
Computational Soundness of a Call by Name
Calculus of Recursively-scoped Records

Elena Machkasova 1

Division of Science and Mathematics
University of Minnesota, Morris

Morris, MN, U.S.

Abstract

The paper presents a calculus of recursively-scoped records: a two-level calculus with a traditional call-by-
name λ-calculus at a lower level and unordered collections of labeled λ-calculus terms at a higher level.
Terms in records may reference each other, possibly in a mutually recursive manner, by means of labels. We
define two relations: a rewriting relation that models program transformations and an evaluation relation
that defines a small-step operational semantics of records. Both relations follow a call-by-name strategy.
We use a special symbol called a black hole to model cyclic dependencies that lead to infinite substitution.
Computational soundness is a property of a calculus that connects the rewriting relation and the evaluation
relation: it states that any sequence of rewriting steps (in either direction) preserves the meaning of a
record as defined by the evaluation relation. The computational soundness property implies that any
program transformation that can be represented as a sequence of forward and backward rewriting steps
preserves the meaning of a record as defined by the small step operational semantics.
In this paper we describe the computational soundness framework and prove computational soundness of
the calculus. The proof is based on a novel inductive context-based argument for meaning preservation of
substituting one component into another.

Keywords: Calculus, call-by-name, computational soundness, recursively-scoped records

1 Introduction

In this work we present an untyped call-by-name calculus of recursively-scoped
records. Recursively-scoped records (called records for the remainder of the paper)
are unordered collections of labeled components that may reference each other, pos-
sibly in a mutually recursive manner. Representation of mutual dependencies arises
in many calculi that model separate compilation, modules and linking, e.g. [1,15],
dynamic code manipulation, e.g. [6], letrec, e.g. [13]. While our system has a
much more modest set of features, it captures the essence of mutual dependencies
– substitution with a possibility of cyclic dependencies.

1 Email: elenam@morris.umn.edu

Electronic Notes in Theoretical Computer Science 204 (2008) 147–162

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.059
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82497851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:elenam@morris.umn.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

We use a common approach pioneered by G. Plotkin in [11] of defining two rela-
tions in a system: a rewriting relation that represents program transformations and
an evaluation relation that defines the meaning of a term via small-step operational
semantics. Computational soundness connects the two relations: it implies that any
two terms that are equivalent with respect to the rewriting relation have the same
meaning as defined by the evaluation relation. Thus any program transformation
that can be constructed as a sequence of rewriting steps (forward and/or backward)
preserves the meaning of a term.

In our work both the rewriting relation and the evaluation follow the call-by-
name strategy. Since this strategy allows β-reduction and substitution of unevalu-
ated terms, the repertoire of transformations represented by the rewriting relation is
greatly expanded to include unrestricted common subexpression elimination within
a record, specialization, etc. The computational soundness result implies that all
such transformations on mutually dependent components are meaning preserving,
and thus can be used in a variety of systems modeling modules and linking, mutual
dependencies in a letrec binding, etc. Our future plan is to investigate whether the
meaning preservation result holds if the evaluation is restricted to a more efficient
call-by-value strategy, while transformations follow a more liberal call-by-name one.

As demonstrated in section 5.2, our calculus fails to satisfy properties required
for some previously known proof methods for computational soundness: it lacks
confluence of the rewriting relation required for Plotkin’s original proof method and
it fails to satisfy lift and project properties required for the approach in [10]. We use a
novel context-based approach to complete the proof. It is an open question whether
the proof can also be completed using an alternative diagram-based approach in [14].

The main contribution of the paper is the computational soundness proof of
a call-by-name calculus of mutually dependent components in the framework of
term meaning defined via a small-step operational semantics. For more detailed
presentation of this work, including proofs omitted here, see [8].

2 Related Work

G. Plotkin in [11] has proven a property equivalent to computational soundness
for the call-by-name and the call-by-value term calculi. Z. M. Ariola and J. W.
Klop studied issues of confluence and meaning preservation in similar systems of
mutually dependent components. The straightforward definition of such a system
breaks confluence (see [3]). In [4], in order to achieve confluence, substitution on
cycles is disallowed. In [2] Z. M. Ariola and S. Blom show that unrestricted cyclic
substitution is meaning preserving up to infinite unwindings of terms; their proof
uses an approach that they call “skew-confluence”.

In our earlier work [10,7], we proved computational soundness of a non-confluent
call-by-value calculus of records similar to the one considered here. We developed
and used a diagram-based proof method based on properties that we called lift and
project. This approach has been further extended and generalized to a collection
of abstract diagram-based proof methods in [14]. However, the system considered

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162148

here does not meet the requirements of the lift and project method (see Section 5.2)
and it is unclear whether it can be handled using diagram-based methods presented
in [14]. Nevertheless, the novel inductive context-based method presented here
allows us to prove computational soundness of the call-by-name system.

A recent independent work [12] by M. Schmidt-Schauß presents a proof of cor-
rectness of a copy rule (analogous to our substitution rule) in a call-by-need and a
call-by-name settings. The proof approach uses the machinery of infinite trees and
is significantly different from our context-based approach. The relation between the
applicability of the two proof methods is a subject of future research.

3 Call-by-Name Calculus of Records

Records are unordered collections of labeled terms. Terms are elements of the
traditional call-by-name λ-calculus [5], extended with constants, operations, and
special symbols that represent interdependencies between terms. Each term in a
record is marked by its unique label. The system can be viewed as a two-level
calculus, with regular terms at the lower level and records at the upper level.

