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Abstract

Let L be an odd unimodular lattice of dimension n with shadow n — 16. If min(L) >3 then
dim(L) <46 and there is a unique such lattice in dimension 46 and no lattices in dimensions 44
and 45. To prove this, a shadow theory for theta series with spherical coefficients is developed.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

An interesting aspect of odd unimodular lattices is that they come together with
their shadows. Let A be a unimodular lattice in the bilinear space (R”, (,)). Then the
shadow S(A4) of an odd lattice 4 is

S(A) = A% — A.

Here Ay denotes the even sublattice of 4 and L* denotes the dual lattice of the lattice
L. (The shadow of an even lattice is S(A) = A.) The vectors in S(A) are 1/2 times the
characteristic vectors of A. In this note, we only consider positive definite lattices.
Define o(A) := 4min(S(A)) to be the minimal norm of a characteristic vector in A.
Then ¢(A) = n (mod 8).

Splitting off the vectors of length 1 in A one gets a unimodular lattice I" with
dim(A) — o(A) = dim(I') — o(I') in smaller dimension. Therefore, we will always
assume that the minimum of A is >2.
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Elkies [Elk1,Elk2] proved that 7" is the only odd unimodular lattice A with
d(A) =n and found the short list of lattices A with a(A) =n — 8. The largest
possible dimension here is 7 = 23 where the lattice A is the shorter Leech lattice Oy;3.

The next cases g(A) = n — 16 and ¢(A) = n — 24 have been considered by Gaulter
[Gau]. He shows that the dimension 7 of a unimodular lattice A with min(A4) > 1 and
a(A) =n — 16 is bounded by 2907 and n<8 388 630 for g(A) = n — 24.

In this paper, we study lattices A with a(A) = n — 16. If min(A) >3 then we show
that n<46. This bound is the best possible, because A = O3 L O3 satisfies dim(A) =
46 and g(A) = 46 — 16 and this is the only such lattice of dimension 46 (see Theorem
3.5). In dimensions 45 and 44 there are no such lattices of minimum >3 (Theorems
3.6 and 3.7). To prove these theorems, we adopt the theory of theta series with
spherical coefficients to the shadow theory of unimodular lattices. In the last section,
we give some examples of lattices A with g(A) = n — 16 for dimensions n<35.

2. Theta series with spherical coefficients

In the whole paper, let A be a unimodular lattice of dimension n and ¢(A) =
n— 16. We will also always assume that min(A4) > 1.

Since A is a unimodular lattice, its theta series 0,4(z) = _,_, ¢"**, where ¢ =
exp(niz) is a modular form for the theta group

1
0 = <S:z»—>——,T2:ZI—>z+2>
z

of weight 2 and hence a linear combination of 0542 with a+8b=n (cf. [Ran,
Theorem 7.1.4]). Here, 03 = 07 is the theta series of the 1-dimensional unimodular
lattice Z and Ay is the cusp form of weight 4. The theta series of the shadow S(A) can
be obtained from 6, by a simple variable substitution:

Os(a)(2) = (é) n/zﬂA <é + 1> :

With this substitution we define the shadow of a modular form ¢ of weight m to

be N\ M
s = (1) o3 +1)

Whereas 03(—L + 1) starts with 2(3)/*¢'/* (and hence S(60;) with 2¢'/*), where
q = exp(niz), the shadow of Ag starts with —1. Therefore, the condition on
min(S(A4)) shows that

04 = 035 + A0y " Ag + BOY ' A3

for some A4, B. Since min(A)>2, one finds 4 = —2n. Moreover, B is determined if
one fixes the number of vectors of length 2 in A. Let 4; be the set of vectors of length
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jin A and a; = |4;|. Then the above argumentation shows that

(U3) a3 = $n(n* — 69n + 1208) + 2(n — 24)as,

(U4) a4 = 2n(n® — 94n + 2783n — 24425) + 2(n — 21)(n — 28)as.

