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1. Introduction

The Brout–Englert–Higgs mechanism or Higgs phenomenon for 
short is one of the most well-known mechanisms by which gauge 
bosons [1] acquire their masses [2–4]. In the conventional wisdom, 
the Higgs mechanism is understood in such a way that the spon-
taneous symmetry breaking (SSB) generates mass for a gauge boson: 
The original gauge group G is spontaneously broken down to a 
subgroup H by choosing a specific vacuum as the physical state 
from all the possible degenerate ground states (the lowest energy 
states). Such SSB of the original gauge symmetry is caused by a 
non-vanishing vacuum expectation value (VEV) 〈φ〉 �= 0 of a scalar 
field φ governed by a given potential V (φ). For a continuous group 
G , there appear the massless Nambu–Goldstone bosons associated 
with the SSB G → H according to the Nambu–Goldstone theorem 
[5,6]. When the scalar field couples to a gauge field, however, the 
massless Nambu–Goldstone bosons are absorbed to provide the 
gauge boson with the mass. Thus, the massless Nambu–Goldstone 
bosons disappear from the spectrum. In a semi-classical treatment, 
the VEV 〈φ〉 is identified with one of the minima φ0 of the scalar 
potential V (φ), namely, 〈φ〉 = φ0 �= 0 with V ′(φ0) = 0.

Although this paper focuses on the Higgs phenomenon in the 
continuum space time, it is very instructive to learn the lattice 
results, because some non-perturbative and rigorous results are 
available on the lattice. Especially, the lattice gauge theory à la
Wilson [7] gives a well-defined gauge theory without gauge fix-
ing. The Elitzur theorem [8] tells us that the local continuous gauge 
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symmetry cannot break spontaneously, if no gauge fixing is in-
troduced. In the absence of gauge fixing, all gauge non-invariant 
Green functions vanish identically. Especially, the VEV 〈φ〉 of the 
scalar field φ is rigorously zero,

〈φ〉 = 0, (1)

no matter what the form of the scalar potential V (φ).
Therefore, we are forced to fix the gauge to cause the non-

zero VEV. Even after the gauge fixing, however, we still have the 
problem. Whether SSB occurs or not depends on the gauge choice. 
For instance, in non-compact U (1) gauge-Higgs model under the 
covariant gauge fixing with a gauge fixing parameter α, the SSB 
occurs 〈φ〉 �= 0 only in the Landau gauge α = 0, and no SSB oc-
cur 〈φ〉 = 0 in all other covariant gauges with α �= 0, as rigorously 
shown in [9,10]. In an axial gauge, 〈φ〉 = 0 for compact models 
[11]. In contrast, it can happen that 〈φ〉 �= 0 in a unitary gauge re-
gardless of the shape of the scalar potential. It is obvious that the 
VEV of the scalar field is not a gauge-independent criterion of SSB.

Even after breaking completely the local gauge symmetry G
by imposing a suitable gauge fixing condition, there can remain 
a global gauge symmetry H ′ of G . Such a global symmetry H ′ is 
called the remnant global gauge symmetry [12,13]. Only a remnant 
global gauge symmetry H ′ of the local gauge symmetry G can 
break spontaneously to cause the Higgs phenomenon [14]. How-
ever, such a subgroup H ′ is not unique and the location of the 
breaking in the phase diagram depends on H ′ in the gauge-Higgs 
model. The relevant numerical evidences are given on a lattice 
[13] for different H ′ allowed for various confinement scenarios. 
Moreover, the transition occurs in the regions where the Fradkin–
Shenker–Osterwalder–Seiler theorem [15,16] assures us that there 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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is no transition in the phase diagram. Thus, the spontaneous gauge 
symmetry breaking is a rather misleading terminology.

These observations indicate that the Higgs phenomenon should 
be characterized in a gauge-invariant way without breaking the 
original gauge symmetry. In this paper, we show that a gauge 
boson can acquire the mass in a gauge-invariant way without 
assuming spontaneous breakdown of gauge symmetry which is 
signaled by the non-vanishing VEV of the scalar field. We demon-
strate that the Higgs phenomenon occurs even without such SSB. 
The spontaneous symmetry breaking is sufficient but not necessary 
for the Higgs mechanism to work. Remember that quark confine-
ment is realized in the unbroken gauge symmetry phase with mass 
gap. Thus, the gauge-invariant description of the Higgs mechanism 
can shed new light on the complementarity between confinement 
phase and Higgs phase [17].