The term level of the calculus is defined below. We use prefix T for sets at the
term level (such as TTerm), R is used at the level of records.

Definition 3.1 (Term-Level Calculus Syntax)

M,N ∈ TTerm ::= c | x | l | • | λx.M | M1 @ M2 | M1 + M2

C ∈ TContext ::= � | λx.C | C @ M | M @ C | C + M | M + C

E ∈ TEvalContext ::= � | E @ M | E + M | c + E

N ∈ TNonEvalCntxt N ∈ TContext, N �∈ TEvalContext

M, N denote terms, c stands for constants (such as numbers 1, 2, etc.), x, y, z are
variables (distinct from constants), l stands for labels (distinct from variables and
constants), • is a special symbol that denotes a black hole, i.e. a cyclic dependency
of a record component on itself, λx.M is a lambda abstraction, M1 @ M2 is an
application, + is a binary operation on terms. For simplicity we use only addition
in our examples, but other operations can be added. The scope of a lambda binding
extends as far to the right as possible, unless limited by parentheses. It is straight-
forward to extend the calculus with booleans, conditionals, and other features, but
for simplicity they are not considered here.

The set FV (M) of free variables of a term M is defined as usual. Labels are
distinct from variables, and are not included in FV (M). Syntactic equivalence of
terms is defined in [8] and follows the standard approach (see [5]). We use = to
denote equality up to α-renaming.

Contexts are used as a way of specifying a particular subterm in a term. We use
C as a metavariable for a term context, E as a metavariable for a subset of general
contexts called evaluation contexts, and N for the complement of this subset called

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162 149

non-evaluation contexts. The symbol � denotes a context hole. As an example, in
the term 2 + λx.3 the subterm 2 appears in the context � + λx.3 (an evaluation
context) and 3 appears in 2 + λx.� (a non-evaluation context, since � is under
a λ). Definition 3.3 uses evaluation contexts as means to specify a subterm to
be evaluated according to the evaluation relation. If a subterm appears in a non-
evaluation context, it will not be reduced by evaluation.

C{M} denotes the result of filling the hole in the context C with the term M

(we use the notation C{M} instead of the traditional C[M] to avoid confusion with
record delimiters). For instance, if C = λx.� and M = x+2 then C{M} = λx.x+2.
The notations for filling an evaluation context E and a non-evaluation context N

are analogous. We can also fill a hole in a context with another context (denoted as
C1{C2}), the result is a context. Note that it is possible to capture free variables of
M when filling a context hole. Thus we do not introduce α-renaming of contexts.
Definition 5.6 introduces contexts with multiple holes.

Definition 3.2 (Record-Level Calculus)

D ∈ RTerm ::= [l1 �→ M1, ..., ln �→ Mn], li �= lj for i �= j

D ∈ RContext ::= [l �→ C, l1 �→ M1, . . . , ln �→ Mn], C ∈ TContext

G ∈ REvalContext ::= [l �→ E, l1 �→ M1, . . . , ln �→ Mn], E ∈ TEvalContext

D denotes a record with bindings of the form li �→ Mi. If l �→ M occurs in a
record, we say the term M is bound to the label l. We use notation l �→ M ∈ D

to indicate that the binding l �→ M occurs in D. L(D) denotes the set of all
labels of D. We assume that all terms in a record are closed, i.e. for any record
D = [l1 �→ M1, ..., ln �→ Mn] we have ∪n

i=1FV (Mi) = ∅. Recall that labels are
separate from variables and are not included in FV (M).

The following is an example of a record: [l1 �→ 2 + 3, l2 �→ λx.x, l3 �→ l2 @ l1].
It has three components, labeled by l1, l2, and l3, respectively. The term 2 + 3 is
bound to l1, λx.x is bound to l2, and the component bound to l3 references the first
two by applying one to the other.

Definition 3.2 also introduces two record-level contexts: a general record context
D and record evaluation context G. For instance, [l1 �→ 2 + �, l2 �→ λx.x] is a record-
level evaluation context (and also a general record context since evaluation contexts
are a subset of general contexts). Record-level contexts are filled with terms, not
with records. For instance, one may fill the above context with a term 3 obtaining
the record [l1 �→ 2 + 3, l2 �→ λx.x].

Record components are unordered, i.e two records that differ only in the order
of their components are considered equivalent. We define α-renaming of records as
α-renaming of bound variables in their components (recall that records consist of
closed terms). Since records are intended to be embedded in larger systems, such as
program modules, record components may be referenced from outside of a record.

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162150

Thus there is no label renaming analogous to α-renaming of terms 2 .

3.1 Calculus Relations

Both levels of the calculus follow the call-by-name reduction strategy. We define
a rewriting relation → (which we also call reduction) and evaluation relation ⇒
at the two levels of the calculus in definitions 3.3 and 3.5 respectively. Intuitively,
the reduction relation represents transformations (i.e. “optimizations”) of terms and
records, and the evaluation relation represents the way records are evaluated at run-
time by an evaluation engine (such as an interpreter). As discussed in section 5.1,
the meaning of a record is defined by the result (called the outcome) of its evaluation.

At a more technical level, the difference between the two relations is that the
rewriting relation reduces a redex in any context, while the evaluation reduces a
redex in an evaluation context.

