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SUMMARY

The heat shock protein HSP70 plays antiapoptotic
and oncogenic roles, and thus its inhibition has
been recognized as a potential avenue for anticancer
therapy. Here we describe the small molecule, apop-
tozole (Az), which inhibits the ATPase activity of
HSP70 by binding to its ATPase domain and, as a
result, induces an array of apoptotic phenotypes in
cancer cells. Affinity chromatography provides evi-
dence that Az binds HSP70 but not other types of
heat shock proteins including HSP40, HSP60, and
HSP90. We also demonstrate that Az induces cancer
cell death via caspase-dependent apoptosis by dis-
rupting the interaction of HSP70with APAF-1. Animal
studies indicate that Az treatment retards tumor
growth in a xenograft mouse model without affecting
mouse viability. These studies suggest that Az will
aid the development of new cancer therapies and
serve as a chemical probe to gain a better under-
standing of the diverse functions of HSP70.

INTRODUCTION

Apoptosis, or programmed cell death, is a fundamental biolog-

ical process which is involved in normal development, regulation

of the immune system, development of the nervous system, and

tissue homeostasis (Baek et al., 2012; Beere, 2005; Newmeyer

and Ferguson-Miller, 2003). A large body of literature indicates

that the heat shock protein 70 (HSP70) family has multiple func-

tions involved in suppression of apoptotic pathways (Ciocca and

Calderwood, 2005; Garrido et al., 2006; Jaattela, 1995; Pocaly

et al., 2006; Volloch and Sherman, 1999). The two major cyto-

solic isoforms of the HSP70 family are HSC70 (a heat shock

cognate 70 protein) and HSP70 (an inducible HSC70 homolog

protein). Whereas HSC70 is constitutively and ubiquitously ex-

pressed, HSP70 is present at relatively low levels in normal cells
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under non-stressful conditions (Daugaard et al., 2007). However,

in response to various stressful stimuli, including heat and oxida-

tive stress, and anticancer agents, the expression level of HSP70

is elevated to protect cells from apoptosis (Lui and Kong, 2007;

Mosser et al., 1997; Plumier et al., 1995; Welch and Suhan,

1986). In addition to its role in the stress response, HSP70 dis-

plays chaperone activities including protein folding, suppression

of the aggregation of denatured proteins, degradation of mis-

folded proteins, protein translocation, and modulation of the

assembly and disassembly of protein complexes (Bukau and

Horwich, 1998; Young et al., 2004).

HSP70 consists of an N-terminal ATPase domain (or nucleo-

tide binding domain) and a C-terminal substrate binding domain

(SBD) that recognizes polypeptide substrates. The two domains

are functionally coupled in such a way that hydrolysis of ATP to

ADP by the ATPase activity of HSP70 results in conformational

changes in the adjacent SBD that lead to an increase in binding

affinities for substrates (Daugaard et al., 2007; Swain et al.,

2007). Normally, the ATP-bound form of HSP70 has relatively

weak affinity for substrates whereas the ADP-bound protein

strongly binds substrates. This feature suggests that ATP hydro-

lysis is a major driving force for the conformational change and

chaperone activity of HSP70.

The expression level of HSP70 is known to increase greatly in

various cancers, a phenomenon that leads to tumor cell survival

via multiple antiapoptotic processes (Ciocca and Calderwood,

2005; Garrido et al., 2006; Pocaly et al., 2006). Overexpression

of HSP70 is correlated with tumor resistance to chemothera-

peutic agents, such as imatinib, cisplatin, and etoposide, and

poor prognosis in multiple forms of cancer (Gabai et al., 2005;

Mosser andMorimoto, 2004; Pocaly et al., 2006). The tumor-pro-

tective effects of HSP70 are particularly noticeable when cancer

cells are treated with inhibitors (e.g. geldanamycin and its deriv-

atives) of HSP90, a potent target for cancer chemotherapy. Spe-

cifically, treatment of cancer cells with these inhibitors results in

production of HSP70, thereby leading to a decrease in the can-

cer cell death effect of HSP90 inhibitors (Bagatell et al., 2000;

Wu, 1995).

Owing to its antiapoptotic and oncogenic functions, HSP70

has become an important target for anticancer therapy. To
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Figure 1. Az Inhibits ATPase Activity of

HSP70 by Binding to its ATPase Domain

(A) Chemical structure of Az and Az-linked resin.

(B) Az-linked resin was incubated with purified full-

length or truncated HSP70. Proteins bound to the

resin were visualized using silver staining.

(C) ATP-agarose resin was incubated with purified

full-length and the ATPase domain of HSP70 in the

absence or presence of 100 mM Az or 1 mM ATP.

Proteins bound to the resin were visualized using

silver staining.

(D) Az-linked resin was incubated with purified

HSP90, HSP70, and HSP40 in the absence and

presence of Az. Proteins bound to the resin were

visualized using silver staining.

(E) Az-linked resin was incubated with HeLa cell

lysates treated with Az for 1 hr. Bound proteins

were analyzed by western blot.
date, several small molecules that bind to HSP70 proteins have

been developed for use as potential therapeutic agents and/or

chemical probes (Evans et al., 2010; Powers and Workman,

2007). For example, 15-deoxyspergualin (15-DSG), which binds

to the C-terminal EEVD domain of HSC70 and HSP90 but not to

HSP70, has immunosuppression and low anticancer activities

(Kaufman et al., 1996; Nadler et al., 1992). However, 15-DSG

has poor bioavailability and its mode of action has not been

well elucidated. Dihydropyrimidine derivatives have also been

identified as an inhibitor of the ATPase activity of HSP70 (Fewell

et al., 2004). Although these substances havemodest anticancer

activities (Koren et al., 2010), further studies are needed to un-

derstand the molecular mechanism of their biological effects.

Phenylethynesulfonamide (PES), which binds to the C terminus

of HSP70 but not to HSC70 and HSP90, has been shown to kill

cancer cells, presumably by disrupting the autophagic process

but not by inducing apoptosis (Leu et al., 2009). Rhodacyanine

MKT-077 has been observed to have antiproliferative activity

against cancer cells by binding in close proximity to the ATP

binding site of HSP70 (Wadhwa et al., 2000). However, the use

of this molecule as a therapeutic agent is limited because of its

rapid metabolism. Although some progress in developing small

molecules that bind to HSP70 has been made, an intense effort

is required to discover more efficacious inhibitors of HSP70 for

cancer therapy and to better understand the diverse functions

of HSP70, including its antiapoptotic role.