2. Yang–Mills–Higgs model and the conventional Higgs 
mechanism

In this paper we use the notation for the inner product of 
the Lie-algebra valued quantities A = A A T A and B = BA T A ; 
A · B := 2 tr(A B) = A ABB 2 tr(T A T B) = A ABA under the nor-
malization tr(T A T B) = 1

2 δAB for the generators T A of the Lie al-
gebra su(N) (A = 1, 2, . . . , dim G = N2 − 1) for a gauge group 
G = SU (N). The SU (N) Yang–Mills field Aμ(x) = A A

μ (x)T A has 
the field strength Fμν(x) = F A

μν(x)T A defined by Fμν := ∂μAν −
∂νAμ − ig[Aμ, Aν ].

We consider a Yang–Mills–Higgs theory specified by a gauge-
invariant action. The Yang–Mills field Aμ(x) = A A

μ (x)T A and the 
adjoint scalar field φ(x) = φA(x)T A obey the gauge transformation:

Aμ(x) → U (x)Aμ(x)U−1(x) + ig−1U (x)∂μU−1(x),

φ(x) → U (x)φ(x)U−1(x), U (x) ∈ G = SU (N). (2)

For concreteness, consider the G = SU (N) Yang–Mills–Higgs theory 
with the Lagrangian density:

LYMH = −1

4
Fμν(x) · Fμν(x)

+ 1

2
(Dμ[A ]φ(x)) · (Dμ[A ]φ(x))

− V (φ(x) · φ(x)), (3)

where we have defined the covariant derivative Dμ[A ] := ∂μ −
ig[Aμ, ·] in the adjoint representation. We assume that the adjoint 
scalar field φ(x) = φA(x)T A has the fixed radial length, which is 
represented by a constraint1:

φ(x) · φ(x) ≡ φA(x)φA(x) = v2. (4)

Notice that φ(x) · φ(x) is a gauge-invariant combination. There-
fore, the potential V as an arbitrary function of φ(x) · φ(x) is 
invariant under the gauge transformation. The covariant deriva-
tive Dμ[A ] := ∂μ − ig[Aμ, ·] transforms according to the ad-
joint representation under the gauge transformation: Dμ[A ] →
U (x)Dμ[A ]U−1(x). This is also the case for the field strength 
Fμν(x). Moreover, the constraint (4) is invariant under the gauge 

1 After imposing the constraint (4), the subsequent argument should hold irre-
spective of the form of the potential V . The vacuum manifold in the target space 
of the scalar field is determined by the minima of the potential V , which also sat-
isfies the constraint (4). However, there are some options as to when and how the 
constraint is incorporated, see e.g., (39). The potential is omitted in what follows 
when any confusion does not occur. Moreover, this model is perturbatively non-
renormalizable and the non-perturbative treatment is required.
transformation and does not break the gauge invariance of the the-
ory. Therefore, LYMH of (3) with the constraint (4) is invariant 
under the local gauge transformation (2).

For N = 2, this theory is nothing but the well-known Georgi–
Glashow model which exemplifies the SSB of the local gauge sym-
metry from SU (2) down to U (1) except for the magnitude of the 
scalar field being fixed (4). In this paper, we focus our discussions 
on the SU (2) case.

First, we recall the conventional description for the Higgs 
mechanism. If the scalar field φ(x) acquires a non-vanishing VEV 
〈φ(x)〉 = 〈φ〉, then the covariant derivative reduces to

Dμ[A ]φ(x) := ∂μφ(x) − ig[Aμ(x),φ(x)]
→ −ig[Aμ(x), 〈φ〉] + . . . , (5)

and the Lagrangian density reads

LYMH → −1

2
tr
G
{Fμν(x)Fμν(x)}

− g2 tr
G
{[A μ(x), 〈φ〉][Aμ(x), 〈φ〉]} + . . . .