Definition 3.3 (Relations at the Term Level) The rewriting relation → and
the evaluation relation ⇒ at the term level are defined as follows:

(λx.M) @ N � M [x := N] (β)

c1 + c2 � c3 where c3 is the result of the operation + (op)

E{R} ⇒ E{Q} where R � Q

C{R} → C{Q} where R � Q

The � arrow denotes the “elementary” reduction, i.e. the basic operations at the
term level of the calculus: a call-by-name β-reduction (M [x := N] stands for the
result of the capture-free substitution of N for x in M) and an operation (op)
that replaces an operation on two constants by their result, also a constant. The
rewriting relation → can perform an elementary reduction in any context C, i.e.
anywhere inside a term. The evaluation step ⇒ performs the same operations but
only in an evaluation context. TEvalContext ⊆ TContext implies ⇒ ⊆ →.

The term that is α-equivalent to the left-hand side of an elementary reduction
rule is called a term redex. R denotes redexes. Intuitively, a redex is the subterm
that gets reduced by the reduction. The redex is enclosed in a context that remains
unchanged by the reduction 3 . As an example, in the reduction λx.2+3 → λx.5 the
redex is 2+3 and the context is λx.�. In the evaluation step 1+(λx.x) @ 3 ⇒ 1+3
the redex is (λx.x) @ 3 and the context is 1 + �.

When writing C1{M1} = C2{M2} we assume that we chose syntactically equiv-
alent representatives of the α-equivalence classes of C1{M1} and C2{M2}. See [8]
for details.

2 It is possible to add hidden components to records that cannot be referenced from outside of a record (see
[10]). Records then are identified up to renaming of hidden labels. However, here we focus on computational
soundness of mutually recursive components which is independent from the issue of hidden labels.
3 More precisely, it is possible to find such representatives M, N in the two respective α-equivalence classes
that M → N by reducing the given redex in the given context, and the context remains unchanged.

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162 151

Lemma 3.4 states that a term may have at most one redex in an evaluation
context or at most one label in such a context, but not both.

Lemma 3.4 If E1{R1} = E2{R2}, where R1, R2 are redexes, then E1 = E2 and
R1 = R2. If M = E1{l1} = E2{l2} then E1 = E2 and l1 = l2 and M �= E{R} for
any E and R.

3.1.1 Relations at the level of records.
Following the call-by-name strategy, both a reduction of a record component and a
substitution from one component into another one may copy an unevaluated term.

Definition 3.5 (Relations at the Level of Records)

D{R} → D{Q} where R � Q (T)

D{l} → D{N} where l �→ N ∈ D{l}, D �= [l �→ E, . . .] (S)

G{R} ⇒ G{Q} where R � Q (TE)

G{l} ⇒ G{N} where l �→ N ∈ G{l}, G �= [l �→ E, . . .] (SE)

[l1 �→ E{l1}, ...] ⇒ [l1 �→ •, ...] (B1)

[l1 �→ E{•}, ...] ⇒ [l1 �→ •, ...] (B2)

Definition 3.5 gives three kinds of reductions on records, two of which have an
evaluation and a rewriting version. A term reduction simply reduces a term redex
in one of the record’s components. It is a rewriting step (see rule T) when it happens
in a general context and an evaluation step (rule TE) when it is in an evaluation
context. For example, [l1 �→ λx.2 + 3] → [l1 �→ λx.5] is a rewriting step, but not an
evaluation step. Such steps are called non-evaluation steps (see Definition 3.6).

Substitution replaces a label occurring in a component of a record by the term
bound to that label in the record. Analogously to the term reduction, the substi-
tution is a rewriting step (rule S) if the label occurs in a general context, and an
evaluation step (rule SE) if it occurs in an evaluation context.

For example, [l1 �→ 2 + 3, l2 �→ l1 + 1] ⇒ [l1 �→ 2 + 3, l2 �→ (2 + 3) + 1] is an
evaluation step since � + 1 is an evaluation context. The following substitution is
a reduction, but not an evaluation step, since l1 appears under a lambda: [l1 �→
2 + 3, l2 �→ λx.l1] → [l1 �→ 2 + 3, l2 �→ λx.(2 + 3)]. Note that, just like a term
reduction, the substitution is call-by-name: the term that gets substituted does not
have to be evaluated first.

The side conditions D, G �= [l �→ E, . . .] eliminate an ambiguity between substi-
tution and the black hole rule (B1) by preventing a substitution into a label that
directly depends on itself in an evaluation context. For instance, the following sub-
stitution is not allowed: [l1 �→ l1 + 1] ⇒ [l1 �→ l1 + 1 + 1], the rule (B1) is applied
instead (see below).

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162152

A black hole symbol • denotes apparent infinite substitution cycles that cannot be
meaningfully evaluated. The rule (B1) introduces a black hole to replace a label that
depends on itself in an evaluation context. For instance, [l1 �→ l1 + 1] ⇒ [l1 �→ •]
instead of an infinite substitution [l1 �→ l1 + 1] ⇒ [l1 �→ l1 + 1 + 1] ⇒ . . . The
notion of a black hole was first introduced in [3]. In this work it is essential for
confluence of ⇒ on records.

The rule (B2) turns a component that depends on a black hole into a black hole:
[l1 �→ •, l2 �→ l1 + 1] S=⇒ [l1 �→ •, l2 �→ • + 1] B2=⇒ [l1 �→ •, l2 �→ •].

The black hole rules do not have analogous non-evaluation rules since a self-
dependency in a non-evaluation context may be a legitimate recursion and does not
always lead to infinite substitution cycle or it may be eliminated during evaluation.

