottom ash (Åhnberg 2007; Baxter
and Mitchell, 2004; Kim and Do 2012; Schmertmann 1991).
Schmertmann (1991) also reported that the modulus increased
with ageing in the case of cohesive samples.



0 100 200 300 400
0

100

200

300

400

500

600

700
D

ev
ia

to
r s

tre
ss

, q
 (k

P
a)

Mean effective stress, p' (kPa)

 Initial
 7 d
 14 d
 28 d
 60 d
 90 d
 120 d
 150 d
 180 d

0 100 200 300 400
0

100

200

300

400

500

600

700

D
ev

ia
to

r s
tre

ss
, q

 (k
P

a)

Mean effective stress, p' (kPa)

 Initial
 7 d
 14 d
 28 d
 60 d
 90 d
 120 d
 150 d
 180 d

0 100 200 300 400
0

100

200

300

400

500

600

700

D
ev

ia
to

r s
tre

ss
, q

 (k
P

a)

Mean effective stress, p' (kPa)

 Initial
 7 d
 14 d
 28 d
 60 d
 90 d
 120 d
 150 d
 180 d

Fig. 6. Effective stress paths under various confining pressures, sc. (a) sc¼50 kPa, (b) sc¼100 kPa and (c) sc¼150 kPa.

Table 3
Deformation modulus determined in the CU tests.

Curing period (days) Deformation modulus (MPa)

s’3¼50 kPa s’3¼100 kPa s’3¼150 kPa

0 25.8 28.3 32.2
7 39.2 37.7 40.6
14 32.4 41.0 42.7
28 40.2 43.5 44.5
60 39.0 42.4 47.2
90 44.3 48.8 50.1
120 39.0 46.7 44.8
150 45.9 52.3 64.4
180 52.3 60.4 60.6
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Fig. 7. Deformation modulus versus curing period at sc¼150 kPa.

Table 4
Hydraulic conductivity test results.

Curing period (days) Hydraulic conductivity k (cm/s)

0 4.2� 10�4

7 3.6� 10�4

14 2.1� 10�4

28 4.6� 10�4

60 3.0� 10�4

90 3.0� 10�4

120 2.9� 10�4

150 2.7� 10�4

180 5.9� 10�5
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3.2. Hydraulic conductivity of waste mixture with curing time

Hydraulic conductivity (k) values with the curing period are
presented in Table 4. Hydraulic conductivity values showed a
decreasing trend according to the curing period. k of the waste
mixture decreased by one order of magnitude from 4.2� 10�4

cm/s to 5.9� 10�5 cm/s after curing for 180 days. The range
of k is similar to the k values of municipal solid waste
incinerator ash deposit determined by Itoh et al. (2005).
Towhata et al (2010) carried out hydraulic conductivity tests

on incinerator ash samples submerged in water, and also
confirmed a decreasing trend in hydraulic conductivity with
curing through generation of cementations products with
which the pore of the sample was filled. However, neither
the cement generation processes nor the type of products
generated were specified. In this research, to identify the
processes to decrease the hydraulic conductivity of the waste
mixture by curing, XRD and SEM analyzes were conducted as
described in the following sections.

3.3. XRD analysis on waste mixture after curing

Fig. 8 show the XRD results for the specimens with various
curing periods (0, 60, 90, 150 and 180 days). As shown in Fig.
8(a), peaks for calcite (CaCO3), hydrated gypsum and quartz
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Fig. 8. XRD patters for the waste mixture with various curing periods; (a) 0 day (initial state), (b) 60 days, (c) 90 days, (d) 150 days and (e) 180 days.
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were clearly observed in the specimen at the initial state.
Calcite showed the highest intensity (about 580 cps at
2θ¼29.41). The intensity of the peaks for quartz and gypsum
were reduced dramatically with the curing period. Since the
simulated leachate contained chloride (Cl-) and sulfate ions
(SO4

2�) as major anions, hydrated gypsum can be produced by
the reaction with the calcium contained in the waste mixture
described in Eq. (6).

Ca2þ (aq)þSO4
2-(aq)þ2 H2O - CaSO4�2H2O (6)

Further, hydrated gypsum can be transformed into ettringite
in the waste mixture. Ettringite is one of the substances
responsible for the strength development by cement-based
solidification agents, and formation of ettringite is represented
by the following reaction formulas:

3CaO �Al2O3þ3CaSO432H2O-
3CaO �Al2O3 � 3CaSO4 � 32H2O (7)

4CaO �Al2O3 �Fe2O3þ6CaSO4þ2Ca(OH)2þ62H2O-
3CaO �Al2O3 � 3CaSO4 � 32H2Oþ3CaO � Fe2O3 � 3CaSO4 �
32H2O (8)

The largest peak of ettringite (2θ¼9.21) was detected for
the sample after 180 days curing. Kamon and Nontananandh
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(1990) inferred that the formation of ettringite (3CaO �
Al2O3 � 3CaSO4 � 32H2O) caused a significant decrease in
moisture content by combining a large amount of water
molecules in its crystals, leading to early strength develop-
ment in stabilized soil.

