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If S is the antipode of a Hopf algebra H, the order of S is defined to be the
smallest positive integer »# such that S” = I (in case such integers exist) or o (if
no such integers exist). Although in most familiar examples of Hopf algebras the
antipode has order 1 or 2, examples are known of infinite dimensional Hopf
algebras in which the antipode has infinite order or arbitrary even order [1, 4, 6]
and also of finite dimensional Hopf algebras in which the antipode has arbitrary
even order [3, 5]. Some sufficient conditions for the antipode to have order <4
are known [2, 4], but the following questions remain open: Does the antipode
of a finite dimensional Hopf algebra necessarily have finite order? If the
antipode S of a Hopf algebra H has finite order is that order bounded by some
function of dim H?

In this paper, by constructing a certain basis for an arbitrary pointed coalgebra
and studying the action of the antipode on the elements of such a basis for
a pointed Hopf algebra, we obtain affirmative answers to the second question
in case H is pointed and to the first question in case H is pointed over a field
of prime characteristic.

We use freely the definitions, notation, and results of [4].

1. STATEMENT OF RESULTS

Let C be a pointed coalgebra with comultiplication 4 and counit € over an
arbitrary field @. Let G(C) be the set of group-like elements and let
0) =C_,CCy=DG(C)C C,C -~ be the coradical filtration. For each
i > 1 choose a subspace K; C C; such that C;_, @ K; = C;. If a, be G(C)
define

Kiop={keK;|4(k) ~k®a—b@keCiy ® Ciy}.
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ProposiTiON 1. K; = 3, weco)Kiap for all i > 1.

If a, be G(C) define C, ,, = (ke C; | A(k) =k @ a + b ® k).

ProposITION 2. C; = Cy @ Y, pecie) Croas -

We apply Proposition 2 to the case of a pointed Hopf algebra H to obtain:

ProrosiTioN 3. If G(H) has exponent e then (S% — I)(H,) = (0).

The following proposition allows us to extend the above result to higher
terms in the coradical filtration.

ProrosITION 4. Let i 2> | and let ¢ be a homomorphism of C such that
(@ — IXC)) C Cy_a for allf, 0 < j < i. Then (p — I)(Cyiz) C C; -

Propositions 3 and 4 lead to our main result.

THEOREM 5. Let H be a pointed Hopf algebra over an arbitrary field. If
H = H, and if G(H) has exponent e then (S?¢ — I)» = 0.

Finally, the following corollary provides partial answers to the questions
raised in the introduction.

COROLLARY 6. Let H be a finite dimensional pointed Hopf algebra with
antipode S over a field @. Assume G(H) has exponent e and that H = H,, . If
D has characteristic O and S has finite order then the order of S divides 2e. If
@ has characteristic p then S27" — I, where pm > n > pm-1,

(Note that # and e are both <C dim H, so the corollary does give a bound (in
terms of dim H) on the order of S.)

2. ON THE CorapicAL FILTRATION

In this section we will prove Propositions 1, 2, and 4.
Let 5 denote the projection of C; = C;_; @ K; onto K. Note that for
x € C; we have

(n ® 1) dn(x) = (n ® 1) 4(x), (1)

and
I @) dn(x) = (I @ n) 4(x)- (M
Then pr = (y ® I)4 (respectively p; = (I ® 5)4) gives K; the structure of
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a right (respectively left) Cy-comodule. (For using (1) we see that
U@ e = DT NADNA = (pg @ Dpx
and clearly (I @ €)pp = 1.) Furthermore, as (yp ® 1) AC; = (0) we have
(@ — px — LUK Cher(I @ ) N ker(y @ 1) = €,y © Cry -
Hence for a and b € G(C) we have
Kooy ~ ke Ky | palk) = k @ a, p,(k) = b © A}, @)

Now if ¢ € K then ¢ generates a finite dimensional subcoalgebra DC C; .
We claim that pg(n(D)) C 9(D) X Dy and hence that 5(D) is a (finite dimen-
sional) right Dg-comodule with structure map pp (and similarly a left D,-
comodule with structure map p;). As ppn(x) = pp(%) for all x € C; (by (1))
it suffices to show that py(D) C 7(D) ® D, . But

pa(D) & ((D) ® D) N (K; ® Co).

As (D) C K; and D N Cy = D, the desired result follows. Let G(D) =
{g;11 <j < n}. Then the dual basis {g;* | | <j <#n} for D,* is a set of
orthogonal idempotents and 3", g% = e, the identity of Dy*.

Using (1) and (1) we see that

(b @Dpr = T @n QN ®DNA = (IR prlpy. -
From this it follows that if, for @ and b € Dy* and ¢ € %(D), we define

a-q = (I a)pg)
and

q b = (b ®Dpy),
then

(@ @) b=0R1Wa)pr @Dpr = (b RIR a)I @ prlpr = a (g b).