We recently identified the novel apoptosis-inducing small

molecule, apoptozole (Az, Figure 1A), which binds to both

HSP70 and HSC70 with similar affinities (Williams et al., 2008b;

Cho et al., 2015). However, the detailed apoptotic effect of

Az on cancer cells and mechanisms underlying Az-induced
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apoptosis have not been elucidated. In

the effort described below, we have un-

covered evidence supporting the conclu-

sion that Az inhibits HSP70 activity by

binding to its ATPase domain, and treat-

ment of cancer cells with this substance

induces an array of apoptotic pheno-

types. The results of cell-based mecha-

nistic studies show that Az blocks the
interaction of HSP70 with APAF-1 (apoptotic peptidase acti-

vating factor 1) without interfering with its binding to ASK1

(apoptosis signal-regulating kinase 1), JNK (c-Jun N-terminal ki-

nase), BAX, and AIF (apoptosis-inducing factor). Consequently,

this substance induces cell death via caspase-dependent

apoptosis. In addition, we have shown that Az greatly retards

tumor growth in mice xenografted with cancer cells without

affecting mouse viability. The combined results arising from

cell experiments and animal studies suggest that Az has the

potential of being used as an antitumor agent.

RESULTS

Az Blocks ATPase Activity of HSP70 by Binding to the
ATPase Domain
The results of previous affinity chromatography studies suggest

that HSP70 (an inducible form) and HSC70 (a constitutive form)

are primary targets of Az (Williams et al., 2008b). As inducible

HSP70 is highly expressed in cancer cells to suppress

apoptosis, the current study focusing on HSP70 was carried

out to elucidate the molecular mechanism of apoptosis induced

by Az. In the initial phase of this effort, we determined which

domain of HSP70 was associated with Az. For this purpose,

full-length and truncated (ATPase domain and SBD) HSP70 pro-

teins were purified in the N-terminal His6-tagged forms (Fig-

ure S1A). The results of affinity chromatography studies using

an Az-linked resin show that the full-length protein and the

ATPase domain bind to the resin, but SBD does not (Figure 1B).

To further demonstrate that Az binds selectively to the ATPase

domain of HSP70, ATP-agarose was incubated with the full-

length protein and the ATPase domain in the absence and



presence of 100 mM Az or 1 mM ATP as a competitor. Whereas

both proteins bind to the ATP-resin in the absence of Az and

ATP, addition of each of these substances leads to a marked

decrease in binding of the proteins to ATP-agarose (Figure 1C).

Next, the ability of Az to inhibit the ATPase activity of HSP70

was evaluated. The results of a malachite green assay (Cho

et al., 2011), which is used to determine monophosphate

released from ATP, show that Az inhibits the ATPase activity of

HSP70 by 32% at 100 mM and 65% at 200 mM in the presence

of 200 mM ATP (Figure S1B).

To examine whether Az binds to other types of heat shock pro-

teins, purified HSP90, HSP70, and HSP40 (Figure S1A) were

individually incubated with an Az-linked resin in the absence

and presence of Az (50 or 100 mM). As the results in Figure 1D

show, while HSP70 binds to the Az-linked resin, HSP90 and

HSP40 do not. In addition, we incubated the Az-linked resin

with HeLa cell lysates in the absence and presence of Az (50

or 100 mM). The results of affinity chromatography show that

HSP60 and HSP90 do not bind to the Az-linked resin (Figure 1E).

Taken together, the observations indicate that Az inhibits the

ATPase activity of HSP70 by binding to its ATPase domain and

that it does not bind to other types of heat shock proteins.

Binding Mode of Az to HSP70
To gain an understanding of the binding mode of Az to HSP70,

nuclear magnetic resonance (NMR) and molecular modeling

studies were performed. Saturation transfer difference (STD)

NMR is a popular ligand-based NMR method used to probe

ligand-protein interactions at atomic resolution (Meyer and Pe-

ters, 2003; Viegas et al., 2011). In particular, this NMR technique

provides ligand-specific binding information. A sample contain-

ing 10 mM ATPase domain of HSP70 and 1 mM Az in 20 mM of

deuterated Tris buffer (pD 7.0) was found to display a reproduc-

ible and well-resolved spectrum. The results of STD NMR data

analysis show that all the benzene ring protons of Az (H7, H8,

H10, H11, H13, H14, H16, and H17) display large STDs (Figures

S2A and S2B), suggesting that they are positioned in close

proximity to the binding site of the protein. However, the H1–

H6 and H9 protons show only a small level of saturation, sug-

gesting that they only slightly contribute to binding to the pro-

tein. These results provide evidence to support the proposal

that Az binds to the ATPase domain of HSP70 presumably

through interactions of its aromatic rings with residues in the

protein binding site.

Two-dimensional (2D) 1H-1H NOESY NMR experiments were

conducted to gain information about the conformation of un-

bound Az. The NMR data yielded a range of conformations of

this substance (Figures S2C and S2D), which were then sub-

jected to computational analysis to elucidate the low energy

conformation of free Az (Figure S2E). The conformational infor-

mation and STD NMR data were utilized for molecular docking

studies with HSP70 (PDB code 4IO8, a VER-155008 complex

form; and PDB code 2E8A, an AMP-PNP [adenylyl-imidodiphos-

phate, a non-hydrolyzable analog of ATP] bound form) to obtain

a more detailed view of the binding mode of Az to HSP70 (Cho

et al., 2011; Schlecht et al., 2013; Shida et al., 2010). The results

of a molecular modeling study show that Az adopts a conforma-

tion that is closely overlaid with AMP-PNP in the ATP binding site

of HSP70 (Figure 2A). Specifically, the 3,5-bis(trifluoromethyl)
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phenyl group of Az interacts with residues in the site that bind

to the phosphate moiety of AMP-PNP through polar interactions

(Muller et al., 2007), and the 4-methoxyphenyl moiety at the R2

position of Az is positioned in the adenine binding site of the pro-

tein where it interacts with the side chain of Ser275 via hydrogen

bonding. On the other hand, the 4-methoxyphenyl group at R3 in

Az interacts with the side chain of Arg272 via the cation-p inter-

action and a benzyl group in Az via thep-p interaction. The com-

bined results suggest that Az binds to the ATP binding site of

HSP70 in a manner similar to that previously observed for its

binding to HSC70, which has a high sequence and structural

homology with HSP70 (Cho et al., 2011).