For details see [Elk1].
We now consider the theta series of A with spherical coefficients. Let P; be a
harmonic polynomial of even degree d in n variables. Then

04.p,(2) = Z Pa(2)g%?

ieA

is a modular form for the theta group to the character y with %(S) = i and x(T?) =
1. If 4 is divisible by 4 then 6, p,€Cl[0;, 45] and if d =2 (mod4) then by [Ran,

Theorem 7.1.6] 045, € DC[03, 4g], where & = (05 — 03). One easily sees that
®(z) = 02(1 +2)* — 05 (2)".
The shadow of @ starts with 2 and therefore the minimal g-power in the shadow of
@0, Y A is gUmY)/A,
This shows that

0/171)2 = C@O;716A§

for some constant ¢. Therefore, 84 p, = 0 if a; = 0. Then the layers of A and S(A)
form 2-designs. In general, this equation gives for all xe R"

> (w0) —2(n—36) Y (r,0)’ = (4(n* — 691+ 1208) + 2a5) (o, 0)  (C2)

ue s red;

and

> (wa)—20n-24)(n—49) > (r,a)’
veEAy red;
= (8(n® — 94n® + 2783n — 24425) + 4(n — 25)as)(a, ). (D2)
Similarly one gets
9/1_134 = 010';_1641; + 6’20’31_84@

and

04.p, = D(c)05 043 + 40575 43)
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for some constants ¢y, ¢z, ¢}, ¢5. From this one finds:

> wa)t =2(0-28) > (ua)* + 201 =551+ 636) Y (r,0)"

vEAY ues red;

=216 ) (r,0)*(o,0) + (24(n — 41)(n — 46) + 12a3)(or, )’

)‘6/12

and

> (0,0)° =20 —40) > (u,0)° +2(n* — 790+ 1584) Y~ (r,0)°

veEAy ue s red,
=30 Z (u,00)* (o, 00) — 60(n2 — 39) Z (r,00)* (ot 1)
ued; red;
— 180 ) (r,a)* (o, 2)* — 240(n — 37)(at, 1)’
I’G/lz

3. Main results

(D4)

In this section, it is assumed that A is a unimodular lattice of dimension » with

6(A) =n—16 and min(A4)=3 ie. ay = 0.

3.1. Bounds for the dimension

Fix ugeA; and define m; = [{ue A3|(u,up) =i}|. Since m;#0 only for i=

0,1,—1,3,=3 and m; = m_;, m3 = m_3 = 1, Eq. (C2) yields
my = 3(2n* — 138n + 2413).

We keep the following notation:
For ve Ay let

Ni(v) = {ueAs | (v,u) =i} and ni(v) = |N;(v)|.
If one writes Na(v) = {uy, ..., ux } O{v —uy, ...,v — uy } then the vectors
zi=ui—w (1<i<k)

are pairwise orthogonal roots in vt.

Therefore, k<n — 1. For the mean value mv of n,(v) one finds

1 2n(n* — 69n + 1208)(2n*> — 1381 + 2413
mV:—an(v):@mlz n(n n+ 1208)(2n n—+ )

ay ay n(n® — 94n? 4 2783n — 24425)

1}6/14

Since also mv<2(n — 1), this shows the following lemma.
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Lemma 3.1. Let A be an odd unimodular lattice of dimension n with minimum >3 and
a(A)=n— 16. Then n<80.

Notation and Strategy 3.2. Fix ve A4 and let k =1|N,(v)|. As above we define k
pairwise orthogonal vectors of norm 2 as z; = u; — w (1<i<k). By L(v) we will
always denote the lattice generated by v and the vectors in N(v):

L(v) = {Ny(v),v) 5.

If ue Ny(v) then (u,z;) = (u,u;) — 1/2€1/2 4+ Z is nonzero for all 1 <i<k. Therefore

1& 1
u:Z; sl-ziJerth

with odd integers ¢ and some vector te L(v)™* .

Lemma 3.3. n,(v) <44. If ny(v) = 44 then ny(v) is a power of 2.

Proof. Let ve A4 with ny(v) >44. Eq. (D2) together with the bounds ny(v)<2(n — 1)
and n<80 imply that

nm(v) >0

is nonzero. Let ueNi(v) and write u = %Ef:l &izi + v+t as above. Since 3 =
(u,u) >k + % this implies k <22. Moreover, if k = 22 then r = 0 and ¢; = +1 for all

i. Therefore, n,(v) <44 and if ny(v) = 44 then any ue N;(v) is of the form

U= 2 izi + 40
with ¢; = +1.
Let
I''=An(Q®L(v)).
Since all vectors in L(v) have even scalar product with v, the parity of (x,v) is

constant in a class of I'/L(v). Let ceI'/L(v) be a class such that (x,v) is odd for all
xe€c and choose x € ¢ of minimal norm. Then (x,v) = +1 and replacing x by —x we

may assume that (x,v) = 1. If (x,u;) = —1 for some u;€ N(v) then (x,v — ;) =2,
contradicting the minimality of x. Therefore, (x,u;) = 0 or 1 for all u;e N(v) and we
may choose uy, ...,u; such that (x,u;) = 1 for all 1<i<k. Hence, x = %(zl 4o

zk) +4v has norm k/8+41/4=3 if k=22. Therefore, all odd classes in
I'/L(v)<= L(v)*/L(v) are represented by vectors in Ni(v)u — N;(v). Moreover, the
precise form of the vectors in N;(v) shows that all these 2n(v) classes are distinct.
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Since the determinant of L(v) is 2** one has that 2n(v) = §|I'/L(v)| is a power
of 2. 0O

Since n,(v) <44 for all ve Ay, also the mean value mv is <44. Using formula (MV")
one gets:

Corollary 3.4. Let A be an odd unimodular lattice of dimension n with minimum >3
and o(A)=n — 16. Then 23<n<46.

