On Antipodes in Pointed Hopf Algebras

Earl J. Taft* and Robert Lee Wilson ${ }^{\dagger}$
Department of Mathematics, Rutgers, The State University, New Brunswick, New Jersey 08903

Communicated by N. Jacobson
Received June 10, 1972

If S is the antipode of a Hopf algebra H, the order of S is defined to be the smallest positive integer n such that $S^{n}=I$ (in case such integers exist) or ∞ (if no such integers exist). Although in most familiar examples of Hopf algebras the antipode has order 1 or 2, examples are known of infinite dimensional Hopf algebras in which the antipode has infinite order or arbitrary even order $[1,4,6]$ and also of finite dimensional Hopf algebras in which the antipode has arbitrary even order [3,5]. Some sufficient conditions for the antipode to have order $\leqslant 4$ are known [2,4], but the following questions remain open: Does the antipode of a finite dimensional Hopf algebra necessarily have finite order? If the antipode S of a Hopf algebra H has finite order is that order bounded by some function of $\operatorname{dim} H$?
In this paper, by constructing a certain basis for an arbitrary pointed coalgebra and studying the action of the antipode on the elements of such a basis for a pointed Hopf algebra, we obtain affirmative answers to the second question in case H is pointed and to the first question in case H is pointed over a field of prime characteristic.

We use freely the definitions, notation, and results of [4].

1. Statement of Results

Let C be a pointed coalgebra with comultiplication Δ and counit ϵ over an arbitrary field Φ. Let $G(C)$ be the set of group-like elements and let $(0)=C_{-1} \subseteq C_{0}=\Phi G(C) \subseteq C_{1} \subseteq \cdots$ be the coradical filtration. For each $i \geqslant 1$ choose a subspace $K_{i} \subseteq C_{i}$ such that $C_{i-1} \oplus K_{i}=C_{i}$. If $a, b \in G(C)$ define

$$
K_{i, a, b}=\left\{k \in K_{i} \mid \Delta(k)-k \otimes a-b \otimes k \in C_{i-1} \otimes C_{i-1}\right\} .
$$

[^0]Proposition 1. $K_{i}=\sum_{a, b \in G(C)} K_{i, a, b}$ for all $i \geqslant 1$.
If $a, b \in G(C)$ define $C_{1, a, b}=\left\{k \in C_{1} \mid \Delta(k)=k \otimes a+b \otimes k\right\}$.
Proposition 2. $\quad C_{1}=C_{0} \oplus \sum_{a, b \in G(C)} C_{1, a, b}$.
We apply Proposition 2 to the case of a pointed Hopf algebra H to obtain:

Proposition 3. If $G(H)$ has exponent e then $\left(S^{2 e}-I\right)\left(H_{1}\right)=(0)$.
The following proposition allows us to extend the above result to higher terms in the coradical filtration.

Proposition 4. Let $i \geqslant 1$ and let q be a homomorphism of C such that $(\varphi-I)\left(C_{j}\right) \subseteq C_{j-1}$ for all $j, 0 \leqslant j \leqslant i$. Then $(\varphi-I)\left(C_{i+1}\right) \subseteq C_{i}$.

Propositions 3 and 4 lead to our main result.
Theorem 5. Let H be a pointed Hopf algebra over an arbitrary field. If $H=H_{n}$ and if $G(H)$ has exponent e then $\left(S^{2 e}-I\right)^{n}=0$.

Finally, the following corollary provides partial answers to the questions raised in the introduction.

Corollary 6. Let H be a finite dimensional pointed Hopf algebra with antipode S over a field Φ. Assume $G(H)$ has exponent e and that $H=H_{n}$. If Φ has characteristic 0 and S has finite order then the order of S divides $2 e$. If Φ has characteristic p then $S^{2 e p^{m}}=I$, where $p^{m} \geqslant n>p^{m-1}$.
(Note that n and e are both $\leqslant \operatorname{dim} H$, so the corollary does give a bound (in terms of $\operatorname{dim} H$) on the order of S.)