The formation of hydration products is expected to contribute
to the increase in shear strength of soils. Fig. 8(a) also indicated
the presence of hydration products such as calcium silicate
hydrate, CaO �SiO2 �H2O (CSH) and CaO �Al2O3 �SiO2 �H2O
(CASH). In previous studies, the formation of these hydration
products, which was verified by XRD and SEM observations,
Fig. 9. SEM images for the waste mixture specimens with various curing periods;
was considered a primary factor in the development of the
strength of lime or cement stabilized soil (Kamon and
Nontananandh 1990; Rajasekaran 2005; Rajasekaran et al.
1997). Similarly, the formation of hydration products can be
seen in Figs. 8(b)–(e) with significant changes in the XRD
patterns. As illustrated in these figures, the XRD patterns of the
samples cured for 60, 90, 150, and 180 days included several
new peaks which did not appear in the samples at the initial
state. These new peaks indicated the presence of hydration
products such as CSH at 2θ¼31.31 and CASH at 2θ¼15.81. In
a number of earlier studies on stabilized soil, the authors
(a) 0 day (initial state) (b) 60 days, (c) 90 days,(d) 150 days, and (d) 180 days.
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indicated that the increase in the amount of hydration products
such as CSH contributed to the strength development of
stabilized soil, and the strength increment was in correspon-
dence with XRD intensities of CSH products (Ariizumi 1977;
Kamon et al. 2001; Kamon and Nontananandh 1990).

3.4. SEM image analysis of waste mixture after curing

Fig. 9(a) shows the microstructure of waste mixture
immediately after molding without curing. The main compo-
nents at the initial state were numerous irregular particles.

The SEM images with a magnitude of 5000 for the samples
that were cured for 60, 90, 150, and 180 days are shown in Figs.
9(b)–(e), respectively. There was a clear difference, compared
with the initial state; the presence of needle-like ettringite can be
easily observed in the samples cured for longer periods of time.
The presence of ettringite that fills up the voids in the waste
mixture structure strengthens the bonding between waste
particles. As a result, the formation of these products led to
an increase in the peak deviator stress and a decrease in
hydraulic conductivity of the waste mixture after curing.

3.5. Aging effects on mechanical properties of the waste
mixture

The relationships between the stress ratio, q/p’, and the axial
strain, εa, obtained in the CU tests were illustrated in Fig. 10.
Under sc¼50 kPa, while the peak q/p’ value was about 1.8 for the
initial specimen, peak q/p’ values were gradually increased and
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Fig. 10. Stress ratio q/p’ versus axial strain; (a) sc¼
reached about 2.5 after 150 and 180 days of curing. For sc¼100
kPa, the peak q/p’ values increased from 1.6 at the initial state to
about 2.5 after curing for 180 days. A similar trend was also
observed under sc¼150 kPa, although the peak q/p’ values
slightly decreased. However, the q/p’ values at the residual state
for the larger εa were almost constant (about 1.8), regardless of the
curing periods and confining pressures. These observations
indicated that there were no changes in the cohesion or friction
angles in the specimen cured in simulated leachate. The effects of
curing are clearly observed only in the small strain region and the
higher q/p’ values were mobilized by curing. However, in the large
strain region, the residual q/p’ was almost constant and not
influenced by curing. This indicates a kind of overconsolidation
effect was mobilized by aging. Athanasopoulos (1993) presented
that the overconsolidation ratio increases linearly with the duration
of aging for remolded clay. The q/p’-strain curves for the waste
mixture after curing is consistent with those presented by Åhnberg
(2007) for overconsolidated stabilized soil. The author pointed out
that the specimens of stabilized soil exhibited the brittle behavior,
with a significant reduction in strength after failure under the
undrained condition.
The relation between qp and the curing periods under