3.2. The case of dimensions 46, 45, and 44
Let O,3 be the unique unimodular lattice of dimension 23 with no roots.

Theorem 3.5. Let A be an odd unimodular lattice of dimension 46 with minimum 3 and
6(/1) =30. Then A= 053 1 O3.

Proof. By formula (MV) the mean value of ny(v) is mv=44. Since ny(v)<44 by
Lemma 3.3 for all vectors ve Ay it follows that ny(v) =44 for all veA4. From
Eq. (D2) one now also gets that n;(v) = 1024 for all veAdy. Let L= L(v) =
{N>(v),v) be asin 3.2. Then det(L) = 2** and dim(L) = 23. Let I := {N;(v),L).
As in the proof of Lemma 3.2 one sees that L< I'c L* and that the 2 - 2!° elements in
Ni(v)u — Ni(v) lie in distinct classes of I'/L that have odd scalar product with v.
Therefore, |I'/L| is divisible by 2-(2-2!'%) = 2!2 and I' is a unimodular lattice of
dimension 23 and minimum 3. Hence, A =T LT+ ~0x10,. O

Theorem 3.6. There is no unimodular lattice A of dimension 45 with minimum 3, that
satisfies a(A) = 45 — 16.

Proof. By (MV) one gets mv > 40, so there is a vector ve A4 such that ny(v) >42. If
ny(v) = 44 then n;(v) = 848 is not a power of 2. Hence, by Lemma 3.3 there is ve A4
such that ny(v) = 42, i.e. k = 21. From Eq. (D2) one calculates n;(v) = 856. Choose
u,u' € N1(v). In the notation of 3.2, we can define the zi, ...,z € Na(v) — § such that

u=3z1+ - +z)+v+r and W =l-z— - —zZ4zm+ o H) e+
with 7,/ € L(v)* of norm 1/8. If [ is even then 2(u — /) = uy + - + uy —bv4+2(1—
') shows that 2(r —¢)eA and if / is odd then k—/ is even and 2(u+u') =
upr + o +up — 520 4 2(1+ 1) implies that 2(r+#)eA. Therefore, one of
2(t+1)eA is a vector of norm <4(1/8+2/8 +1/8) = 2. Since A has minimum 3,
this shows that 7 = (—1)'z. Let

L= {(N:(v),v,8t) and I =An(QRQL).

Then det(L) = 2%°. Let L = {yeI'|(y,¢)eZ}. The vectors ue N\ (v) UN_;(v) satisfy
(u, 1) = £}. Therefore, L is a sublattice of index 8 in I'. The elements
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ueNi(v)UN_;(v) lie in distinct classes of I'/L. Since all these classes have scalar
product +§+ Z with ¢ and [N (v) UN_;(v)| > 2'°, the order of I'/L is divisible by
4.2 =213 Since I' is integral and det(L) = 226, this shows that I is a unimodular
lattice and A = '@ I, where I = I'* n A is a unimodular lattice of dimension 22
and with minimum 3. But there is no such lattice I'"’, so this is a contradiction. [

Theorem 3.7. There is no unimodular lattice A of dimension 44 with minimum 3 that
satisfies a(A) = 28.

Proof. Using formula (MV) one gets mv > 37. Therefore, there is a vector ve Ay
such that n,(v)>38.

® If ny(v) = 44 then n;(v) = 688 is not a power of two. Hence, by Lemma 3.3 this
case is impossible.

® Assume now that there is ve A4 with ny(v) = 42, i.e. k = 21. From Eq. (D2) one
calculates that then n;(v) = 696. As in the proof of Theorem 3.6 one sees that all
vectors ue N, (v) can be written as u = i(slzl + o toerzi) + %v + &t with suitable

signs ¢, and re (Ny(v),v)>* with (¢,7) = 1/8. Let
L= (N:(v),v,8t) and I =An(QXRQL).