2. On the Coradical Filtration

In this section we will prove Propositions 1, 2, and 4.
Let η denote the projection of $C_{i}=C_{i-1} \oplus K_{i}$ onto K_{i}. Note that for $x \in C_{i}$ we have

$$
(\eta \otimes I) \Delta \eta(x)=(\eta \otimes I) \Delta(x)
$$

and

$$
\begin{equation*}
(I \otimes \eta) \Delta \eta(x)=(I \otimes \eta) \Delta(x) \tag{1}
\end{equation*}
$$

Then $\rho_{R}=(\eta \otimes I) \Delta$ (respectively $\left.\rho_{L}=(I \otimes \eta) \Delta\right)$ gives K_{i} the structure of
a right (respectively left) C_{0}-comodule. (For using (1) we see that

$$
(I \otimes \Delta) \rho_{R}=(\eta \otimes I \otimes I)(\Delta \otimes I) \Delta=\left(\rho_{R} \otimes I\right) \rho_{R}
$$

and clearly $(I \otimes \epsilon) \rho_{R}=I$.) Furthermore, as $(\eta \otimes \eta) \Delta C_{i}=(0)$ we have

$$
\left(\Delta-\rho_{R}-\rho_{L}\right)\left(K_{i}\right) \subseteq \operatorname{ker}(I \otimes \eta) \cap \operatorname{ker}(\eta \otimes I)=C_{i-1} \otimes C_{i-1}
$$

Hence for a and $b \in G(C)$ we have

$$
\begin{equation*}
K_{i, a, b}=\left\{k \in K_{i} \mid \rho_{R}(k)=k \otimes a, \rho_{L}(k)=b \otimes k\right\} \tag{2}
\end{equation*}
$$

Now if $c \in K_{i}$ then c generates a finite dimensional subcoalgebra $D \subseteq C_{i}$. We claim that $\rho_{R}(\eta(D)) \subseteq \eta(D) \otimes D_{0}$ and hence that $\eta(D)$ is a (finite dimensional) right D_{0}-comodule with structure map ρ_{R} (and similarly a left $D_{0^{-}}$ comodule with structure map ρ_{L}). As $\rho_{R} \eta(x)=\rho_{R}(x)$ for all $x \in C_{i}$ (by (1)) it suffices to show that $\rho_{R}(D) \subseteq \eta(D) \otimes D_{0}$. But

$$
\rho_{R}(D) \subseteq(\eta(D) \otimes D) \cap\left(K_{i} \otimes C_{0}\right)
$$

As $\eta(D) \subseteq K_{i}$ and $D \cap C_{0}=D_{0}$ the desired result follows. Let $G(D)=$ $\left\{g_{j} \mid 1 \leqslant j \leqslant n\right\}$. Then the dual basis $\left\{g_{j}{ }^{*} \mid 1 \leqslant j \leqslant n\right\}$ for $D_{0}{ }^{*}$ is a set of orthogonal idempotents and $\sum_{j=1}^{n} g_{j}{ }^{*}=\epsilon$, the identity of $D_{0}{ }^{*}$.

Using (1) and (1') we see that

$$
\left(\rho_{L} \otimes I\right) \rho_{R}=(I \otimes \eta \otimes I)(\Delta \otimes I) \Delta=\left(I \otimes \rho_{R}\right) \rho_{L}
$$

From this it follows that if, for a and $b \in D_{0}{ }^{*}$ and $q \in \eta(D)$, we define

$$
a \cdot q=(I \otimes a) \rho_{R}(q)
$$

and

$$
q \cdot b=(b \otimes I) p_{L}(q)
$$

then

$$
(a \cdot q) \cdot b=(b \otimes I \otimes a)\left(\rho_{L} \otimes I\right) \rho_{R}=(b \otimes I \otimes a)\left(I \otimes \rho_{R}\right) \rho_{L}=a \cdot(q \cdot b)
$$

Hence $\eta(D)$ has the structure of a D_{0} *-bimodule. It also follows that

$$
\rho_{L}(q)=\sum_{j=1}^{n} g_{j} \otimes\left(q \cdot g_{j}^{*}\right)
$$

and

$$
\rho_{\mathrm{R}}(q)=\sum_{j=1}^{n}\left(g_{j}^{*} \cdot q\right) \otimes g_{j}
$$

It is then clear by (2) that $g_{j}{ }^{*} \cdot \eta(D) \cdot g_{i}{ }^{*} \subseteq K_{i, g_{j}, g_{l}}$. Hence

$$
c \in \eta(D)=\sum_{j, l=1}^{n} g_{j}^{*} \cdot \eta(D) \cdot g_{l}^{*} \subseteq \sum_{a, b \in G(C)} K_{i, a, b}
$$

(where the equality follows from the well known representation theory for direct sums of fields). This completes the proof of Proposition 1.