Definition 3.6 (Non-evaluation Relation and Closures) The following nota-
tions are used at both the term and the record level:

(i) A non-evaluation relation ↪→ is defined as ↪→ = → \ ⇒.

(ii) →∗, ⇒∗, ↪→∗ denote reflexive transitive closures of the respective relations; ↔,
n↔ denote the reflexive symmetric transitive closures of → and ↪→, respectively.

The non-evaluation relation ↪→ can be equivalently defined as a reduction in a non-
evaluation context.

A normal form of a term with respect to a relation R is a term that cannot be
further reduced by R. The definition is applicable to both terms and records.

Definition 3.7 (Normal Form) Given a relation R on a set of terms, a normal
form with respect to (w.r.t.) R is a term M for which there is no M ′ such that
MRM ′. The predicate nfR(M) is true if M is a normal form w.r.t. R and false
otherwise. A term N is an R-normal form of M if MR∗N and nfR(N).

4 Confluence of Evaluation

It follows from Lemma 3.4 that there is at most one evaluation step in any record
component. For instance, if a component is of the form E{R}, i.e. it has a term
evaluation redex, it may not have a label in an evaluation context.

However, there is no ordering on components in a record, so any component that
has a term or a substitution redex may be evaluated. Thus it is possible to have
multiple evaluation steps originating at the same record:

[l1 �→ 2 + 3, l2 �→ l1 + 1] ⇒ [l1 �→ 5, l2 �→ l1 + 1]

[l1 �→ 2 + 3, l2 �→ l1 + 1] ⇒ [l1 �→ 2 + 3, l2 �→ 2 + 3 + 1]

This flexibility opens a way for modeling separate compilation and evaluation of
modules: evaluation of known components may start before the entire record be-
comes available.

Lemma 4.1 (Confluence of Evaluation) ⇒ is confluent on records.

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162 153

Proof. Case analysis on pairs of evaluation redexes shows that evaluation satisfies
the strip lemma (see [5], Ch. 11) which implies confluence. See [9] for details 4 . �

The presence of a black hole in the calculus is essential for confluence of eval-
uation. Consider the following record: [l1 �→ 2 + l2, l2 �→ l1 + 1]. Note that both
labels are in evaluation contexts in both components. Without a black hole the
substitution into the first component would yield [l1 �→ 2 + l1 + 1, l2 �→ l1 + 1], sub-
stitution into the second component gives [l1 �→ 2 + l2, l2 �→ 2 + l2 + 1]. In the first
resulting record both components reference l1, in the second one they both reference
l2, and any subsequent substitutions preserve these properties. This is a variation
of a famous non-confluence example introduced in [3].

However, a black hole allows us to bring these two records together by a sequence
of evaluation steps since both labels appear in an evaluation context, and thus
represent an infinite cycle of substitutions:

[l1 �→ 2 + l1 + 1, l2 �→ l1 + 1] ⇒
[l1 �→ •, l2 �→ l1 + 1] ⇒
[l1 �→ •, l2 �→ • + 1] ⇒
[l1 �→ •, l2 �→ •]

The record [l1 �→ 2 + l2, l2 �→ 2 + l2 + 1] also evaluates to [l1 �→ •, l2 �→ •].
Confluence of evaluation guarantees uniqueness of a normal form w.r.t. ⇒ if

a term has one. We also prove that a record may not have a normal form and
diverge at the same time (this property, known as uniform normalization, is not
automatically implied by confluence).

Lemma 4.2 If D ⇒∗ D′, nf⇒(D′), and no component in D′ is bound to •, then
there is no infinite sequence D ⇒ D1 ⇒ D2 ⇒∗

4.1 An Efficient Evaluation Strategy

Confluence of evaluation guarantees that no matter what path an evaluation of a
record takes, all of the resulting records can be evaluated to the same record. We
do not want to fix the order of evaluating components since we would like to have
the flexibility of modeling systems where progress can be made on evaluating a
record before all of its components become available or where components may be
evaluated in parallel.

However, for proving properties of our calculus it is convenient to impose a
particular order of evaluation that we call efficient evaluation strategy. Intuitively,
this strategy requires that if a component bound to l1 needs a component bound
to l2 (i.e. the component bound to l1 is of the form E{l2}) then the term bound to
l2 must be completely evaluated (i.e. it has neither term redexes nor substitution

4 The black hole rules in the system in [9] differ slightly from the rules presented here. However, the
difference does not affect the essence of the proof.

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162154

redexes) before the substitution into the component bound to l1 is made. This
strategy imposes a partial order on components. The process stops if it discovers a
cycle of mutual evaluation dependencies.

The formal definition depends on the partial function next(D, l) that defines the
label of the component in which the next evaluation step takes place in order to
make progress on evaluation of the component bound to l in D.

Definition 4.3 (Next Component To Be Evaluated) Let l �→ M ∈ D. A
function next(D, l) : RTerm × L(D) → L(D) ∪ {•} is defined as follows:

(i) If M = E{R} then next(D, l) = l,

(ii) If M = E{•} or M = E{l} then next(D, l) = •,
(iii) If M = E{l′} then:

(a) If next(D, l′) is undefined, next(D, l) = l,
(b) If next(D, l′) = • or l′ is bound to E

′{l} or there is a sequence of labels
l1, . . . , ln ∈ L(D), n ≥ 1, such that D is of the form

[l �→ E{l′}, l′ �→ E1{l1}, . . . , li �→ Ei{li+1}, . . . , ln �→ En{l}, . . .]

then next(D, l) = •,
(c) Otherwise next(D, l) = next(D, l′).