In an effort to understand the structural features responsible

for inhibition of the ATPase activity of HSP70 by Az, 15 members

(1–15) of a focused imidazole library were prepared using solid

support and solution-based methods (Figure 2B) (Kim et al.,

2014; Williams et al., 2007, 2008a, 2008b). Effects of the Az

analogs on inhibition of the ATPase activity of HSP70 were

evaluated using a malachite green assay (Figure 2C). The results

show that 1 and 4, which contain two electron withdrawing

groups (CF3 or CO2Me) on a phenyl group at R1, display higher

inhibitory activities than analogs with electron donating (5–7) or

single electron withdrawing groups (2, 3). This finding suggests

that the R1 moiety of Az is likely located at the binding site of a

phosphate moiety of ATP in HSP70 for polar interactions (vide

supra).

Imidazole derivatives 8 and 9, in which 4-methoxy groups

present at R2 and R3 positions in Az are replaced by electron

withdrawing groups (Cl or Br), display lower inhibitory activities

than Az or 10, which possesses electron donating 4-methyl

groups. This phenomenon could be explained by the reduced

cation-p interaction between an R3 moiety and the side chain

of Arg272. However, a derivative 11with 4-dimethylaminophenyl

groups at these positions exhibits a lower inhibitory activity than

Az, a possible result of steric hindrance between R2 and the

binding site of the protein. This proposal is supported by the

observation that 12–14 containing large fused aromatic rings at

R2 have low inhibitory activities. When the NH(CH2)2O(CH2)2NH2

moiety in Az is replaced by NH2 (see 15), the inhibitory activity is

slightly attenuated, suggesting that NH(CH2)2O(CH2)2NH2 is

involved in the interaction of Az with the protein to a certain

extent, as shown in STDNMRdata. Overall, Az displays the high-

est ATPase inhibitory activity among the tested compounds.

Furthermore, this structure-activity relationship study suggests

that although the size and position of substituents attached to

phenyl rings in Az affect binding to HSP70, incorporation of elec-

tron withdrawing groups at R1 and electron donating groups

at R2 and R3 are required to sustain inhibitory activity toward

HSP70.

Az Induces Apoptosis in Cancer Cells
Previous studies have served to show that HSP70 acts as an anti-

apoptotic protein to promote cancer cell survival (Powers and

Workman, 2007). To investigate the effect of Az on cancer cell

viability, several cancer cell lines (A549, lung adenocarcinoma

epithelial cells; HeLa, cervical cancer cells;MDA-MB-231, breast

cancer cells; HepG2, liver cancer cells) were treated with various

concentrations (0–15 mM) of Az or compound 7 as a negative

control for 18 hr. Cell viabilities were then determined using
91–403, March 19, 2015 ª2015 Elsevier Ltd All rights reserved 393



Figure 2. Structure-Activity Relationships

(A) (Left) Docking model of Az (green)/HSP70 superimposed on AMP-PNP (blue, adenosine; orange, b,g-imidotriphosphate). Red and cyan arrows denote in-

tramolecular p-p stacking and intermolecular cation-p interactions, respectively. (Right) An electrostatic potential surface of the Az binding site of HSP70. Red

shows regions of negative charge and blue denotes regions of positive charge.

(B) Structure of Az derivatives 1–15.

(C) Inhibition of ATPase activity of an ATPase domain of HSP70 by the analogs. ATPase activities were measured using a malachite assay after incubation of an

ATPase domain with 100 mM of each compound and 50 mM ATP (mean ± SD).
an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide) assay. The number of viable cells was found to

decrease in an Az dose-dependent way with half maximal inhib-

itory concentration (IC50) values that ranged from5 to 7mM,unlike

compound 7 which did not show cytotoxicity (Figures S3A and

S3D). In addition, when the incubation times of Azwere extended

to 48 and 72 hr before conducting theMTT assay, the IC50 values

were observed to decrease to the nanomolar range (0.9–1.0 mM

for 48 hr and 0.7–0.8 mM for 72 hr) (Figures S3B and S3C).
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The MTT assay is a widely used method for the measurement

of cell death, although it does not discriminate between

apoptosis and necrosis. To elucidate whether Az induces can-

cer cell death via apoptosis, A549 cells were incubated with

8 mM Az for 18 hr and then treated with a mixture of fluores-

cein-annexin V and propidium iodide (PI). The results of flow cy-

tometry analysis show that Az induces apoptosis, as inferred

from the observation of positive annexin V binding and PI up-

take, characteristic features of late apoptosis (Figure 3A) (Ko
r Ltd All rights reserved



Figure 3. Az Induces Apoptosis

Untreated cells are shown as a negative control.

(A) Flow cytometry of A549 cells treated with 8 mM

Az for 18 hr and then stained with a mixture of

FITC-annexin V and PI (annexin V versus PI up-

take).

(B) A549 cells were treated with 8 mM Az for 18 hr.

Cell size was determined using flow cytometry.

(C) Flow cytometry of A549 cells treated with 8 mM

Az for 18 hr and then stained with JC-1. A dot plot

of green fluorescence (FL1, JC-1 monomer)

versus red fluorescence (FL2, JC-1 aggregate) is

shown.
et al., 2014). Analysis of cell size by flow cytometry revealed that

Az-treated cells exhibit a large degree of cell shrinkage (Fig-

ure 3B). Because cell death via necrosis induces cell swelling,

this observation serves as additional evidence to support the

proposal that the treated cells undergo apoptosis. The loss of

mitochondrial membrane potential, a hallmark of apoptosis,

was also examined using a JC-1 probe that is sensitive to mem-

brane potential (Smiley et al., 1991). The intensity of dye derived
Chemistry & Biology 22, 391–403, March 19, 2015
red fluorescence in cells treated with

8 mM Az for 18 hr was found to decrease

markedly, as is expected for apoptotic

cell death (Figure 3C). Moreover, other

typical apoptotic phenotypes, such as

loss of cell adherence, condensed cyto-

plasm, and apoptotic bodies, are also

observed microscopically in the Az-

treated cells. The combined results

provide clear evidence that Az has

apoptosis-inducing activity.