= −1

2
tr
G
{Fμν(x)Fμν(x)}

− g2 tr
G
{[T A, 〈φ〉][T B , 〈φ〉]}A μA(x)A B

μ (x) + . . . . (6)

To break spontaneously the local continuous gauge symmetry G
by realizing the non-vanishing VEV 〈φ〉 of the scalar field φ , we 
choose the unitary gauge in which the scalar field φ(x) is pointed 
to a specific direction φ(x) → φ∞ uniformly over the spacetime.

This procedure does not completely break the original gauge 
symmetry G . Indeed, there may exist a subgroup H of G such 
that φ∞ does not change under the local H gauge transforma-
tion. This is the partial SSB G → H : the mass is provided for the 
coset G/H (broken parts), while the mass is not supplied for the 
H-commutative part of Aμ:

LYMH → −1

2
tr
G
{Fμν(x)Fμν(x)}

− (gv)2 tr
G/H

{A μ(x)Aμ(x)}. (7)

After the partial SSB, therefore, the resulting theory is a gauge the-
ory with the residual gauge group H .

For G = SU (2), by taking the usual unitary gauge in which the 
scalar field φ(x) = φA(x)T A (A = 1, 2, 3) is chosen so that

〈φ∞〉 = vT3, or 〈φA∞〉 = vδA3, (8)

the second term of (6) generates the mass term,

−g2 v2 tr
G
{[T A, T3][T B , T3]}A μA(x)A B

μ (x)

= 1

2
g2 v2(A μ1(x)A 1

μ(x) + A μ2(x)A 2
μ(x)). (9)

For SU (2), indeed, the off-diagonal gluons A a
μ (a = 1, 2) acquire 

the same mass MW := gv , while the diagonal gluon A 3
μ remains 

massless. Even after taking the unitary gauge (8), U (1) gauge sym-
metry described by A 3

μ still remains as the residual local gauge 
symmetry H = U (1), which leaves φ∞ invariant (the local rotation 
around the axis of the scalar field φ∞).

Thus, the SSB is sufficient for the Higgs mechanism to take 
place. But, it is not clear whether the SSB is necessary or not for 
the Higgs mechanism to work.

In the complete SSB G → H = {1}, all components of the Yang–
Mills field become massive with no massless components:
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LYMH → − 1

2
tr
G
{FμνFμν} − (gv)2 tr

G
{A μAμ}, (10)

and the resulting theory has no residual gauge symmetry. This case 
should be separately discussed, see Appendix.

3. Gauge-invariant Higgs mechanism: SU(2) case

Next, we give a novel description, namely, a gauge-invariant 
(gauge-independent) description of mass generation for gauge 
bosons without relying on the SSB. We construct a composite vec-
tor field Wμ(x) from the Yang–Mills field Aμ(x) and the (adjoint) 
scalar field φ(x) by

Wμ(x) := −ig−1[φ̂(x),Dμ[A ]φ̂(x)], (11)

with the unit scalar field φ̂ defined by

φ̂(x) := φ(x)/v, (12)

and the covariant derivative in the adjoint representation
Dμ[A ]φ := ∂μφ − ig[Aμφ]. We find that the kinetic term of the 
Yang–Mills–Higgs model is identical to the “mass term” of the vec-
tor field Wμ(x):

1

2
Dμ[A ]φ(x) · Dμ[A ]φ(x) = 1

2
M2

W W μ(x) · Wμ(x),

MW := gv, (13)

as far as the constraint (4) is satisfied. Indeed, this fact is shown 
explicitly for G = SU (2):

g2 v2W μ · Wμ = v−22 tr([φ,Dμ[A ]φ][φ,Dμ[A ]φ])
= v−2{(φ · φ)(Dμ[A ]φ · Dμ[A ]φ)

− (φ · Dμ[A ]φ)(φ · Dμ[A ]φ)}
= (Dμ[A ]φ) · (Dμ[A ]φ), (14)

where we have used the constraint (4) and φ ·Dμ[A ]φ = φ ·∂μφ +
φ · (gAμ ×φ) = gAμ · (φ ×φ) = 0, with φ · ∂μφ = 0 following from 
differentiating the constraint (4).