(iv) Otherwise next(D, l) is undefined.

If next(D, l) is undefined then the component bound to l is fully evaluated.
Let L denote an ordered sequence of distinct labels; L1 � L2 means that L1 is

a prefix of L2 or L1 = L2. An efficient evaluation strategy follows the sequence of
labels in L as a sequence of “goals”.

Definition 4.4 (Efficient Evaluation Strategy) Given a record D and a label
l, an efficient evaluation strategy starting at l is a sequence of evaluation steps
D1 ⇒ D2 ⇒ . . . ⇒ Dn s.t. for all i < n next(Di, l) is defined and not equal to •
and an evaluation step Di ⇒ Di+1 evaluates the component bound to next(Di, l).

We denote this sequence as D
l

⇒∗
e

Dn.

Given a sequence L = l1, l2, . . . ln s.t. li ∈ L(D) for all i, an efficient strategy

w.r.t. L is a sequence D
l1⇒∗
e

D1

l2⇒∗
e

. . .
ln⇒∗
e

Dn s.t. next(Di, lj) is undefined for all

j < i for 1 ≤ i ≤ n (i.e. each component lj in L is fully evaluated before evaluation
of li starts). Note that it is possible that next(Dn, ln) is not undefined. An efficient

strategy w.r.t. L is denoted
L
⇒∗

e
.

The efficient evaluation strategy stops if it discovers that a record component eval-
uates to a black hole since such records represent divergence (see Definition 5.2).
Thus, if next(D, l) = •, no evaluation takes place.

The strategy is called “efficient” because it evaluates a component only once - the
first time it is needed. Since no unevaluated components are copied, no computation
is duplicated. This is similar to a call-by-value or a call-by-need strategy. However,

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162 155

unlike the call-by-value strategy, it does not require that a component evaluates
to a value before it can be substituted (traditionally only constants, variables, and
λ-abstractions are considered values), only to a substitution-free normal form which
includes errors. If a record D evaluates to a normal form D′ then efficient evaluation
strategy with any choice of L that includes all labels in L(D) reaches D′. The
strategy detects cycles of substitution as early as possible since the evaluation follows
component dependencies as far as possible before evaluating any of them.

Below is an evaluation sequence that follows the efficient strategy w.r.t. l1. On
the left on line i we show the value of next(Di, l1). For simplicity we write just
next(l) instead of next(D, l) since the record on each line is obvious.

next(l1) = l3 [l1 �→ l2, l2 �→ l3 + 2, l3 �→ 1 + 3] ⇒
next(l1) = l2 [l1 �→ l2, l2 �→ l3 + 2, l3 �→ 4] ⇒
next(l1) = l2 [l1 �→ l2, l2 �→ 4 + 2, l3 �→ 4] ⇒
next(l1) = l1 [l1 �→ l2, l2 �→ 6, l3 �→ 4] ⇒
next(l1) is undefined [l1 �→ 6, l2 �→ 6, l3 �→ 4]

In contrast the step below does not follow the efficient strategy: the redex l3 + 2 is
duplicated so it will have to be evaluated twice, possibly duplicating evaluation of
1 + 3 as well. Note, however, that the record eventually evaluates to the same one
as in the efficient evaluation sequence above.

[l1 �→ l2, l2 �→ l3 + 2, l3 �→ 1 + 3] ⇒
[l1 �→ l3 + 2, l2 �→ l3 + 2, l3 �→ 1 + 3] ⇒ . . .

If a record D has a normal form in which no component is bound to a black
hole, it is possible to reach the normal form using an efficient evaluation strategy
with any sequence L that includes all labels in L(D) (see [8] for the proof).

5 Computational Soundness of the Calculus

5.1 Definition of Computational Soundness

Computational soundness states that rewriting relation in the calculus preserves the
meaning of terms. A term’s meaning is given by its normal form w.r.t. evaluation
relation if such a normal form exists, otherwise the “meaning” is divergence. The
notion of outcome in Definition 5.2 formalizes this idea. Some normal forms may
be syntactically different, but have the same “meaning”. The classification function
(Definition 5.1) groups terms based on their “meaning”.

5.1.1 Classification function.
In order to define a term’s meaning, we partition all terms into equivalence classes.
The function that assigns a class to a term is called a classification (the term first

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162156

introduced in [7]). Two elements of the same class have the same meaning (however,
they may be further distinguished by supplying a context that uses them). For
instance, at the term level it is reasonable to make constants 2 and 3 be in different
classes since their meaning is clearly different. However, it is common to group all
lambda abstractions in the same class since a function by itself is not distinguishable
from any other function until it is applied.

It is possible to define different classification functions for the same calculus. For
instance, one may wish to distinguish between different types of errors by further
subdividing the error class. On the other hand, if one is only concerned with prov-
ing termination equivalence then all normal forms may be placed into one class 5 . A
calculus may be computationally sound for one choice of classification and unsound
for another.

The classification function used in this work is defined in Definition 5.1. For
simplicity we use the same notation Cl for the classification function at both levels
of the calculus. This function is very similar to the one used in [7], except for the
inclusion of a black hole. Since record components contain only closed terms, we
do not have term-level classes for variables: a label bound to a variable would be
considered an error. The function is well-defined on α-equivalence classes both at
the term and at the record level.