AzDoesNotDisrupt Associations of
HSP70 with ASK1, JNK, and BAX
An investigation was conducted to gain

additional information about the cellular

mechanism by which inhibition of the

ATPase activity of HSP70 by Az pro-

motes apoptosis. ASK1 is known to be

activated under various stress conditions

to induce apoptotic cell death (Park

et al., 2001; Tobiume et al., 2001).

HSP70 suppresses apoptosis by inhibit-

ing ASK1 activation through the physical

interaction of its ATPase domain with

ASK1 in an ATP-independent manner

(Figure S4A) (Park et al., 2002). It

has been also reported that HSP70

suppresses apoptosis by inhibiting

both JNK activation and JNK-mediated

apoptosis through direct binding of its

SBD to JNK, independent of the chap-

erone activity of HSP70 (Smiley et al.,

1991; Yaglom et al., 1999). In addition,

it is known that the translocation of the

proapoptotic protein BAX to the mito-
chondria induces apoptotic cell death (Gotoh et al., 2004).

Although not yet thoroughly studied, this process is suppressed

by direct binding of HSP70 to BAX in which the ATPase domain

of HSP70 is necessary.

Based on these observations, the question of whether or not

Az interferes with interactions of HSP70 with ASK1, JNK, and

BAX during Az-induced apoptosis was explored. For this pur-

pose, HeLa cells were treated with 5 or 10 mM Az for 18 hr,
ª2015 Elsevier Ltd All rights reserved 395



Figure 4. Az Does Not Affect Binding of HSP70 to ASK1, JNK, and BAX

HeLa cells were treated with Az for 18 hr. Immunoprecipitation was performed with (A) ASK1, (B) JNK (C) BAX, and (D) HSP70 antibodies, and the amount of

HSP70, ASK1, JNK, and BAX co-precipitated with each protein was determined by western blot.
after which ASK1 and JNK were immunoprecipitated using the

corresponding antibodies. Endogenous HSP70 in co-immuno-

precipitated complexes of HSP70 with ASK1 or JNK was de-

tected by western blot analysis. The results show that Az

neither blocks the association of HSP70 with ASK1 and JNK

nor does it affect the expression levels of HSP70, ASK1, and

JNK (Figures 4A, 4B, and 4D). The effects of Az on the activa-

tion of ASK1 and JNK were also examined by evaluating the

levels of their phosphorylated forms in treated cells. The

results of immunoblot analysis show that Az treatment does

not lead to production of phosphorylated ASK1 and JNK

(Figure S5A).

Next, to evaluate the effect of Az on the association of HSP70

with BAX, we determined the amount of BAX co-immunoprecip-

itated with HSP70 that was produced after HeLa cells were

treated with 5 or 10 mM Az for 18 hr. The results show that the

expression level of BAX and the amount of HSP70 interacting

with BAX remain unchanged in the treated cells (Figures 4C

and 4D). Because it is not known which domain of HSP70 inter-

acts with BAX, we investigated this by incubating HeLa cell ly-

sates with purified full-length or truncated (ATPase domain and

SBD) HSP70. Immunoblot analysis shows that BAX binds to

both full-length and the ATPase domain of HSP70 irrespective

of the presence of Az, but does not interact with the SBD (Fig-

ure S5B). The results indicate that BAX binds to the ATPase

domain of HSP70 but that ATPase activity of HSP70 is not

required for this binding. Taken together, the results show that

Az does not block interactions of HSP70 with ASK1, JNK, and

BAX, and that the ATPase activity of HSP70 is not essential for

these interactions.
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Az Does Not Induce AIF-Mediated Caspase-
Independent Apoptosis
HSP70 has been known to directly interact with AIF to suppress

its translocation to the nucleus, thus leading to blockage of cas-

pase-independent apoptosis (Figure S4) (Beere et al., 2000;

Ravagnan et al., 2001; Susin et al., 1999). Because of this phe-

nomenon, we determined whether Az blocks the association of

HSP70 with AIF to induce cell death via caspase-independent

apoptosis. HeLa cells were treated with 5 or 10 mM Az for

18 hr, after which AIF or HSP70was immunoprecipitated. The re-

sults of probing these precipitates using each antibody show

that the amount of HSP70 bound to AIF is not changed by treat-

ment of the cells with Az (Figure 5A). In addition, observations

made in immunocytochemical analysis indicate that treatment

with Az does not induce AIF translocation to the nucleus (Fig-

ure 5B). Because Az inhibits the ATPase activity of HSP70, which

is not required for the interaction with AIF (Ravagnan et al., 2001),

this substance does not influence HSP70 binding to AIF and,

consequently, it does not induce cell death via AIF-mediated,

caspase-independent apoptosis.

Az Blocks Association of HSP70 with APAF-1
Several studies have served to demonstrate that HSP70 halts

progression of the caspase-dependent apoptotic pathway by

direct binding of SBD of HSP70 to APAF-1 (Beere et al., 2000;

Saleh et al., 2000). To examine whether Az induces caspase-

dependent apoptosis by blocking the association of HSP70

with APAF-1, HeLa cells were treated with 5 or 10 mMAz or com-

pound 7 as a negative control for 18 hr, after which cell lysates

were immunoisolated using HSP70 and APAF-1 antibodies.
r Ltd All rights reserved



Figure 5. Az Does Not Interfere with Inter-

action of HSP70 with AIF but Blocks

HSP70 Binding to APAF-1

(A) HeLa cells were treated with Az for 18 hr,

and immunoprecipitation performed with AIF or

HSP70 antibody. The amount of co-precipitated

HSP70 or AIF was determined by western blot.

(B) HeLa cells were treated with 6 mM Az for 6

and 18 hr, and processed for immunofluorescence

microscopy. Cells were immunostained with AIF

antibody and nuclei were visualized with DAPI.

Scale bar, 20 mm.

