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Abstract Eukaryotic valyl-tRNA synthetase (ValRS) and the
heavy form of elongation factor 1 (EF-1H) are isolated as a sta-
ble high molecular mass complex that catalyzes consecutive steps
in protein biosynthesis – aminoacylation of tRNA and its trans-
fer to elongation factor. Herein is the first three-dimensional
structure of the particle as calculated from electron microscopic
images of negatively stained samples of the human ValRS/EF-
1H complex. The ca. 12 · 8 nm particle has two distinct domains
and each appears to have twofold symmetry. Bound antibodies
place two d subunits near the particle�s center. These data sup-
port a dimeric head-to-head arrangement of particle components.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Aminoacyl-tRNA synthetases (aaRSs) are a family of en-

zymes involved in covalent coupling of amino acids with their

matching tRNAs [1]. First an aminoacyl adenylate is formed

using ATP then the activated amino acid is transferred to

the 3 0-adenosine of the cognate tRNA. In addition to their role

in protein biosynthesis, aaRSs have been found to have alter-

nate activities [2,3]. Examples are transcriptional and transla-

tional regulation, synthesis of dinucleotide polyphosphate

signaling molecules, tRNA processing, as well as action as

cytokines. A feature that is characteristic of several of these en-

zymes from multicellular eukaryotes is their ability to form

large stable complexes [4,5]. To date, two types of aaRS com-

plexes have been described: the ‘‘core’’ multisynthetase com-

plex and the valyl-tRNA synthetase/elongation factor-1H

complex (ValRS/EF-1H). These are likely part of highly orga-

nized protein biosynthetic machinery in which close associa-

tion of aaRSs and other protein synthesis factors aids in

maximizing speed and accuracy of this essential biological

process.
Abbreviations: aaRS, aminoacyl-tRNA synthetase; ValRS, valyl-
tRNA synthetase; EF-1H, four subunit form of elongation factor 1;
aa-tRNA, aminoacyl-tRNA
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Significant advances have been made in characterization of

the multisynthetase complex [6]. This particle contains 11 poly-

peptides with molecular masses ranging from 18 to 150 kDa.

There are nine aaRS activities and three auxiliary proteins

(p18, p38 and p43). The three-dimensional structure of the

ca. 1.2 · 106 Da complex has been determined by computa-

tional microscopy. It is an asymmetric particle V-shaped parti-

cle with several openings into the deep central cleft [7]. The

internal topography of proteins in the complex has been studied

by genetic and biochemical methods [8–12]. The resulting two-

dimensional models arrange the components in either two or

three domains [11,12]. Recently, a number of relative locations

of proteins in the context of the three-dimensional structure of

the multisynthetase complex have been accomplished using

tRNAs and labeled proteins as structural probes [13].

In contrast, the ValRS/EF-1H complex has been well-

studied biochemically, but not structurally. It has been re-

ported that this assembly contains two copies each of ValRS

and the ‘‘heavy form’’ of EF-1H and has an overall mass of

ca. 700 kDa [14–18]. EF-1H is composed of four subunits: a,
b, c and d. The normal stoichiometry is one copy of each,

although an extra copy of a can be added. When the actual

masses of the components as provided by the human protein

database (ValRS, 140 kDa; EF-1a, 50 kDa; EF-1b, 24 kDa;

EF-1c, 50 kDa, EF-1d, 31 kDa) are added, the total mass of

the complex in the normal stoichiometry is ca. 600 kDa. This

would increase to ca. 700 kDa if an additional copy of the a
subunit is included in each EF-1H assembly. Another nomen-

clature for EF-1H subunits is extant [19] in which the EF-1a, b,
c, d subunits are named eEF1A, eEF1Ba, eEF1Bc and eEF1Bb,

respectively. We have used the traditional nomenclature in or-

der to be consistent with most of the prior studies that have

proposed two-dimensional models of the protein arrangements

within ValRS/EF-1H complex or of EF-1H alone.

Although the molecular mechanism is not yet known, the

biological role of the ValRS/EF-1H complex can be inferred

to be a means of facilitating delivery of charged tRNA to

the ribosome. That is, ValRS and EF1 couple two consecutive

steps of protein biosynthesis. EF-1a forms a ternary complex

with aminoacyl-tRNA (aa-tRNA) and GTP to deliver charged

tRNAs to the A-site of the ribosome for protein synthesis. The

b, c and d subunits recycle inactive EF-1a-GDP to the active

GTP-bound form by stimulating guanine nucleotide exchange.