Then det(L) = 2%. Since |N;(v)UN_(v)| =2-696 > 2!° the order of I'/L is
divisible by 4 - 2! = 213, Hence, I' is a unimodular lattice and A = '@ I", where
I"=T* AA is a unimodular lattice of dimension 21 and with minimum 3. But
there are no such lattices I", so this is a contradiction.

® Assume now that ny(v) = 40, i.e. k = 20. Then n;(v) = 704. Choose u,u' € Ny (v).
Then we can define the z, ..., z; such that u = %(Zl + o+ zi) Jr%er tand ' =
Yoz = =z zp + -+ 2z5) + o+ ¢ with £,/ €(Q®L(v))" of norm 1/4.
Then 4te A shows that (¢,u) = (1,¢')€3Z, hence (¢,7) = 0, 4. If (¢,7) = £ then
t=+r.Let L = {Ny(v),v) and I'g .= {N(v),Ly ). Let { ¢, ..., =} be the
different #; that occur as projection of Ny (v) to Li- and Ly = {4y, ..., 4t;». Then
L, A. Since L% is the projection m;(I'y) onto @QL; one has L, = QL, nA. Let
I' =AnQ(L;LLy) and 7|, 7, be the orthogonal projections of I" onto QL; and
QL;. Then n(I'y)/(I'1 nQL,) = L% /L, ~(Z/4Z)". On the other hand, this factor
group is isomorphic to mw(I'})/(I''n@QL;) which is a subquotient of
L*/Ly=(2/22)" x (Z/4Z)*. Therefore, s<2. Let

L=< Ny(v),v,4t1,...,4t;> and I :=QLNA.

Then det(L) = 2'% - 4% .45 and I' is an integral overlattice of L. The 1408 vectors
ue Ny (v)nN_;(v) lie in distinct classes of I'/L. Since they all have odd scalar
product with v, one concludes that the order of I'/L is divisible by 2!!'.2.
Therefore, if s = 1 then I' is a unimodular lattice of dimension 22 with no roots,
which is a contradiction, and if s = 2 then det(I') = 4. But then I =T'* nAis a
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21-dimensional lattice of determinant 4 with minimum 3. Therefore, it is
contained in a unimodular lattice of dimension 21 with root system /4, or [4; 1 Z.
Since there is no such unimodular lattice (see [SPLAG, Table 16.7]) this is a
contradiction.

® Assume now that ny(v) = 38, i.e. k = 19. Then n;(v) = 712. Choose u,u’ € Ny (v).
Then we can define the zi, ...,z such that u =1(z; + - +z) + v+ 7 and v/ =
N=zi— - —zi+zi 4 - +zk) + v+ ¢ with, /e(Q®L)" of norm 3/8. Then
(u, /) =1/4+41/8(19 — 2]) 4+ (¢,¢') which shows that (z,#)e{+1/8, +3/8}.
Moreover, if / is even then 2(u — ') € A and hence 2(¢ — ') € A which shows that
(t,/)=—-1/8o0rt=17¢.1flisodd then 2(t + ¢)eA and (¢,) = 1 /8 or t = —¢. Let
{1, ..., £t} be the different ¢ that occur as projection of N(v)UN_;(v) on
{N>(v),v>*. W.lo.g. assume that =17, and that 2(r —1;)eA for all i. Then
(t,t;) = —1/8. If i#j then (2(t—1;),2(t —t;)) =4(5/8 + (t;,1;))eZ shows that
(t;,t;) = —1/8 for all i#j. Therefore, the sum of each four vectors #; + 1, + t3 +
t4 = 0 which shows that s<4. Let

L= (N> (v),v,2(ty —t2),...,2(t1 — t),8t1) and I = (Ni(v),L).

Since the elements ue N, (v) satisfy 8ue L, |[I'/L| is a power of 2. Explicit calculation
with the gram matrix of L yields

det(L) | dim(L)
218.8.22.8 23
218.8.22.8 23

218.8.4-8 22
218.8.24 21

DN ol | ®»

The 1424 vectors ue N1 (v) " N_;(v) lie in distinct classes modulo L. Since they all
have odd scalar product with v, one concludes that the order of I'/L is divisible by
2112,

If s = 1 then I is a lattice of dimension 21 of determinant 3 with no roots. Gluing
either with a vector of length 3 or with the root lattice 4,, one sees that such a lattice
is either the orthogonal complement of a vector of norm 3 in a 22-dimensional
unimodular lattice or the orthogonal complement of A4, in a 23-dimensional
unimodular lattice. An inspection of the possible root sublattices of the unimodular
lattices of dimension <23 (see [SPLAG, Table 16.7]) shows that there is no such
lattice I' with minimum 3.