We now prove Proposition 2. Let $c \in C_{1}$. Then c gencrates a finite dimensional subcoalgebra D. It is clear that $D_{0}=C_{0} \cap D$ and $C_{1} \cap D \subseteq D_{1}$. In fact, $C_{1} \cap D=D_{1}$. To see this let $x \in C_{1} \cap D$. Then

$$
\Delta(x) \in(D \otimes D) \cap\left(C \otimes C_{0}+C_{0} \otimes C\right)
$$

Now we can find subspaces $A_{i} \subseteq C, 1 \leqslant i \leqslant 4$, such that $A_{1}=D_{0}$, $A_{1} \oplus A_{2}=D, A_{1} \oplus A_{3}=C_{0}$, and $\oplus_{i=1}^{4} A_{i}=C$. Then $C \otimes C=\oplus_{i, j=1}^{4}$ $\left(A_{i} \otimes A_{j}\right)$. Now as $D \otimes D=\oplus_{i, j=1}^{2}\left(A_{i} \otimes A_{j}\right)$ and $A_{2} \otimes A_{2}$ is not among the summands of $C \otimes C_{0}+C_{0} \otimes C$, we have

$$
\Delta(x) \in A_{1} \otimes A_{1}+A_{1} \otimes A_{2}+A_{2} \otimes A_{1}=D \otimes D_{0}+D_{0} \otimes D
$$

Thus $x \in D_{1}$, proving $C_{1} \cap D=D_{1}$. Hence $c \in C_{1} \cap D=D_{1}$. Now if the proposition holds for all finite dimensional coalgebras we have

$$
c \in D_{1}=D_{0}+\sum_{a, b \in G(D)} D_{1, a, b} \subseteq C_{0}+\sum_{a, b \in G(C)} C_{1, a, b},
$$

verifying the proposition for C. Thus it is sufficient to prove the proposition for finite dimensional coalgebras.

Now assume that C is finite dimensional. Let $G(C)=\left\{g_{i} \mid 1 \leqslant i \leqslant n\right\}$. Since $C^{*} / C_{0}{ }^{\perp}$ is separable (being a direct sum of copies of Φ) and $C_{0}{ }^{\perp}$ is the Jacobson radical of C^{*}, the Wedderburn principal theorem shows that $C^{*}=A \oplus C_{0}{ }^{\perp}$ where A is a subalgebra. It is then immediate that $C=$ $C_{0} \oplus A^{\perp}$. Setting $K_{1}=C_{1} \cap A^{\perp}$ we see that $C_{1}=C_{0} \oplus K_{1}$.

Now as A is a subalgebra of C^{*} it is clear that

$$
\Delta K_{1} \subseteq(A \otimes A)^{\perp} \cap\left(C_{1} \otimes C_{0}+C_{0} \otimes C_{1}\right)
$$

We claim

$$
\begin{equation*}
(A \otimes A)^{\perp} \cap\left(C_{1} \otimes C_{0}+C_{0} \otimes C_{1}\right)=K_{1} \otimes C_{0}+C_{0} \otimes K_{1} \tag{3}
\end{equation*}
$$

As $K_{1} \otimes C_{0}+C_{0} \otimes K_{1} \subseteq(A \otimes A)^{\perp}$ and

$$
C_{1} \otimes C_{0}+C_{0} \otimes C_{1}=K_{1} \otimes C_{0}+C_{0} \otimes C_{0}+C_{0} \otimes K_{1}
$$

the claim (3) is equivalent to $(A \otimes A)^{\perp} \cap\left(C_{0} \otimes C_{0}\right)=(0)$. But this is
immediate since

$$
(A \otimes A)^{\perp}=C \otimes A^{\perp}=A^{\perp} \otimes C=C_{0} \otimes A^{\perp}+A^{\perp} \otimes C_{0}+A^{\perp} \otimes A^{\perp}
$$

and $C_{0} \cap A^{\perp}=(0)$. Thus $\Delta K_{1} \subseteq K_{1} \otimes C_{0}+C_{0} \otimes K_{1}$. Then for a and $b \subset G(C)$ we have $K_{1, a, b} \subseteq C_{1, a, b}$ and so Proposition 1 shows that