The GDP/GTP exchange activity is reported to be in the con-

served C-terminal domains of b and d [20,21]. Additionally,

EF-1H co-migrates with ribosomes in sucrose gradient centri-

fugation experiments. This suggests that EF-1bcd is in close
blished by Elsevier B.V. All rights reserved.
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proximity to the ribosome and so any free EF-1a/GDP re-

leased from the ribosome could immediately react with EF-

1bcd before diffusing into the cytosol [22].

In this study, the first three-dimensional structural informa-

tion about the ValRS/EF-1H complex is presented. By electron

microscopic visualization of bound antibodies, the d subunit

has been localized. This study provides additional evidence

that the particle contains two copies of a ValRS/EF-1H pro-

tomer and suggests that they are in a head-to-head arrange-

ment. These data form a basis for understanding the

functional interaction of ValRS and EF-1H.
2. Materials and methods

2.1. Analytical methods
aaRS activity was measured by the incorporation of [14C]-amino

acids into purified Escherichia coli tRNAval (Subriden RNA) [23]. Pro-
tein concentrations were determined using the Pierce Coomassie Blue
protein assay. SDS–PAGE used 10% acrylamide gels prepared accord-
ing to Laemmli [24]. The protein bands were visualized by silver stain-
ing reagents (Bio-Rad) [13]. Mass standards were commercially
prepared (Bio-Rad). For immunoblots, proteins were transferred to
nitrocellulose (0.2 lm, Schleicher & Schuell). Non-specific protein bind-
ing was blocked with 5% non-fat dry milk. A 1:4000 dilution of mouse
anti-EF-1a (Upstate USA Inc.) was used as the primary antibody and a
1:25000 dilution of HRP-conjugated rabbit anti-mouse immunoglobu-
lin (Pierce) was used as the secondary antibody. Detection was per-
formed using the SuperSignal West Pico Chemiluminescent system
(Pierce). Gel-filtration HPLC was performed using a 300 · 4.6 mm Bio-
Sep-SEC-S 4000 Peek column (Phenomenex) in HPLC buffer (25 mM
HEPES, 100 mM NaCl, pH 7.2) with a flow rate of 3.5 ml/min.

2.2. Cell culture and cell-free extract
Human erythroleukemia K562 cells (ATCC #CCL-243) were main-

tained in Isocoves media or Complete Serum Free media (Mediatech,
Inc.) with addition of 5% FBS and 0.5% antibiotic–antimycotic (Invit-
rogen Corporation). Cells were grown at 37 �C to a concentration of
1.0–3.0 · 106 cells/ml, harvested by centrifugation at 1500 · g for
20 min and stored as pellets at �80 �C until needed. For lysis, 40-g cells
were thawed on ice in 100 ml hypotonic buffer (10 mM HEPES, pH
7.2) which also contained one protease inhibitor cocktail tablet
(Roche) per 50 ml. Three additional protease inhibitors were added
just prior to use. These were N-a-(p-toluene sulfonyl)-LL-arginine
methyl ester (TAME), phenyl methyl sulfonyl fluoride (PMSF) and
di-isopropyl fluorophosphate (DIFP) at 1 mM final concentration.
After 12 strokes in a Dounce homogenizer, completeness of cell lysis
was checked with light microscopy. Cell lysate was then cleared by cen-
trifugation for 20 min at 16000 · g.

2.3. Isolation of ValRS/EF-1H complex
High molecular mass material was extracted from cell lysate by poly-

ethylene glycol (PEG) fractionation. Specifically, 40% PEG 8000 in
column buffer (50 mM HEPES, pH 7.2, 5 mM magnesium acetate,
0.5 mM EDTA, 1 mM dithiothreitol, 10% glycerol and the combina-
tion of protease inhibitors listed above) was added to lysate to give a
final concentration of 5%. After incubation on ice for 60 min, precip-
itate was collected by centrifugation 20 min at 16000 · g. This was dis-
solved in column buffer in preparation for two successive ion exchange
chromatography steps. These were a 10 ml column of S-agarose (Bio-
Rad) and a 5 ml column of Q-agarose (Bio-Rad). Elution from both
columns used a sodium chloride gradient of 100–700 mM. Fractions
with high ValRS enzyme activity were combined and stored in aliquots
at �20 �C. Immunoblot detection using EF-1a antibody, SDS–PAGE
gel patterns and ValRS enzyme activities were used to detect the com-
plex during the purification.