Hence n(D) has the structure of a Dy*-bimodule. It also follows that

pr(g) = Y & ®(g-g®

j=1

and

Prlq) = i (&* ) Rg;.
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It is then clear by (2) that g;* - 7(D) - £,* C K, ,, - Hence

cenD) = 3 g* nD) &*C Y Kiup

j.i=1 a.beG(C)

(where the equality follows from the well known representation theory for
direct sums of fields). This completes the proof of Proposition 1.

We now prove Proposition 2. Let ¢ € C; . Then ¢ generates a finite dimen-
sional subcoalgebra D. It is clear that Dy =CynND and C,NnDCD,.
In fact, C; " D = D, . To see this let x € C; N D. Then

4@ (D ®D) N (C® Co+ Co®O).

Now we can find subspaces 4; C C, 1 < 4, such that 4, = D0 ;
A, DA, =D, 4, D 4, —Co,and @_IA _C Then C ® C = @”=1
(4; ® A4;). Nowas D R D = @,,,1(/1 ® 4;) and 4, ® 4, is not among
the summands of C @ C, + Cy ® C, we have

Adx)ed; @4+ 4 ® 4+ 4, ® A =D @Dy + Dy ® D.
Thus x € Dy, proving C; " D = D, . Hence ce C; " D = D, . Now if the

proposition holds for all finite dimensional coalgebras we have

ceDy =Dy + Z Dy CCo+ Z Ciop>

a,beG(D) a,beG(C)

verifying the proposition for C. Thus it is sufficient to prove the proposition
for finite dimensional coalgebras.

Now assume that C is finite dimensional. Let G(C) = {g; |l < ¢ < n}.
Since C*/Cy* is separable (being a direct sum of copies of @) and Cy* is the
Jacobson radical of C*, the Wedderburn principal theorem shows that
C* = A @ C,* where A4 is a subalgebra. It is then immediate that C =
Co @ A*. Setting K; = C, N 4+ weseethat C; = C, D K] .

Now as A is a subalgebra of C* it is clear that

4K, C(A® A)* 0 (G, ® Cy + Co ® Cy).

We claim
ARXA*NCRC+C,RCG)=KRC+C®K,. (3)
AsK; ® Cy + Cy ® K, C (A4 @ A)* and
CLOC+ Co®C =K, ®Co+ Co® Co+ Co ® Ky
the claim (3) is equivalent to (4 ® Ay N (Cy ® Cy) = (0). But this is
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immediate since
ARA=CRA* =A*RC=C,R A+ A+ QCy+ 4+ R A+

and Cyn A* =(0). Thus 4K, C K, ® Cy + C, ® K, . Then for a and
b e G(C) we have K, ,, C C, ,.; and so Proposition | shows that

Kl = Z Kl,u,b c Z Cl.a,b s
2,beG(C) a,beG(C)
completing the proof of Proposition 2.

To prove Proposition 4 it is sufficient to show that A(p — I)(C;y,) C©
CRCy+ C;i_; ®C. To this end note that, as ¢ is a coalgebra homo-
morphism, dp — ) = (e R —IRXNAd =(eR (P — )+ (¢ — ) Q)4
so that

A —INCip) = (e @@ — 1) + (¢ — ) ®DAC;4
i+

Ce®@—DN+@—-DR®D}Y C;Q Ciny

j=0
i-1
CCRCHY CRC,+CRCGECRC+Ciy ®C,
j=1

as required.

3. PROPERTIES OF THE ANTIPODE

It is well known that S(a) = aforae G(H).If ke H, , , then 0 = (k) =
(S®I)A(k) = S(k)a + bk so S(k) = —b~lka'. It then follows that
S%k) = ab—*ka1b and S?'(k) = (ab—)'k(a—1b)! for all ¢ == 1. Thus, if e is the
exponent of G(H) we have S2*(k) = k for all ke H, ., . In view of Proposi-
tion 2 this implies (S% — I)(H;) = (0), proving Proposition 3.

We, thus, have the conditions of Proposition 4 satisfied for i = 1. Repeated
use of this proposition gives (S%* — IYH;)C H;_, for all £ > 1, and so
(S% — I){(H;) == (0), proving the theorem.

Corollary 6 follows from the theorem by noting that if ® has characteristic 0
then ((x2¢ — 1), ¥¢ — 1) divides x? — 1 for any positive integers n and ¢
(since the roots of x? = | are distinct), while if @ has characteristic p then
0= (S* —I)"" = §2e+" _ [

4. REMARKS

Since extension of the base field leaves the order of the antipode fixed these

results apply to Hopf algebras which become pointed upon extension of the
base field.

481/29[1-3
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It is interesting to note that the antipode of any (not necessarily pointed)
finite dimensional Hopf algebra over a finite field has finite order. For the
antipode is bijective [4, p. 101] and hence is a permutation of the finite set H.
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