$$
K_{\mathbf{1}}=\sum_{a, b \in G(C)} K_{1, a, b} \subseteq \sum_{a, b \in G(C)} C_{1, a, b},
$$

completing the proof of Proposition 2.
To prove Proposition 4 it is sufficient to show that $\Delta(\varphi-I)\left(C_{i+1}\right) \subseteq$ $C \otimes C_{0}+C_{i-1} \otimes C$. To this end note that, as φ is a coalgebra homomorphism, $\Delta(\varphi-I)=(\varphi \otimes \varphi-I \otimes I) \Delta=(\varphi \otimes(\varphi-I)+(\varphi-I) \otimes I) \Delta$ so that

$$
\begin{aligned}
& \Delta(\varphi-I)\left(C_{i+1}\right)=(\varphi \otimes(\varphi-I)+(\varphi-I) \otimes I) \Delta C_{i+1} \\
& \quad \subseteq(\varphi \otimes(\varphi-I)+(\varphi-I) \otimes I) \sum_{j=0}^{i+1} C_{j} \otimes C_{i+1-j} \\
& \quad \subseteq C_{0} \otimes C+\sum_{j=1}^{i-1} C_{j} \otimes C_{i-j}+C \otimes C_{0} \subseteq C \otimes C_{0}+C_{i-1} \otimes C,
\end{aligned}
$$

as required.

3. Properties of the Antipode

It is well known that $S(a)=a^{-1}$ for $a \in G(H)$. If $k \in H_{1, a, b}$, then $0=\epsilon(k)=$ $(S \otimes I) \Delta(k)=S(k) a+b^{-1} k$ so $S(k)=-b^{-1} k a^{-1}$. It then follows that $S^{2}(k)=a b^{-1} k a^{-1} b$ and $S^{2 t}(k)=\left(a b^{-1}\right)^{t} k\left(a^{-1} b\right)^{t}$ for all $t \geqslant 1$. Thus, if e is the exponent of $G(H)$ we have $S^{2 e}(k)=k$ for all $k \in H_{1, \sigma, b}$. In view of Proposition 2 this implies $\left(S^{2 e}-I\right)\left(H_{1}\right)=(0)$, proving Proposition 3.
We, thus, have the conditions of Proposition 4 satisfied for $i=1$. Repeated use of this proposition gives $\left(S^{2 e} \quad I\right)\left(H_{i}\right) \subseteq H_{i-1}$ for all $i \geqslant 1$, and so ($\left.S^{2 e}-I\right)^{i}\left(H_{i}\right)=(0)$, proving the theorem.

Corollary 6 follows from the theorem by noting that if Φ has characteristic 0 then $\left(\left(x^{2 e}-1\right)^{n}, x^{q}-1\right)$ divides $x^{2 c}-1$ for any positive integers n and q (since the roots of $x^{q}=1$ are distinct), while if Φ has characteristic p then $0=\left(S^{2 t}-I\right)^{p^{m}}=S^{2 e p^{m}}-I$.

4. Remarks

Since extension of the base field leaves the order of the antipode fixed these results apply to Hopf algebras which become pointed upon extension of the basc field.

It is interesting to note that the antipode of any (not necessarily pointed) finite dimensional Hopf algebra over a finite field has finite order. For the antipode is bijective [4, p. 101] and hence is a permutation of the finite set H.

References

1. R. G. Larson, The order of the antipode of a Hopf algebra, Proc. Amer. Math. Soc. 21 (1969), 167-170.
2. R. G. Larson, Characters of Hopf algebras, J. Algebra 17 (1971), 352-368.
3. D. E. Radford, A free rank 4 Hopf algebra with antipode of order 4, Proc. Amer. Math. Soc. 30 (1971), 55-58.
4. M. E. Sweedler, "Hopf Algebras," W. A. Benjamin, Inc., New York, 1969.
5. E. J. Taft, The order of the antipode of finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2631-2633.
6. M. Takeuchi, Free Hopf algebras generated by coalgebras, J. Math. Soc. Japan 23 (1971), 561-582.

[^0]: * This research was partially supported by National Science Foundation Grant No. GP-19813.
 ${ }^{\dagger}$ This research was partially supported by National Science Foundation Grant No. GP-33226.