(C) HeLa cells were treated with Az for 18 hr, and

indicated proteins were immunoblotted with the

corresponding antibodies.

(D) HeLa cells were treated with Az for 18 hr, and

immunoprecipitation performed with HSP70 or

APAF-1 antibody. The amount of co-precipitated

APAF-1 or HSP70 was determined by western

blot.
The results of immunoblot analysis demonstrate that treatment

with increasing amounts of Az leads to a gradual decrease in

the amount of APAF-1 associated with HSP70 without affecting

the expression level of APAF-1 (Figures 5C and 5D). However,

compound 7 did not affect the association of HSP70 with

APAF-1 (Figure S5C). If caspase-dependent apoptosis takes

place in Az-treated cells, APAF-1 should activate procaspase-

9 to generate a proteolytically cleaved caspase-9 (Beere et al.,

2000; Saleh et al., 2000). The results of western blot analysis

show that cleaved procaspase-9 is produced in the treated cells

(Figure 5C).

To exclude the possibility that Az has off-target effects, HeLa

cells were transfected with an HSP70 overexpression vector or

an empty vector as a control and then treated with 5 or 10 mM

Az for 18 hr. Compared with the control transfected with empty

vector, HSP70-transfected cells were found to contain signifi-

cantly elevated levels of HSP70 (Figure S5D). The results of

immunoprecipitation analysis show that the amount of APAF-1

bound to HSP70 is nearly unchanged in HSP70-transfected cells

treated with Az (Figure S5D), indicating that HSP70 is the cellular

target of Az. Since the ATPase activity of HSP70 is essential for
Chemistry & Biology 22, 391–403, March 19, 2015
association with APAF-1(Ravagnan et al.,

2001), Az prevents this interaction and in-

duces caspase-dependent apoptosis.

Az Induces Caspase Activation
To gain further support for the proposition

that Az induces cell death via caspase-

dependent apoptosis, the effect of this

substance on caspase activation was

investigated by measuring proteolytic

activities associated with caspases. The

activities of caspases in lysates of HeLa

cells treated with various concentrations

(0–10 mM) of Az for 18 hr were measured

using the colorimetric assay with the pep-

tide substrate, Ac-DEVD-pNA (pNA, p-ni-

troaniline). Increases in caspase activity
were observed to take place in an Az concentration-dependent

manner (Figure S5E). However, when Ac-DEAD-CHO, a known

inhibitor of caspases, was added to the lysates of cells treated

with Az, caspase activities were greatly attenuated.

As APAF-1 activation and subsequent caspase-9 activation

lead to the cleavage of procaspase-3 to produce active cas-

pase-3 (Li et al., 1997), we examined caspase-3 activation by

incubating A549 and HeLa cells with 5 or 10 mM Az for 18 hr.

Immunoblot analysis reveals that procaspase-3 is proteolytically

cleaved to generate caspase-3 (Figure S5F). The results of addi-

tional experiments aimed at detecting cleavage of the endoge-

nous caspase substrate, PARP, by western blot analysis show

that the cleavage product of PARP is produced in Az-treated

cells. However, activation of caspase-3 and cleavage of PARP

do not take place to appreciable extents in HSP70-transfected

cells treated with Az (Figure S5G), indicating that this small mole-

cule induces caspase activation by inhibiting HSP70 activity.

Next, we evaluated whether the pan-caspase inhibitor ZVAD-

FMK (benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethylke-

tone), which is a cell-permeable, irreversible caspase inhibitor

with broad specificity (Nicholson et al., 1995), protected cells
ª2015 Elsevier Ltd All rights reserved 397



Figure 6. Combined Effect of Az with Dox on Cell Death

(A) A549 cells were treated with Dox alone or a combination of Dox and Az for

12 hr. Cell viabilities were measured using the MTT assay (mean ± SD).

(B) A549 cells were treated with Dox in the presence and absence of 2 mM Az

for 12 hr. Activated caspase-3 expression, PARP cleavage, and HSC70 and

HSP70 expression levels were determined by western blot.
against the effect of Az. For this purpose HeLa cells, pre-treated

with 20 or 40 mM ZVAD-FMK for 3 hr, were incubated with

various concentrations (0–8 mM) of Az for 18 hr. Under these con-

ditions the cells were greatly protected from apoptotic cell death

induced by Az (Figure S5H). The results of western blot analysis

provide further evidence that caspase activation induced by Az

is blocked by treatment with 20 mM of the inhibitor (Figure S5I).

Taken together, these observations demonstrate that Az-

induced cell death occurs via caspase-dependent apoptosis.

Combined Treatment of Az and Doxorubicin Enhances
Apoptosis of Cancer Cells
It has been reported that HSP70 renders cells resistant to

chemotherapy, and that the overexpression of HSP70 protects

cancer cells from antitumor agents such as doxorubicin (Dox)

(Demidenko et al., 2006). Thus, it is possible that treatment of

cancer cells with a combination of a HSP70 inhibitor and Dox

would enhance cancer cell death in comparison with treatment

with only one of these substances. To test this proposal, A549

and HeLa cells were co-incubated with Az (0–3 mM) and Dox

(0–8.6 mM) for 12 hr. Cell viabilities were then determined using

an MTT assay. The results show that the effect of the combined

treatment on cell death is more profound than that promoted by

Dox alone (Figures 6A and S6A). In both A549 and HeLa cells,
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IC50 values of Dox in the presence of 3 mM Az are approximately

half those of Dox alone (2.6 mM of IC50 of Dox at 0 mM Az versus

1.0 mM of IC50 at 3 mM Az for A549 cells; 3.5 mM of IC50 of Dox at

0 mM Az versus 1.7 mM of IC50 at 3 mM Az for HeLa cells). Immu-

noblot analysis revealed that caspase-3 activation and PARP

cleavage occur in cells treated with a combination of Az and

Dox (Figures 6B and S6B). These findings show that inhibition

of HSP70 by Az may be especially powerful in combination

with other chemotherapeutic agents for cancer treatment.