Remarkably, the above “mass term” (13) of Wμ is gauge invari-
ant, since Wμ obeys the adjoint gauge transformation:

Wμ(x) → U (x)Wμ(x)U−1(x). (15)

Therefore, the vector field Wμ becomes massive without breaking 
the original gauge symmetry. The above description shows that the 
SSB of gauge symmetry is not necessary for generating the mass 
of gauge bosons Wμ , since we do not need to choose a specific 
vacuum from all possible degenerate ground states distinguished 
by the direction of φ. The relation (11) gives a gauge-independent 
definition of the massive gluon mode in the operator level. The re-
lation (11) is also independent from the parameterization of the scalar 
field. See Appendix in which the statement is exemplified for a 
simpler model.

How is this description related to the conventional one? The 
constraint φ · φ = v2 represents the vacuum manifold in the tar-
get space of the scalar field φ . The scalar field φ subject to the 
constraint φ ·φ = v2 is regarded as the Nambu–Goldstone modes liv-
ing in the flat direction at the bottom of the potential V (φ), giving 
the degenerate lowest energy states. Therefore, the massive field Wμ

is formed by combining the massless (would-be) Nambu–Goldstone 
modes with the original massless Yang–Mills field Aμ . This cor-
responds to the conventional explanation that the gauge boson 
acquires the mass by absorbing the Nambu–Goldstone boson ap-
peared in association with the SSB.
Despite its appearance (11) of Wμ obeying the adjoint gauge 
transformation, the independent internal degrees of freedom of the 
new field Wμ = (W A

μ ) (A = 1, 2, 3) is equal to dim(G/H) = 2, since 
Wμ has no components parallel to the scalar field, that is to say, 
Wμ is orthogonal to the scalar field φ:

Wμ(x) · φ(x) = 0. (16)

Notice that this is a gauge-invariant statement. Thus, Wμ(x) repre-
sent the massive modes corresponding to the coset space G/H as 
expected. In this way, we can understand the residual gauge sym-
metry left in the partial SSB: G = SU (2) → H = U (1). In fact, by 
taking the unitary gauge φ(x) → φ∞ = vφ̂∞ , Wμ reduces to

Wμ(x) → −ig−1[φ̂∞,Dμ[A ]φ̂∞]
= [φ̂∞, [φ̂∞,Aμ(x)]]
= Aμ(x) − (Aμ(x) · φ̂∞)φ̂∞. (17)

Then Wμ agrees with the off-diagonal components for the specific 
choice φ̂

A
∞ = δA3:

W A
μ (x) →

{
A a

μ(x) (A = a = 1,2)

0 (A = 3).
(18)

This suggests that the original gauge field Aμ is separated into 
two pieces:

Aμ(x) = Vμ(x) + Wμ(x). (19)

By definition, the field Vμ(x) transforms under the gauge transfor-
mation just like the original gauge field Aμ(x):

Vμ(x) → U (x)Vμ(x)U−1(x) + ig−1U (x)∂μU−1(x). (20)

Then the question is how to characterize the first piece Vμ(x)
which is expected to become dominant in the low-energy E 
 MW
region, where Wμ(x) with the mass MW can be negligible. Accord-
ing to (11), it is shown that Wμ(x) = 0 is equivalent to

Dμ[V ]φ̂(x) = 0. (21)

Using the first equation (16) and the second equation (21), we find 
that a composite vector field Vμ is constructed from the Yang–
Mills field Aμ and the scalar field φ as [18]:

Vμ(x) = cμ(x)φ̂(x) + ig−1[φ̂(x), ∂μφ̂(x)], (22)

cμ(x) := Aμ(x) · φ̂(x). (23)

In fact, this form for Vμ(x) agrees with Vμ(x) = Aμ(x) − Wμ(x)
when eq. (11) is substituted into Wμ(x). In the unitary gauge 
φ(x) → φ∞ = vφ̂∞ , Vμ reduces to

Vμ(x) → (Aμ(x) · φ̂∞)φ̂∞. (24)

Then, Vμ agrees with the diagonal component for φ̂
A
∞ = δA3:

V A
μ (x) →

{
0 (A = a = 1,2)

A 3
μ(x) (A = 3).

(25)

Thus, the above arguments go well in the topologically trivial sec-
tor.