If s = 3 or 4 then det(I') = 4 and I'* N A is a 21-dimensional lattice of determinant
4 with minimum 3, which is a contradiction as above.

If s = 2, then det(I') = 4. As above, I' is contained in a unimodular lattice 4 of
dimension 22 such that the root system of 4 is either A% or 4¥ L Z. There is a unique
such lattice 4. It has root system 43>. Then I’ is the unique sublattice of index 2 with
no roots. Since I'" == I'* n /A has the same properties as I', the uniqueness implies
that '=~I" and A contains I' L I'"" of index 4. The unique unimodular overlattice of
I' LT is isometric to 4 L A4 and contains vectors of length 2. [



G. Nebe, B. Venkov | Journal of Number Theory 99 (2003) 307-317 315

4. Some numerical values

Table 1 displays some values that can be calculated from the formulas in Section 2.
We keep the notation from Section 3. In particular, A is an odd unimodular lattice of
dimension n with ¢(A) =n— 16 and min(A)>3. Then a3 = |43, as = |A4]. Fix
ue As. Then we denote

mi = [{u'eds | (uu) =i}, (i=0,%1,£3)

and

m; = |{vedq|(u,0) =i}, (i=0,+1,+2).

Then one has n?y = m; and m| = 12(n* — 96n> + 2921n — 26838). Then we get the
following values as given in Table 1.

The last column contains the mean value

Table 1

dim @ ay m m) mv

23 4600 93150 891 20736 44

24 4096 98256 759 21528 31.64044944
25 3600 101250 639 21744 22.72000000
26 3120 102180 531 21456 16.21374046
27 2664 101142 435 20736 11.45755473
28 2240 98280 351 19656 8

29 1856 93786 279 18288 5.521335807
30 1520 87900 219 16704 3.787030717
31 1240 80910 171 14976 2.620689655
32 1024 73152 135 13176 1.889763780
33 880 65010 111 11376 1.502538071
34 816 56916 99 9648 1.419354839
35 840 49350 99 8064 1.685106383
36 960 42840 111 6696 2.487394958
37 1184 37962 135 5616 4.210526316
38 1520 35340 171 4896 7.354838710
39 1976 35646 219 4608 12.14004376
40 2560 39600 279 4824 18.03636364
41 3280 47970 351 5616 24

42 4144 61572 435 7056 29.27694407
43 5160 81270 531 9216 33.71428571
44 6336 107976 639 12168 37.49633252
45 7680 142650 759 15984 40.86309148

46 9200 186300 891 20736 44
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where for ve Ay,

ny(v) = |{v' eAq]| (V',v) = 2}|.

5. Examples

The unimodular lattices without roots are known up to dimension 28. There are
unique such lattices in dimensions 23, 24 and 26, namely the shorter Leech lattice Oy;
(with ¢(0,3) =23 —8), the Leech lattice A4 and the unique 26-dimensional
unimodular lattice Sy found by Borcherds [Bor] which satisfies a(S») = 26 — 16. In
dimension 27, there are 3 unimodular lattices without roots (see [Bor,BaV]), two of
which have a characteristic vector of norm 11 =27 — 16 [BaV, Théoréme 1.1]. The
28-dimensional unimodular lattices of minimum 3 are classified [BaV]. There are 38
such lattices, 36 of which have a characteristic vector of norm 12 =28 — 16. All
these classifications have been verified by King [Kin] who develops methods to
calculate a mass formula for unimodular lattices of given dimension and with given
root system.

In dimensions n with 29<n<35, one finds lattices A4 with ¢(A) =n— 16 as
neighbours

A= N(@0p) = (Lxe2' | (03) =0 mod plpo { o)

of the Z" lattice for some ve Z" and a prime p with p? dividing (v, v). For example,
one can choose vectors v with vy =k for k=1,...,n—4 and the last four
components and p as follows:

n Un—3 Un—2 Un—1 Un )4

29 26 27 189 2583 73
30 27 28 334 2593 61
31 28 39 323 2233 73
32 29 48 219 293 83
33 30 31 233 2981 67
34 129 130 933 935 97
35 293 1487 4287 4502 109

Note that by [Kin, Proposition 12] the mass of the 31-dimensional unimodular
lattices A with no roots that satisfy o(A4) = 15 is (146880/2) times the mass of all
even extremal unimodular lattices in dimension 32, so it is approximately 4.03 - 10'!.

Using codes, Bachoc and Gaborit construct a 40-dimensional unimodular lattice
A of minimum 3 with a(A) = 24 [BaG].
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