Az Inhibits Tumor Growth in Mouse Models
Wenext turned our attention to an assessment of the therapeutic

potential of Az in vivo. For this purpose, the pharmacokinetic

properties of Az were examined using a mouse model, adminis-

tering the substance (10 mg/kg) by an intraperitoneal route. The

values of the parameters were compared with those obtained af-

ter intraperitoneal injection of Dox into rat (Reddy and Murthy,

2004). The elimination half-life time (T1/2) of Az in blood was

found to be significantly longer than that of Dox (8.04 versus

1.60 hr) and the time needed to reach a maximum concentration

(Tmax) of Az was shorter than that of Dox (1.00 versus 4.00 hr)

(Figure S7A; Table S1). These findings indicate that Az appears

more rapidly and is present for a longer time in blood than is

Dox after injection.

The efficacy of Az in the nude mice xenografted with A549,

RKO (colorectal carcinoma), and HeLa cells was assessed

next. Az was injected intraperitoneally at 4 mg/kg every other

day for 2 weeks. The sizes of the A549, RKO, and HeLa xeno-

grafts, measured over a 30-day period, were found to be smaller

in mice treated with Az than in mice treated with the vehicle (Fig-

ure 7A). Specifically, compared with the vehicle-treated group,

61%, 65%, and 68% volume reductions of the respective

A549, RKO, and HeLa xenografts took place in Az-treated mice.

The antitumor effect of a combination of Az and Dox was also

examined in the nude mice xenografted with HeLa cells. The re-

sults reveal that treatment with both Az and Dox ismore effective

in reducing tumor volume in mice than treatment with either

agent alone. Specifically, 68%, 61%, and 81% reductions in

tumor volumes occur in mice treated with Az and Dox indepen-

dently, and a combination of Az and Dox, respectively,

compared with those of a vehicle-treated group (Figure 7A).

Importantly, no significant loss of body weight takes place in

mice treated with Az or a combination of Az and Dox (Figures

S7B–S7D). In addition, diarrhea- and treatment-related death

was not observed in the Az-treated group.

To evaluate Az-induced apoptosis of cancer cells in mice,

terminal deoxynucleotidyl transferase-mediated deoxyuridine

triphosphate nick end-labeling (TUNEL) values were determined

as the ratio of TUNEL-positive cells to total cell numbers in tumor

xenografts (Gavrieli et al., 1992). In the absence of Az treatment,

the number of TUNEL-positive cells was found to be less than

7% (Figure 7B). However, Az treatment causes a significant in-

crease in TUNEL-positive cells in mice. The number of apoptotic

cells in Az-treatedmice is more than 40% in themice bearing the

A549, RKO, and HeLa cells. Importantly, combined treatment

with Az and Dox leads to apoptosis in 81% of the tumor cells,

whereas Az or Dox alone induces apoptosis in 41% and 26%

of the tumor cells, respectively. The observations made in the

animal model studies provide evidence that Az effectively kills
r Ltd All rights reserved



Figure 7. Effect of Az on a Tumor-Xenografted Mouse Model

(A) Effect of Az treatment on the growth of tumor xenografts in nude mice (n = 10). Az was injected intraperitoneally into mice at 4 mg/kg/day every other day for

2 weeks and tumor volumes were determined every 3 days over a 30-day period after Az injection.

(B) A TUNEL assay was performed to evaluate Az-induced apoptosis of tumor xenografts in mice. (Left) Fluorescence images of vehicle, Az-, Dox-, and Az + Dox-

treated tumors in mice (red, TUNEL; blue, DAPI). Scale bar, 10 mm. (Right) The bar graphs show the percentage of TUNEL-positive nuclei relative to the total

number of nuclei in each section (mean ± SD, *P < 0.01).
cancer cells in mice via the apoptotic process and that the effect

of Az is enhanced when it is used in combination with Dox.

DISCUSSION

It is known that the expression level of HSP70 is markedly

increased in various cancers, and this upregulation leads to the

survival of cancer cells via multiple antiapoptotic processes.

High levels of HSP70 are associated with tumor development,

resistance to chemotherapy, and poor prognosis in cancer. As
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a consequence, HSP70 has become a highly attractive target

for cancer chemotherapy. This study demonstrates that Az binds

to HSP70 but not to other heat shock proteins such as HSP40,

HSP60, and HSP90, suggesting that Az is able to overcome the

selectivity limitation of HSP70 inhibitors. The results of STD

NMR and molecular docking studies suggest that Az binds to

an ATP binding site of HSP70 and, as a result, inhibits ATPase

activity of the protein. The findings of mechanistic studies in cells

reveal that Az blocks binding of HSP70 to APAF-1 without

affecting its binding to ASK1, JNK, BAX, and AIF, indicating
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that Az induces cancer cell death via caspase-dependent

apoptosis (Figure S4). Our results demonstrate that inhibition of

ATPase activity of HSP70 is enough to sensitize cancer cells to

apoptosis. In mouse studies, we have also observed that admin-

istration of Az leads to a marked retardation of tumor growth and

an increase in the number of apoptotic cells. More interesting is

the finding that combined treatment with Az and Dox induces a

greater antiapoptotic activity in cancer cells and antitumor activ-

ity in tumor xenografts than that promoted by treatment with

either agent alone. This result indicates that Az could play a

unique role in anticancer therapy through its use in combination

with existing chemotherapeutics to reduce required doses and,

consequently, toxic side effects. It has been reported that simul-

taneous reduction of the expression of both HSP70 and HSC70

with siRNA induces apoptosis of cancer cells but does not result

in induction of apoptosis in non-tumorigenic cells (Powers et al.,

2008). Because Az suppresses ATPase activities of both HSP70

andHSC70, it has good antitumor activity without side effects, as

shown in our animal model study. It is expected that Az could aid

the development of new cancer chemotherapies and serve as a

chemical probe in studies aimed at gaining a better understand-

ing of the diverse functions of HSP70.

SIGNIFICANCE

The chaperone protein HSP70 acts as an antiapoptotic factor

to protect cells from various apoptotic stresses. This protein

is upregulated inmany cancer types and its overexpression is

associated with tumor development, increased resistance to

chemotherapy, and poor prognosis. Therefore, small mole-

cule inhibitors of HSP70 have received great attention as

potent anticancer agents. We have investigated whether our

small molecule, Az, which inhibits the ATPase activity of

HSP70 by binding to its ATPase domain, is sufficient for

inducing cancer cell death via apoptosis. Initial affinity chro-

matography study shows that Az binds HSP70 but not other

types of heat shock proteins, indicating that Az has selective

inhibitory activity toward HSP70. We have demonstrated that

an inhibitor of ATPase activity of HSP70 indeed induces an

array of apoptotic phenotypes in cancer cells. We have also

examined whether this substance induces cancer cell death

via caspase-dependent or -independent apoptosis, or both.