2.4. Electron microscopy
Electron micrographs for three-dimensional reconstruction were ob-

tained of fractions from gel filtration HPLC that were adsorbed onto
thin carbon films and stained with either 1% aqueous uranyl acetate or
methylamine vanadate (Nanovane, Nanoprobes, Yaphank, NY) as
previously described [23]. Excess antibody was removed from samples
that were reacted with rabbit anti-EF-1d antibodies (Novus Biological
Inc.) using gel-filtration HPLC and the fractions were prepared for
electron microscopy as above. Electron micrographs were obtained
with a LEO912AB transmission electron microscope at 100 kV with
absolute magnifications of 63000. Micrographs were digitized on a
flatbed scanner to give a pixel size of 3.2 Å on the image scale.

2.5. Image analysis
The SPIDER/WEB software package was used for all computations

[25]. For all reconstructions, images were interactively selected and
then aligned using a reference-free algorithm. Calculation of the pri-
mary reference structure was from tilt pairs (0�, �54.9�) of micro-
graphs taken with minimum dose focusing. Tilt pairs are used to
determine the three Eulerian angles that properly orient the image
views for a de novo structure calculation. Uranyl acetate was used as
the negative stain at this initial stage in order to maximize image con-
trast which aided particle selection. After translational and rotational
alignment, 560 images were classified using a K-means grouping algo-
rithm. Reconstructions were calculated from appropriately populated
classes. Several rounds of merging were done using angles determined
by three-dimensional orientation search. The resulting primary refer-
ence was refined with 5560 untilted images using projection mapping
at 10� intervals.
Final refinement of the structure used 11206 untilted images of sam-

ple negatively stained with methylamine vanadate. Although images
have relatively low contrast, additional structural details are typically
preserved [7,13]. Angles were again obtained by projection mapping
to the primary reference. Care was taken to use the appropriate param-
eters and number of images in each projection class to prevent introduc-
tion of artifacts due to overrepresentation of particular frequencies or
views [26]. Resolution limits were determined from the 50% cutoff of
the Fourier shell coefficient between reconstructions of half data sets.
Thresholds for surface representation were calculated using mass values
of 600 and 700 kDa and a partial specific volume of 0.72. Surface rep-
resentations were created using IRIS EXPLORER (Numerical Algo-
rithms Group, Downers Grove, IL).
3. Results

3.1. Intact ValRS/EF-1H complex was purified to near

homogeneity

Gel-filtration HPLC was used as a final purification step for

ValRS/EF-1H complex. As shown in Fig. 1A, the main protein

peak elutes as high molecular mass material. This provided

evidence that the intact dimeric particle had been isolated.

To verify that it contained all of the expected components,

SDS–PAGE, aminoacylation activity assay and immunoblot-

ting with anti-EF-1a antibody were used to further analyze

fractions from the HPLC column. Fig. 1B shows the electro-

phoretic band patterns of HPLC fractions 24 and 26, which

correspond to elution times of 9–10 min. A strong band is seen

at the position of 140 kDa. This is the expected mass of ValRS.

The two bands with apparent mass of 50 kDa are consistent

with the presence of EF-1a and 1c. The lower two bands of

approximately 30 kDa indicate the presence of EF-1b and d
[15,16]. Other protein bands are also visible, e.g., at ca.

200 kDa, which indicates that the complex is not completely

purified. However, the amounts of contaminating proteins

vary among preparations (data not shown) while the relative

ratios of the ValRS/EF-1H complex components are consis-

tent. Additional confirmation of the presence of ValRS was

obtained by assaying the fractions for ability to incorporate

[14C] valine into tRNAval. As seen in Fig. 1C, enzyme activity

peaked at fraction 26. This fraction also contains the peak of

EF-1a as determined by immunoblot analysis (Fig. 1D).



Fig. 1. The isolated ValRS/EF-1H complex is the high molecular mass
form and has the appropriate composition. (A) Gel-filtration HPLC
indicates that the particle elutes with high molecular mass material.
Vertical arrows mark elution times of molecular mass markers. From
left to right these are thyroglobulin (670kDa); immunoglobulin G
(158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa), Vitamin B-12
(1.35 kDa). (B) Silver stained SDS–PAGE of the peak HPLC fractions
shows protein bands of the sizes expected for particle components.
Lane 1 is a standard marker. Lanes 2 and 3 are fractions 24 and 26,
respectively. (C) The peak of aminoacylation activity coincides with
the fractions of appropriate composition and particle size. (D)
Immunoblot analysis verifies the presence of the a subunit of EF-1H
in the particle.

Fig. 2. Electron microscopic images of the ValRS/EF-1H complex are
of consistent size but variable orientation. (A) Typical electron
micrograph of ValRS/EF-1H complex negatively stained with methyl-
amine vandate. (B) Image averages showing representative particle
views (top row) and the three-dimensional reconstruction surface
representation in the corresponding orientations (bottom row). The
numbers correspond to the number of images in each average.
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Earlier studies have established that EF-1H and ValRS activ-

ities coelute throughout the isolation procedure used here [16].