In the topologically non-trivial sector, the above argument must 
be improved, since ∂μφ̂ is not identically zero in the presence of 
singularities related to the topological configuration. Indeed, in or-
der to realize the unitary gauge configuration starting from the 
hedgehog configuration of the scalar field, we need to perform 
the singular gauge transformation in the presence of the ’t Hooft–
Polyakov magnetic monopole [19]. This case will be refined later.
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Notice that the decomposition equality (19) represents a rather 
non-trivial statement where Vμ(x) is identified with (22) and 
Wμ(x) is identified with (11). We first introduce the fields Vμ(x)

and Wμ(x) as composite field operators of Aμ(x) and φ̂(x). Then 
we regard a set of field variables {cμ(x), Wμ(x), φ̂(x)} as obtained 
from {Aμ(x), φ̂(x)} based on change of variables:

{cμ(x),Wμ(x), φ̂(x)} ← {Aμ(x), φ̂(x)}, (26)

where (23) and (11) give respectively the transformation law of 
cμ(x) and Wμ(x) from {Aμ(x), φ̂(x)}. Indeed, we can calculate the 
Jacobian associated with this change of variables. See [20,37,41] for 
details. Finally, we identify cμ(x), Wμ(x) and φ̂(x) with the funda-
mental field variables (which are independent up to the constraint 
(4)) for describing the massive Yang–Mills theory anew. (Here fun-
damental means that the quantization should be performed with 
respect to those variables {cμ(x), Wμ(x), φ̂(x)} which appear e.g., 
in the path-integral measure.)

According to the decomposition (19), the field strength Fμν(x)
of the gauge field Aμ(x) is decomposed as

Fμν [A ] := ∂μAν − ∂νAμ − ig[Aμ,Aν ]
= Fμν [V ] + Dμ[V ]Wν − Dν [V ]Wμ

− ig[Wμ,Wν ]. (27)

By substituting the decomposition (27) into the SU (2) Yang–Mills–
Higgs Lagrangian, we obtain

LYMH = −1

4
Fμν [V ] · Fμν [V ]

− 1

4
(Dμ[V ]Wν − Dν [V ]Wμ)2 + 1

2
M2

W W μ · Wμ

+ 1

2
Fμν [V ] · ig[W μ,W ν ] − 1

4
(ig[Wμ,Wν ])2, (28)

where each term is SU (2) invariant. Then it is easy to observe that 
the vector field Wμ has the ordinary kinetic term and the mass 
term. Therefore, there is a massive vector pole in the propagator 
of Wμ (after a certain gauge fixing). Thus, Wμ is not an auxiliary 
field, but is a propagating field with the mass MW (up to possible 
quantum corrections).

4. Confined massive phase: SU(2) case

Remarkably, the field strength Fμν [V ](x) := ∂μVν(x) −
∂νVμ(x) − ig[Vμ(x), Vν(x)] of Vμ(x) is shown to be proportional 
to φ̂(x) [20]:

Fμν [V ](x) = φ̂(x){∂μcν(x) − ∂νcμ(x) + Hμν(x)},
Hμν(x) := ig−1φ̂(x) · [∂μφ̂(x), ∂ν φ̂(x)]. (29)

We can introduce the Abelian-like SU (2) gauge-invariant field 
strength fμν(x) by

fμν(x) := φ̂(x) · Fμν [V ](x)

= ∂μcν(x) − ∂νcμ(x) + Hμν(x). (30)

In the low-energy E 
 MW or the long-distance r � M−1
W region, 

we can neglect the field Wμ as the first approximation. Then the 
dominant low-energy modes are described by the restricted La-
grangian density:

L rest
YM = −1

4
Fμν [V ] · Fμν [V ] = −1

4
f μν fμν. (31)
The resulting gauge theory with the Lagrangian (31) is called the 
restricted Yang–Mills theory. Consequently, the SU (2) Yang–Mills 
theory looks like the Abelian gauge theory (31). But, even at this 
stage the original non-Abelian gauge symmetry SU (2) is not bro-
ken.