Our results show that Az induces caspase-dependent

apoptosis by blocking the interaction of HSP70 with APAF-1,

while not affecting the interaction of HSP70 with ASK1, JNK,

BAX,andAIF.Animalmodel studyexhibits thatAzsuppresses

tumorgrowth ina xenograftmousemodel.Moresignificantly,

theantitumoractivityofAz isgreatlyenhanced incombination

with Dox in cells and mouse. The present investigation could

aid the development of novel cancer chemotherapies.

EXPERIMENTAL PROCEDURES

Synthesis of Apoptozole Derivatives

Compounds 1–15 were prepared according to a known procedure (Cho et al.,

2015).

NMR Study

NMR spectra were recorded on an Agilent DD2 600-MHz NMR spectrometer

equipped with a TR probe at 298 K. The one-dimensional STD NMR data were
400 Chemistry & Biology 22, 391–403, March 19, 2015 ª2015 Elsevie
collected using a 2-s transfer delay and 1,024 scans. On-resonance irradiation

of a mixture of Az and protein was set at �1.0 ppm, and off-resonance irradi-

ation at 31.6 ppm. The protons in the spectrum of Az were unambiguously as-

signed using 2D COSY and 2D NOESY NMR data and inter-proton distances

were determined from normalized cross-peak volumes in the 2D NOESY NMR

spectrum. A sample containing 1mMAz (a phosphate salt, formed bymixing 1

equivalent Az and 2 equivalent phosphoric acid) and 10 mM ATPase

domain of HSP70 was prepared in deuterated Tris buffer (pD 7.0) for NMR

measurements.

Molecular Modeling

The crystal structure of HSP70 from the PDB (code 4IO8, a VER-155008 bound

form) was used for docking simulations. The structure of Az was built using the

Maestro build panel and minimized using the Impact module of Maestro in the

Schrödinger suite program. The starting coordinates of HSP70 were further

modified for Glide docking. The HSP70/VER-155008 complex was imported

to Maestro and the ligand was removed from the structure. Water molecules

were removed and hydrogen atoms were added to the crystal structure of

HSP70. The protein structure was minimized using the Protein Preparation

Wizard by applying an OPLS (optimized potentials for liquid simulations) force

field. For grid generation, the binding site was defined as the centroid of the

VER-155008. Ligand docking into the ATP binding site of HSP70 was carried

out using the Schrödinger docking program, Glide. Energy minimized Az was

docked into the prepared receptor grid. The best-docked pose was selected

as the lowest Glide score. Molecular graphics for the inhibitor binding pocket

and refined dockingmodel for the selected Azwere generated using the PyMol

package (http://www.pymol.org).

Cell Culture

The A549 (lung cancer cells), HeLa (cervical cancer cells), MDA-MB-231

(breast cancer cells), and HepG2 (liver cancer cells) cells were obtained from

the American Type Culture Collection and grown in RPMI 1640 (Invitrogen)

supplemented with 10% fetal bovine serum (FBS), 50 units/ml penicillin, and

50 units/ml streptomycin. Cells were maintained at 37�C under a humidified

atmosphere of 5% CO2.

Affinity Chromatography Using Az-Linked and ATP Resins

Az-linked resin or ATP-agarose (Sigma-Aldrich) in bead buffer (10 mM Tris [pH

7.4], 5 mM NaF, 250 mM NaCl, 5 mM EDTA, 5 mM EGTA, 0.1% Triton X-100,

and one tablet of protease inhibitor cocktail [Roche] per 20ml buffer) was incu-

bated with 2–5 mg of purified proteins (full-length and truncated HSP70,

HSP40, and HSP90) at 4�C for 1 hr. In competition experiments, 100 mM Az

or 1 mM ATP was added to each protein in bead buffer, and the mixture

was incubated at 4�C for 30 min. Az-linked resin or ATP-agarose was incu-

bated with the protein pre-treated with the competitor and washed several

times with 1 ml of bead buffer. Proteins bound to the resin were collected

with 30 ml of Laemmli buffer (Bio-Rad) at 94�C for 5 min and separated using

10% SDS-PAGE for silver staining and western blot analysis.

Measurements of ATPase Activities of HSP70

A master mix of an ATPase domain of HSP70 (final concentration 2 mM) was

prepared in assay buffer (100 mM Tris-HCl, 20 mM KCl, and 6 mM MgCl2
[pH 7.4]). An aliquot (10 ml) of this mixture and 9 ml of Az in assay buffer were

added to a 96-well plate and incubated for 30 min at room temperature. The

reaction was started by adding 1 ml of 4 mM ATP. After 3 hr of incubation at

37�C, 80 ml of malachite green reagent was added to each well and was incu-

bated at 37�C for 15min, and 10 ml of 34% sodiumcitrate was added to halt the

non-enzymatic hydrolysis of ATP. The absorbance was determined at 620 nm

with a SpectraMax 340 PC 384 (Molecular Devices). To correct for non-enzy-

matic hydrolysis of ATP, the absorbance of a sample formed from an identi-

cally treated ATP buffer lacking the protein was subtracted.

MTT Assay

Cells (5 3 103 per well) were plated in triplicate in 96-well plates in 0.1 ml of

culture media with 10% FBS. After 24 hr, cells were treated with various con-

centrations of Az (0–15 mM) in culture media with 3% FBS (final volume: 0.2 ml

per well) for 18, 48, and 72 hr before treatment with MTT. MTT assays were

performed according to general procedures. Absorbance at 570 nm was
r Ltd All rights reserved
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measured using a UV microplate reader (SpectraMax 340PC 384; Molecular

Devices).