Definition 5.1 (Classification) The classification function Cl : TTerm ∪
RTerm → S, where S is a set of equivalence classes, is defined as follows:

• Cl(M) = eval if M = E{R}, R is a redex. Such terms are called evaluatable.
• Cl(c) = const(c), where const(c1) = const(c2) if and only if c1 = c2

• Cl(•) = •
• Cl(λx.N) = abs
• Cl(E{l}) = stuck(l), where stuck(l1) = stuck(l2) if and only if l1 = l2

• Cl(M) = error if M does not belong to any of the above categories
• Cl([l1 �→ M1, . . . ln �→ Mn]) = [l1 �→ Cl(M1), . . . ln �→ Cl(Mn)] if Cl(Mi) �= • for

all i s.t. 1 ≤ i ≤ n

• Cl([. . . , li �→ •, . . .]) = ⊥
An equivalence class of a record D with no label bound to a black hole is an
unordered collection of labeled term-level classes corresponding to components of
D. For instance, Cl([l1 �→ λx.x, l2 �→ l1 @ 1]) = [l1 �→ abs, l2 �→ stuck(l1)].

Since a black hole represents an infinite substitution, the class of a record with
a black-hole-bound component is ⊥. Note that a record with a black hole in a
non-evaluation context does not necessarily diverge, and thus is not classified as ⊥:
consider [l �→ (λx.1) @ •] ⇒ [l �→ 1], the latter record is a normal form.

The following property, called class preservation, is important for proving com-
putational soundness: if D1 ↪→ D2 (recall Definition 3.6) then Cl(D1) = Cl(D2).

The above classification groups all abstractions in one class. However, this does

5 Records with at least one component bound to a black hole should be classified as diverging

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162 157

not mean that replacing an abstraction by any other one may be considered mean-
ing preserving. One can always distinguish two semantically different abstractions
by considering them in a record with a term that applies the abstraction to an ar-
gument. A transformation is provably meaning preserving if its results are the same
no matter what other components appear in a record. Since we can assume that
any abstraction bound to a label is applied to arbitrary terms in other components,
transformations must preserve the actual behavior of abstractions. [7] formalizes
this notion via record contexts which we do not present here due to lack of space.

5.1.2 Outcome and Computational Soundness.
Classification characterizes a record at a given moment, while outcome characterizes
its “ultimate fate” - what happens to it if it gets evaluated as far as possible.

Definition 5.2 (Outcome) The outcome of a record D, denoted Outcome(D), is
Cl(D′) where D′ is the normal form of D w.r.t. ⇒ if D has a normal form or a
symbol ⊥ if evaluation of D diverges.

Lemmas 4.1 and 4.2 guarantee that the outcome is well-defined since every record
either has a unique normal form or diverges on all evaluation paths (we identify a
label bound to a black hole with divergence). The outcome formalizes the notion
that the meaning of a term is the result of its evaluation.

Definition 5.3 (Meaning Preservation and Computational Soundness) A
relation R is meaning preserving if MRN implies that Outcome(M) = Outcome(N).
A calculus is computationally sound if ↔ is meaning preserving.

By confluence and uniform normalization (Lemma 4.1, 4.2) ⇒ is meaning preserving.

5.2 Proof Methods and Their Applicability

Historically various methods have been used for proving computational soundness.
Plotkin’s method in [11] requires confluence of the rewriting relation in the calcu-
lus. However, many recently developed calculi model such inherently non-confluent
features of programming languages as mutually dependent components. The reper-
toire of proof methods has been expanded to relax requirements on the calculus. In
this section we review some of these proof methods and discuss why they are not
applicable to our calculus.

Failure of Confluence and Standardization Method. The traditional
method for computational soundness proofs has three requirements: confluence of
the rewriting relation, standardization (a property that relates the rewriting rela-
tion and the evaluation relation), and the class preservation property defined in
Section 5.1.1 (see [7] for detailed discussion). However, in our system → is non-
confluent. The non-confluence example below is based on that in [3]. It also appears
in the call-by-value version of our calculus described in [7,10]. Recall that confluence
is preserved when both reductions are evaluation steps, see section 4.

Example 5.4 Consider a record [l1 �→ λx.l2, l2 �→ λy.l1]. By reducing each of the
two redexes we obtain these two records: [l1 �→ λx.λy.l1, l2 �→ λy.l1] and [l1 �→

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162158

D1
∗����� ���

��

��

D4��

∗���
�
� D1

∗��
��

��

D2
∗����� ��� D4��

∗���
�
�

D2
∗�� D3 D3

∗��������� ������� D5

Fig. 1. Lift and Project properties.

λx.l2, l2 �→ λy.λx.l2]. The only reductions that can originate from these records
are substitutions. No matter what substitutions we perform on the records, they
cannot be reduced to a common one since in the first one both components always
reference l1, and in the second record they reference l2.

Failure of Lift and Project Method. In [7,10] we use an approach based
on three properties of the calculus: the lift, and project properties defined in Def-
inition 5.5, and the class preservation property in Section 5.1.1 to prove compu-
tational soundness of a call-by-value calculus of recursively-scoped records. The
project property “projects” a given evaluation sequence down, and the lift property
“lifts” a given sequence up, according to the diagram layout in Figure 1 6 .

Definition 5.5 (Lift and Project) A calculus has the lift property if, given
D1 ↪→ D2 ⇒∗ D3, there exists D4 s.t. D1 ⇒∗ D4 ↪→∗ D3. A calculus has
the project property if, given D1 ⇒∗ D2 and D1 ↪→ D3, there exist D4, D5 s.t.
D2 ⇒∗ D4 ↪→∗ D5 and D3 ⇒∗ D5.