sc¼150 kPa is shown in Fig. 11. The qp values were well
correlated with the curing period, and the qp of the specimen
after 180 days curing was twice that of the initial state. As
shown in Fig. 4, the qp was obtained when εa was larger than
6%. Considering that the q/p’ are almost constant when εa were
more than 6% (Fig. 11), the higher qp values can be attributed to
the smaller excess PWP generated in the specimens after curing
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(see Fig. 5), which is influenced by changes in the micro-
structure due to the generation of hydration products during
curing. In addition, the structure of the waste mixture was
densified due to the pozzolanic reactions that cause the
formation of hydration products (ettringite and CSH) and, in
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Fig. 11. Peak deviator stress versus curing period at sc¼150 kPa.
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Fig. 13. Expected processes affecting the undrained shear behavior and hydr
turn, fill the pore spaces contributing to an increase in shear
strength. The dry density of the waste mixture specimens that
were cured in the simulated leachate slightly increased from
1.02 to 1.03 after 14 days to 1.05 to 1.25 after 180 days (see
Table 2). Therefore, the development of qp with the curing
period was explained by these changes in the microstructure.
The XRD and SEM results support these changes in the
microstructure of the waste mixture as described in the above
sections. The XRD intensities for ettringite versus qp of the
waste mixture samples are plotted in Fig. 12. The shear strength
of the waste mixture shows an incremental trend with the XRD
intensity of ettringite.
From these discussions, the expected process affecting the

undrained shear behavior of the waste mixture can be summar-
ized in Fig. 13. When the waste mixture was submerged in the
simulated leachate, hydrated gypsum and ettringite were formed
primarily. After that, the pozzolanic reactions took place,
generating hydration products such as CSH. As a result, the
micropore structure of the waste mixture became densified by the
generation of hydration products, as observed by the SEM and
XRD analyzes. These processes were verified by the changes in
the dry density and hydraulic conductivity induced by curing. The
densification of the waste mixture samples led to an increase in
the negative pore pressure during shearing due to the dilatancy
effect, which is more likely to occur in the specimens cured for
the longer periods. However, considering that q/p’ in the residual
state are almost constant regardless of the curing period, the
higher qp is attributed to the higher p’ mobilized by the generation
of negative excess PWP. Thus, the excess PWP profiles play a
major role in the increase in qp of the waste mixture.

4. Practical implications

The shear strength parameters are important for evaluating
the stability of the waste layer in coastal landfills. In this
research, the aging effects on the undrained shear strength of
the waste mixture were studied and the results showed that the
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peak deviator stress increased with the curing periods. The
shear strength of the waste samples ranged from about 300 kPa
to 600 kPa under sc¼150 kPa, since the peak deviator stress
were primarily influenced by the changes in excess PWP
profiles. Accordingly, the peak q/p’ values around εa¼1%
increase by a kind of overconsolidation effect after curing but
the residual q/p’ values do not change, regardless of the
confining pressures and curing periods. Therefore, the sig-
nificance of aging effects depends on whether to employ peak
or residual strength in practical design.

Another important factor in the post-closure use of a coastal
landfill site is the bearing capacity of the waste mixture layer.
The bearing strength capacity required for typical structures,
such as residential houses, is 100–200 kPa or 15–30 in SPT-N
value according to the Japan Waste Management Consultant
Association (JWMCA 1994). The test results showed that
waste mixture exhibited a self-hardening behavior in the
leachate with a shear strength higher than 200 kPa.

5. Conclusions

This study investigated the aging effects of the waste mixture,
which was mainly composed of incinerator ash, slag, and
surplus soil, on the undrained shear behaviors and hydraulic
conductivity, for the future post-closure utilization of a coastal
landfill site. The main conclusions derived from the results of
laboratory experiments can be summarized as follows.

1) Waste mixture samples were cured by submerging in the
simulated leachate and cured in maximum 180 days. The
initial and cured samples were subjected to CU triaxial
compression tests. The results showed that both the peak
shear strength and the dilatancy of the waste mixture increased
with the curing time. The processes responsible for this
behavior could be explained by the changes in microstructure
of the waste mixture, which was densified through formation
of hydration products (ettringite and CSH), and the generation
of negative excess PWP. The densification of the waste
mixture samples associated with curing led to an increase in
the negative pore pressure during shearing due to the dilatancy
effect. Accordingly, the higher qp is attributed to the higher p’
mobilized by the generation of negative excess PWP. How-
ever, the q/p’ values at the residual state for the larger εa were
almost constant (about 1.8), regardless of the curing periods
and confining pressures. These observations indicated that
there were no changes in cohesion and friction angles induced
by curing in the simulated leachate. It can be considered that a
kind of overconsolidation effect was mobilized by aging only
in the small strain region.

2) The results of the SEM and XRD analyzes verified that the
formation of ettringite and other hydration products, such as
CSH, was promoted by curing. The formation of these
products led to the changes in microstructures of the waste
mixture, which was also supported by a decrease in
hydraulic conductivity with curing.

3) Waste mixture samples showed an increase in the deforma-
tion modulus with curing time. This trend was consistent
with the increase in undrained shear strength of waste
mixture samples. Therefore, the waste mixture layer inves-
tigated in this study could be possibly used as foundation
layers with its sufficient bearing capacity in post-closure use
of coastal landfill sites.
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