In the low-energy E 
 MW or the long-distance r � M−1
W re-

gion, the massive components Wμ(x) become negligible and the 
restricted theory become dominant. This is equal to a phenomenon 
called the “Abelian” dominance [21,22] in quark confinement. We 
have shown that the “Abelian” dominance in quark confinement of 
the Yang–Mills theory is understood as a consequence of the Higgs 
mechanism defined in a gauge-invariant way for the relevant (or 
equivalent) Yang–Mills–Higgs model. The Abelian dominance was 
confirmed for the string tension [23] and for the propagator [24,
25] for the SU (2) Yang–Mills theory on the lattice in the Maximal 
Abelian gauge [26], and later reconfirmed based on the gauge-
invariant formulation on the lattice for the string tension [27] and 
the full propagator [28].

Notice that Hμν(x) is locally closed (dH = 0) and hence it can 
be locally exact (H = dh) due to the Poincaré lemma. Then Hμν(x)
has the Abelian potential hμ(x):

Hμν(x) = ∂μhν(x) − ∂νhμ(x). (32)

Therefore, the SU (2) gauge-invariant Abelian-like field strength 
fμν is rewritten as

fμν(x) = ∂μGν(x) − ∂νGμ(x), Gμ(x) := cμ(x) + hμ(x). (33)

We call cμ the electric potential and hμ the magnetic potential. In-
deed, hμ agrees with the Dirac magnetic potential, see section 6.10 
of [20].

We can define the magnetic–monopole current kμ(x) in a gauge-
invariant way:

kμ(x) = ∂ν
∗ f μν(x), (34)

where ∗ denotes the Hodge dual, e.g., for D = 4, the dual ten-
sor ∗ f μν of f μν is defined by ∗ f μν(x) := 1

2 εμνρσ fρσ (x). The 
magnetic current kμ(x) is not identically zero, since the Bianchi 
identity valid for the electric potential cμ is violated by the mag-
netic potential hμ . The contribution of the gauge-invariant mag-
netic monopole to the Wilson loop average can be detected using 
the non-Abelian Stokes theorem for the Wilson loop operator, see 
[29,30] and section 6 of [20].

The restricted Yang–Mills theory obtained from the original 
SU (2) Yang–Mills theory has the magnetic part besides the elec-
tric part which exists in the usual non-compact U (1) gauge the-
ory. Therefore, the restricted Yang–Mills theory is regarded as the 
continuum counterpart to the compact U (1) gauge theory on the 
lattice which involves the magnetic monopoles leading to confine-
ment in the strong coupling region [31,32]. It is known [33,34] that 
the compact U (1) gauge theory on the lattice has two phases: con-
finement phase due to magnetic monopoles in the strong coupling 
region [31,32] which is separated by a critical coupling from the 
Coulomb phase in the weak coupling region [35,36].

The Yang–Mills–Higgs model includes the parameters specifying 
the potential besides the gauge coupling. They are arbitrary and 
hence the mass gap of the theory is not uniquely determined. In 
sharp contrast to the Yang–Mills–Higgs model, the mass gap in the 
Yang–Mills theory should be generated in a dynamical way with-
out breaking gauge invariance, and it is determined without free 
parameters to be adjusted.

In the Yang–Mills theory, indeed, the mass MW can be gener-
ated in a dynamical way, e.g., by a gauge-invariant vacuum con-
densation 〈W μ · Wμ〉 so that M2

W � 〈W μ · Wμ〉 due to the quar-
tic self-interactions − 1 (ig[Wμ(x), Wν(x)])2 among Wμ(x) field, in 
4
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sharp contrast to the ordinary Yang–Mills–Higgs model. The ana-
lytical calculation for such a condensate was done in [37]. More-
over, the mass MW has been measured by numerical simulations 
on the lattice in [28] (see also section 9.4 of [20]) as

MW � 2.69
√

σphys � 1.19 GeV, (35)

where σphys is the string tension of the linear potential in the 
quark–antiquark potential.