Even though the current system is very similar to the one considered in [7,10],
the call-by-name nature of substitution breaks the lift and the project properties, as
shown by the following counterexample. The right hand side non-evaluation arrow
pointing up contradicts the properties.

[l1 �→ 2 + 3, l2 �→ λx.l1] ��
��

[l1 �→ 5, l2 �→ λx.l1]��

��

��
[l1 �→ 5, l2 �→ λx.5]

[l1 �→ 2 + 3, l2 �→ λx.2 + 3] �� [l1 �→ 5, l2 �→ λx.2 + 3]
��
��

Applicability of Other Diagram-Based Methods. The lift and project
method has been extended and generalized in [14]. While it is possible that a form
of the approach presented there, known as lift/project when terminating (or LPT),
is applicable, we have not been able to construct such a proof.

A black hole, which is technically a normal form, may require a modification
of the LPT approach. In our system a non-evaluation step may convert a record
with a component evaluating to black hole to a diverging record, as shown below.
Diagram-based methods generally do not equate diverging terms with normal forms.

6 In diagrams double arrows represent ⇒, single arrows →, arrows with a hook are ↪→. Solid arrows are
the given relations, dashed arrows are the ones claimed to exist. See Definition 3.6 for closure notations.

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162 159

Note that the outcome of both records is ⊥ so the meaning is preserved.

[l1 �→ l2 @ 2, l2 �→ λx.l1] ⇒ [l1 �→ (λx.l1) @ 2, l2 �→ λx.l1] ⇒
[l1 �→ l1, l2 �→ λx.l1] ⇒∗ [l1 �→ •, l2 �→ λx.l1]

[l1 �→ l2 @ 2, l2 �→ λx.l2 @ 2] ⇒ [l1 �→ (λx.l2 @ 2) @ 2, l2 �→ λx.l2 @ 2] ⇒
[l1 �→ l2 @ 2, l2 �→ λx.l2 @ 2] ⇒ . . .

5.3 Context-Based Proof of Computational Soundness

Meaning Preservation of the Term Reduction. The meaning preservation
property of a term reduction can be proven using the lift and project approach with
the machinery of marked redexes and residuals. The proof is similar to that for the
call-by-value calculus in [7]. See [8] for details.

Meaning Preservation of Substitution. We show that substitution pre-
serves the outcome of a record. A key idea of the proof is to use the efficient
evaluation strategy (see Definition 4.4) to guarantee that each component is only
evaluated only once, the first time it is needed.

Definition 5.6 (Multi-hole contexts) A multi-hole context M is defined as

M ::= � | M | λx.M | M + M | M @ M

Contexts M are filled with terms in the same manner as single-hole contexts.
Multi-hole contexts allow us to formalize the notion that two records differ only

by replacing some occurrences of a term M1 by M2.

Definition 5.7 A record D1 is called (M1, M2)-similar to a record D2 (denoted
D1 ∼M1

M2
D2) if there exist multi-hole contexts M1, . . . , Mn s.t.

D1 = [l1 �→ M1{M1, . . . , M1}, . . . , ln �→ Mn{M1, . . . , M1}],
D2 = [l1 �→ M1{M2, . . . , M2}, . . . , ln �→ Mn{M2, . . . , M2}].

Lemma 5.8 (see Figure 2) Let D1 = [l �→ M, l′ �→ N{l}, . . .] S
↪→ [l �→ M, l′ �→

N{M}, . . .] = D2 and D1 ⇒∗ D′
1 (recall that N is a non-evaluation context) and let

L � l, l′, l1, . . . , ln, where l1 . . . ln is a sequence of labels in L(D1), n ≥ 0, and l �= li,
l′ �= li for all 1 ≤ i ≤ n. It is possible that l = l′. Then

• If D1

L
⇒∗

e
D′

1 then there exists D′
2 s.t. D2

L
⇒∗

e
D′

2, D′
1 ∼l

M D′
2, and

Outcome(D′
1) = ⊥ if and only if Outcome(D′

2) = ⊥.

• If D2

L
⇒∗

e
D′

2 then there exist D′
1, D

′′
2 s.t. D1

L
⇒∗

e
D′

1 and D′
2

ln⇒∗
e

D′′
2 , D′′

2 ∼l
M D′

1,

and Outcome(D′
1) = ⊥ if and only if Outcome(D′

2) = ⊥.

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162160

D1��

��

∗�� D′
1

∼l
M��

��
��

D1��

��

∗��������� ������� D′
1

∼l
M��

��
��

D2
∗����� ��� D′

2 D2
∗�� D′

2
∗����� ��� D′′

2

Fig. 2. Lemma 5.8: (l, M)-similarity (denoted by a wave-like line) preserved by ⇒

Lemma 5.8 states the key property for meaning preservation of a substitution
step: the original and the transformed records remain (l, M)-similar after any num-
ber of steps in the evaluation sequence that follows the efficient strategy with the
sequence of labels given in the lemma.