Western Blot Analysis

Proteins were separated by 6%–12% SDS-PAGE. Mouse HSP60 monoclonal

(1:1000, Santa Cruz Biotechnology), mouse HSP70 monoclonal (1:1000,

StressGen Biotechnology), mouse HSP90 monoclonal (1:1000, Santa Cruz

Biotechnology), rabbit caspase-9 polyclonal (1:1000, Santa Cruz Biotech-

nology),mouseprocaspase-3monoclonal (1:1000,SantaCruzBiotechnology),

rabbit cleaved caspase-3 polyclonal (1:1000, Santa Cruz Biotechnology), rab-

bit PARP polyclonal (1:1000, Cell Signaling Technology), rabbit AIF polyclonal

(1:1000, Santa Cruz Biotechnology), rabbit BAX polyclonal (1:1000, Santa Cruz

Biotechnology), rabbit JNK polyclonal (1:1000, Santa Cruz Biotechnology),

rabbit ASK1 polyclonal (1:1000, Santa Cruz Biotechnology), and mouse

APAF-1 monoclonal (1:1000, Santa Cruz Biotechnology) antibodies were

used as primary antibodies. Horse peroxidase-conjugated goat anti-mouse

immunoglobulin G (IgG) (1:5000, Sigma-Aldrich) was used as the secondary

antibody, and the treatedmembranes were visualized using the ECL kit (Amer-

sham Biosciences). Quantitative data were obtained with ImageQuant version

5.2 (Molecular Dynamics) and Origin version 8.0 (Microcal).

Immunocytochemistry

HeLa cells pre-incubated with Az were fixed with 4% formaldehyde in PBS

buffer for 15 min and processed for immunostaining. The cells were incubated

with rabbit AIF polyclonal antibody (1:200, Santa Cruz Biotechnology) for 1 hr

at room temperature followed by incubation with Alexa-Fluor 488 conjugated

rabbit IgG (1:200, Invitrogen/Molecular Probes) for 0.5–1 hr at room tempera-

ture and mounted with DAPI (Invitrogen/Molecular Probes). The cells were

imaged by confocal fluorescence microscopy (Zeiss).

Flow Cytometry

A549 cells were treated with 8 mM Az for 18 hr. Untreated cells were used as a

negative control. After washing with PBS twice, the cells were incubated with

0.5 ml of trypsin-EDTA (0.05% trypsin, 0.02% EDTA; Sigma-Aldrich) for 5–

10 min at 37�C and collected. Cells were re-suspended in binding buffer

(500 ml, 10 mM HEPES/NaOH [pH 7.5] containing 1.4 M NaCl and 2.5 mM

CaCl2) and treated with a mixture of fluorescein-annexin V (final concentration

0.5 mg/ml) and PI (final concentration 2 mg/ml) for 10 min at room temperature.

For JC-1 staining, cells were re-suspended with PBS containing JC-1 (final

concentration 2.5 mg/ml; Anaspec), incubated for 15 min, and washed with

PBS twice. Flow cytometry was performed using FACSCalibur (BD Biosci-

ences) and CellQuest software (Becton Dickinson). The red fluorescence

signal was measured using excitation wavelength of 550 nm and emission

wavelength of 600 nm, and the green fluorescence using 485-nm excitation

and 535-nm emission.

Caspase Activity Assay

Caspase activity was determined using acetyl-DEVD-pNA (Sigma-Aldrich), a

preferred substrate for caspase-3 and -7. The enzyme-catalyzed release of

pNA was monitored at 405 nm using a UV microplate reader.

Immunoprecipitation

HeLa cells were treated with 5–10 mM Az for 18 hr in parallel with an untreated

negative control. Cells were lysed with 13 RIPA buffer (50 mM Tris-HCl [pH 8],

150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, and one tablet of pro-

tease inhibitor cocktail) for 10 min at 4�C and centrifuged at 10,000 rpm for

10 min. Cell lysates were pre-cleared with 20 ml of the appropriate suspended

(25%, v/v) agarose conjugate (protein A-agarose or protein G-agarose, Invitro-

gen) for 30min at 4�C and incubated with primary antibodies for 2 hr at 4�C. To
capture antibody on the resin, antibody-treated lysates were incubated with

protein A-agarose or protein G-agarose on the rotator at 4�C overnight. Immu-

noprecipitates were collected and analyzed by western blots.

Antitumor Activity in Mouse

Male nudemice were purchased fromOrient Bio Co. The animals were housed

in a pathogen-free room under controlled temperature and humidity. The

animal study was conducted according to the established procedures of the

Yonsei University Laboratory Animal MaintenanceManual. Mice aged 4weeks
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were injected with tumor cells for the xenograft experiments. Viable A549 and

RKO cells (53 106) and HeLa cells (53 106) were injected subcutaneously into

the flank ofmice. The A549 and RKO cell xenograft micewere immediately and

randomly assigned to two groups. The first group (n = 10) was used as a con-

trol group and received vehicle only. The second group (n = 10) received intra-

peritoneal injections of Az (4mg/kg/day) every other day for 2 weeks. The HeLa

cell xenograft mice were immediately and randomly assigned to four groups.

The first group (n = 10) was a control group receiving vehicle only. The second

group (n = 10) received intraperitoneal injections of Az (4 mg/kg/day) every

other day for 2 weeks. The third group (n = 10) received intraperitoneal injec-

tions of doxorubicin (15 mg/kg/day) every other day for 2 weeks. The fourth

group (n = 10) received intraperitoneal injections of Az (4 mg/kg/day) and

doxorubicin (15 mg/kg/day) every other day for 2 weeks. Tumors in all mice

were measured in two dimensions with calipers every 3 days and tumor vol-

umes were calculated using the formula volume = w 3 l2/2, where w is the

width at the widest point of the tumor and l is the length perpendicular to w.

The results from individual mice were plotted as average tumor volumes

versus time.

Combined Treatment of Apoptozole and Doxorubicin

A549 and HeLa cells were plated in triplicate in 0.1 ml in 96-well plates for 24 hr

and treated with various concentrations of doxorubicin alone or a combination

of doxorubicin (0.8–8.6 mM) with Az (2 or 3 mM). After 12 hr, cells were analyzed

by the MTT assay and western blots as described above.

Statistical Analysis

All data are reported as means ± SD. Statistical significance of differences be-

tween control and experimental groups was determined using two-groups

two-tailed Student’s t test, with a level of statistical significance of P < 0.01.
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