The mass MW is used to show the existence of confinement-
deconfinement phase transition at a finite critical temperature Tc , 
separating confinement phase with vanishing Polyakov loop av-
erage at low temperature and deconfinement phase with non-
vanishing Polyakov loop average at high temperature [38]. The crit-
ical temperature Tc is obtained from the calculated ratio Tc/MW

for a given MW , which provides a reasonable estimate.
Notice that we cannot introduce the ordinary mass term for the 

field Vμ , since it breaks the original gauge invariance. But, another 
mechanism of generating mass for the Abelian gauge field Gμ :=
cμ + hμ could be available, e.g., magnetic mass for photon due to 
the Debye screening caused by magnetic monopoles, which yields 
confinement and mass gap in three-dimensional Yang–Mills–Higgs 
theory as shown in [39]. Moreover, the Abelian gauge field must 
be confined, which is a problem of gluon confinement. In view of 
these, the full propagator of the Abelian gauge field must have a 
quite complicated form, as has been discussed in e.g., [40].

In the Yang–Mills–Higgs model, the gauge field Aμ and the 
scalar field φ are independent field variables. However, the Yang–
Mills theory should be described by the gauge field Aμ alone and 
hence the scalar field φ must be supplied by the gauge field Aμ

due to the strong interactions. In other words, the scalar field φ
should be given as a (complicated) functional of the gauge field. 
This is achieved by imposing the constraint which we call the re-
duction condition [41,42], see also section 4 of [20]. We choose e.g.,

χ(x) := [φ̂(x),Dμ[A ]Dμ[A ]φ̂(x)] = 0, (36)

which is also written as Dμ[V ]Wμ(x) = 0. This condition is gauge 
covariant,

χ(x) → U (x)χ (x)U−1(x). (37)

This is easily shown from the gauge transformation (2) of the 
scalar field and the Yang–Mills field.

The reduction condition plays the role of eliminating the ex-
tra degrees of freedom introduced by the radially fixed scalar field 
into the Yang–Mills theory [20]. The reduction condition represents 
as many conditions as the independent degrees of freedom of the 
radially fixed scalar field φ(x), since

χ(x) · φ̂(x) = 0. (38)

Therefore, imposing the reduction condition (36) exactly eliminates 
extra degrees of freedom introduced by the radially fixed scalar 
field (4), see [20].

Fortunately, the reduction condition is automatically satisfied in 
the level of field equations. We introduce a Lagrange multiplier 
field λ(x) to incorporate the constraint (4) into the Lagrangian:

L ′
YMH = LYMH + λ(x)

(
φ(x) · φ(x) − v2

)
. (39)

Then the field equations are obtained as

δS ′
YMH

δλ(x)
= φ(x) · φ(x) − v2 = 0, (40)

δS ′
YMH
μ

= Dν [A ]Fνμ(x) − ig[φ(x),Dμ[A ]φ(x)] = 0, (41)

δA (x)
δS ′
YMH

δφ(x)
= −Dμ[A ]Dμ[A ]φ(x) − 2φ(x)V ′(φ(x) · φ(x))

+ 2λ(x)φ(x) = 0. (42)

The reduction condition (36) follows by applying the covariant 
derivative Dμ[A ] to (41) as Dμ[A ]Dν [A ]Fνμ = igDμ[A ][φ,

Dμ[A ]φ] = ig[φ, Dμ[A ]Dμ[A ]φ] (this is the covariant version of 
the current conservation law), since Dμ[A ]Dν [A ]Fνμ = 0. Tak-
ing the commutator of the field equation (42) for the scalar field 
φ with φ, we find that the reduction condition (36) is automati-
cally satisfied, irrespective of the choice of the potential function 
V (φ · φ): [φ, Dμ[A ]Dμ[A ]φ] = [φ, −2φV ′(φ · φ) + 2λφ] = 0.

Notice that the equivalence between the Yang–Mills–Higgs the-
ory and the pure Yang–Mills theory is expected to hold only when 
the scalar field is radially fixed. If we include the radial degree of 
freedom for the scalar field, the equivalence is lost. Indeed, the ra-
dial degree of freedom for the scalar field corresponds to the Higgs 
particle with a non-zero mass.