The efficient evaluation strategy guarantees that every component gets evaluated
to a normal form before it gets substituted into any other component. The strategy
attempts to evaluate the term M (bound to l) in both records. By Lemma 5.8 if
such an evaluation terminates with a black-hole-free term in one record, it does so in
the other. In this case all components needed for evaluating M have been evaluated
as well, so future evaluation of M gives the same result. In an example below
the initial substitution occurs in the second component, and evaluating l requires
evaluating l′′; the corresponding records in the two sequences are (l, l′′ + 2)-similar:

[l �→ l′′ + 2, l′ �→ (λx.l) @ 1, l′′ �→ 3 + 1] ⇒∗ [l �→ 6, l′ �→ (λx.l) @ 1, l′′ �→ 4]

[l �→ l′′ + 2, l′ �→ (λx.l′′ + 2) @ 1, l′′ �→ 3 + 1] ⇒∗ [l �→ 6, l′ �→ (λx.l′′ + 2) @ 1, l′′ �→ 4]

The sequences continue with (l, l′′+2)-similar records until both arrive at an identi-
cal result [l �→ 6, l′ �→ 6, l′′ �→ 4]. See [8] for other cases of component dependencies.

We show that if two normal forms D1, D2 are (l, M)-similar then Cl(D1) =
Cl(D2). Thus non-evaluation substitution preserves the outcome.

Evaluation steps preserve the outcome since ⇒ is confluent. We have shown
that both a term reduction non-evaluation step and a non-evaluation substitution
preserve the outcome. Thus we have the desired computational soundness result:

Theorem 5.9 If D1 ↔ D2 then Outcome(D1) = Outcome(D2).

6 Conclusions and Future Work

We have proven that the call-by-name calculus of recursively-scoped records is com-
putationally sound. Our system captures the essential features of mutually recursive
components. We plan to study applicability of our proof method to more complex
systems with possible cyclic dependencies, such as letrec calculi and more sophis-
ticated systems that model modules and linking. We will also investigate how the
context method compares to other methods of proving computational soundness.

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162 161

Acknowledgement

Many thanks to Emily Christiansen who participated in the early stages of this
research, to Dr. Manfred Schmidt-Schauß for helpful discussions, to Dr. Franklyn
Turbak and Dr. Nicholas McPhee for detailed feedback on drafts of this paper, and
to anonymous WRS reviewers for many helpful comments.

References

[1] Davide Ancona and Elena Zucca: A calculus of module systems. Vol. 12, 2002, pp. 91-132.

[2] Z. M. Ariola, Stefan Blom: Skew confluence and the lambda calculus with letrec. Annals of pure and
applied logic 117/1-3, 97-170, 2002

[3] Z. M. Ariola and J. W. Klop: Equational Term Graph Rewriting. Fundamentae Informaticae, Vol. 26,
Nrs. 3,4, June 1996. p. 207-240.

[4] Z. M. Ariola, J. W. Klop: Lambda calculus with explicit recursion. Journal of Information and
Computation, Vol. 139 (2): 154-233, 1997.

[5] H. P. Barendregt: The Lambda Calculus, its Syntax and semantics. Studies in Logic, volume 103, Elsevier
Science Publishers, 1984.

[6] Sonia Fagorzi and Elena Zucca: A Calculus for Reconfiguration: (Extended abstract). Electr. Notes
Theor. Comput. Sci., Vol. 135, N. 3, 2006, pp. 49-59.

[7] E. Machkasova: Computational Soundness of Non-Confluent Calculi with Applications to Modules and
Linking, Ph.D. dissertation, April 2002, Boston University

[8] E. Machkasova: Computational Soundness of a Call by Name Calculus of Recursively-scoped Records.
Working Papers Series, University of Minnesota, Morris, Volume 2 Number 3, 2007. Available at
http://cda.morris.umn.edu/eelenam/

[9] E. Machkasova, E. Christiansen: Call-by-name Calculus of Records and its Basic Properties. Working
Papers Series, University of Minnesota, Morris, Volume 2 Number 2, 2006 (updated 2007). Available at
http://cda.morris.umn.edu/eelenam/

[10] E. Machkasova, F. Turbak: A calculus for link-time compilation. In Programming Languages & Systems,
9th European Symp. Programming, volume 1782 of LNCS, pages 260-274 Springer-Verlag, 2000

[11] G. D. Plotkin: Call-by-name, call-by-value and the lambda calculus. Theoret. Comput. Sci., 1, 1975.

[12] M. Schmidt-Schauß: Correctness of copy in calculi with letrec, case and constructors. Frank report 28,
Institut für Informatik. Fachbereich Informatik und Mathematik. J. W. Goethe-Universität Frankfurt
am Main, February 2007.

[13] Manfred Schmidt-Schauß and Michael Huber: A lambda-calculus with letrec, case, constructors and
non-determinism. In First International Workshop on Rule-Based Programming, 2000.

[14] J. B. Wells, Detlef Plump, and Fairouz Kamareddine: Diagrams for meaning preservation. In Rewriting
Techniques & Applications, 14th Int’l Conf., RTA 2003, volume 2706 of LNCS, pp. 88-106. Springer-
Verlag, 2003

[15] J. B. Wells and René Vestergaard: Equational reasoning for linking with first-class primitive modules. In
Programming Languages & Systems, 9th European Symp. Programming, volume 1782 of LNCS, pages
412-428. Springer-Verlag, 2000.

E. Machkasova / Electronic Notes in Theoretical Computer Science 204 (2008) 147–162162

	Introduction
	Related Work
	Call-by-Name Calculus of Records
	Calculus Relations

	Confluence of Evaluation
	An Efficient Evaluation Strategy

	Computational Soundness of the Calculus
	Definition of Computational Soundness
	Proof Methods and Their Applicability
	Context-Based Proof of Computational Soundness

	Conclusions and Future Work
	Acknowledgement
	References