5. Conclusion and discussion

In this paper we have given a gauge-independent description 
for the Higgs mechanism by which a gauge boson acquires the 
mass in a manifestly gauge-invariant way. We have written the re-
sulting massive gauge modes Wμ explicitly in the operator level. 
Therefore, we can describe the Higgs mechanism without assum-
ing spontaneous breakdown of gauge symmetry relying on a non-
vanishing vacuum expectation value of the scalar field. In this 
way, we can understood the mass generation of gauge bosons in 
the gauge-invariant way without breaking the original gauge sym-
metry. The spontaneous symmetry breaking is sufficient but not 
necessary for the Higgs mechanism to work.

The novel description of the Higgs mechanism enables us to 
discuss the confinement-Higgs complementarity from a new per-
spective. Our results suggest that the SU (2) Yang–Mills theory in 
the gapped or massive phase is equivalent to the Yang–Mills–Higgs 
theory with a radially fixed adjoint scalar field in the Higgs phase 
which is conventionally considered to be associated to the sponta-
neous symmetry breaking G = SU (2) → H = U (1). The gapped or 
massive phase is regarded as the confinement phase, which was 
confirmed on a lattice by numerical simulations for the reformu-
lated Yang–Mills theory [20].

Moreover, we have discussed the implications of the gauge-
invariant Higgs mechanism for quark confinement. We have shown 
that the “Abelian” dominance in quark confinement of the SU (2)

Yang–Mills theory is understood as a consequence of the gauge-
invariant Higgs phenomenon for the relevant SU (2) Yang–Mills–
Higgs model.

The case of larger gauge groups SU (N) (N ≥ 3) will be 
treated in a subsequent paper. In particular, some interesting cases 
SU (3) → U (1) × U (1), SU (3) → U (2), and SU (2) × U (1) → U (1)

will be discussed in detail.
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Appendix A. Higgs mechanism for the complete SSB

We consider the Abelian-Higgs theory or U (1) gauge-scalar the-
ory with the Lagrangian density:
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LAH = −1

4
Fμν F μν + (Dμφ)∗(Dμφ) − V (φ∗φ),

V (φ∗φ) = λ

2

(
φ∗φ − μ2

λ

)2

, φ ∈C, λ > 0, (A.1)

where Fμν(x) = ∂μ Aν(x) − ∂ν Aμ(x) is the field strength of the 
U (1) gauge field Aμ(x) and Dμ = ∂μ − ie Aμ(x) is a U (1) covari-
ant derivative for the complex scalar field φ(x) ∈ C with q being 
the electric charge of φ(x). Here ∗ denotes the complex conjugate. 
For μ2 > 0, the minimum of the potential is attained when the 
magnitude of the scalar field is equal to the value:

|φ(x)| = v√
2
, v =

√
μ2

λ/2
. (A.2)

If we use a representation of polar decomposition for the radi-
ally fixed scalar field:

φ(x) = v√
2

eiπ(x)/v ∈C, π(x) ∈R, (A.3)

the covariant derivative reads

Dμφ = (∂μ − ie Aμ)φ(x) = − v√
2

ie

(
Aμ − 1

ev
∂μπ

)
eiπ/v , (A.4)

and the kinetic term of the scalar field reads

(Dμφ)∗(Dμφ) =1

2
e2 v2

(
Aμ − 1

ev
∂μπ

)2

. (A.5)

By introducing a new (massive) vector field Wμ by

Wμ(x) := Aμ(x) − m−1∂μπ(x), m := ev, (A.6)

LAH is completely rewritten in terms of Wμ:

LAH = −1

4
(∂μWν − ∂ν Wμ)2 + 1

2
m2WμW μ. (A.7)

The field π is usually interpreted as the massless Nambu–
Goldstone boson associated with the complete SSB G = U (1) →
H = {1}, which is absorbed into the massive field Wμ . For G =
U (1), we find that the massive vector field Wμ has a mani-
festly gauge-invariant representation written in terms of Aμ and 
φ (φ̂ := φ(x)/|φ(x)|):

Wμ(x) = ie−1φ̂∗(x)Dμφ̂(x) = −ie−1φ̂(x)Dμφ̂∗(x). (A.8)

This reduces to (A.6) for the parameterization (A.3). The represen-
tation (A.8) is independent from the parameterization of the scalar 
field. Therefore, a different representation is obtained from another 
parameterization:

φ(x) = 1√
2
[v + ϕ(x) + iχ(x)]. (A.9)
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