Taken together, these results indicate that the isolated particle

was indeed the high molecular mass form of the ValRS/EF-1H

complex containing two copies of each of ValRS and EF-1H.

The key to this purification was inclusion of the protease inhib-

itor di-isopropyl fluorophosphate (DIFP). Without it, only

partial complexes can be isolated. Density gradient ultracentri-

fugation and electrophoretic analyses demonstrated that these

are protomers of one copy each of ValRS tightly associated with

EF-1H (data not shown).
3.2. Calculation of the three-dimensional structure of ValRS/

EF-1H

Fig. 2A shows a typical electron micrograph of negatively

stained ValRS/EF-1H complex after gel filtration HPLC.

Although a few larger particles are present, the majority are

ca. 12 nm in length. A variety of orientations exists, so the sec-

ond dimension measurement varies. Most particles are roughly

rectangular, although other views are more nearly square and

even triangular. Because individual particles are difficult to see

as raw data, different particle orientations are demonstrated in

Fig. 2B, which shows representative image averages produced

by hierarchical classification. The surface representation of the

three-dimensional reconstruction is shown below each in an

orientation that would produce the observed averages when

projected into two dimensions. The selected averages show a

two roughly rectangular views and a triangular one. The
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numbers correspond to the number of images in each average.

The average in the third panel composed of 629 images is of

particular interest as it suggests the asymmetric two domain

structure that is seen in the three-dimensional reconstruction.
Fig. 3. Surface representation of the refined three-dimensional recon-
struction of ValRS/EF-1H complex shows a two-domain assembly.
Panels are related by 90� rotations about the horizontal axis. The
dotted line (Panel A) denotes the two-domain nature of the recon-
struction. Arrows indicate the central depression in the flat domain.
Numbers mark two protrusions that are symmetrically arranged in the
multi-protrusion domain. Asterisk indicates site where additional
density is observed when the threshold is based on a particle mass of
700 kDa.
Fig. 3 shows a surface representation of the final reconstruc-

tion of ValRS/EF-1H complex. Refinement of the primary ref-

erence with ca. 11000 images of sample negatively stained with

methylamine vanadate resulted in a resolution limit of 30 Å.

The overall size is ca. 12 · 8 nm. Fig. 4A demonstrates that

the angular distribution of images chosen for the final recon-

struction is complete and that there are no significant over

or underrepresentation of particle orientations. Thus, the

reconstruction should be free of sampling artifacts.

Each view of the reconstruction in Fig. 3 is related by

sequential rotations of 90� about the horizontal axis. The par-
ticle can be separated at roughly the midpoint along its long

axis (line in panel A) into two domains with very different

structural features. One domain consists of a relatively flat sec-

tion with a central depression (arrows) with two symmetrically
Fig. 4. The data set used for the reconstruction fully covers angular
space and visualization of bound antibodies indicates the presence of
two copies of the d subunit near the center of the particle. (A) Plot of
angular distribution of images used for the refined reconstruction
demonstrates completeness and evenness of the data set. Each circle
represents an angular projection of the primary reference structure to
which images were mapped. The diameter of each circle increases with
the number of images in each projection. (B) Individual electron
microscopic images of ValRS/EF-1H complex to which antibodies
directed against the d subunit are bound. Arrows point out the
antibody molecules.



Fig. 5. Cartoon of the components of the ValRS/EF-1H complex
showing the two-domain nature of the assembly and a head-to-head
arrangement of the protomers. Placements of the EF-1H subunits take
into account the antibody binding data from this study and the
contacts detected by others using a variety of biochemical methods as
described in the text.
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arranged protrusions extending above and below. The other

domain is characterized by protrusions extending in many

directions from the central mass. One can also observe some

symmetry in this section as indicated by the extensions labeled

1 and 2, which are on opposite faces of the particle. This fea-

ture is best seen in panels A and C. The reconstruction is dis-

played using a threshold corresponding to the calculated total

mass of 600 kDa. If the threshold is determined based on addi-

tion of extra copies of EF-1a, extra density is observed forming

a connection between two protrusions near the center of the

particle as indicated by the asterisk in panel B.

As a first step toward assignment of locations of subunits

within the ValRS/EF-1H structure, anti-EF-1d antibodies were
reacted with the complex. After gel-filtration HPLC to remove

unbound antibody, samples were negatively stained with ura-

nyl acetate. Fig. 4B consists of a gallery of images in which

anti-EF-1d antibody bound to the complex can be seen (ar-

rows). Panels 1–3 show individual ValRS/EF-1H/antibody

complexes and panels 4–6 show multiple particles that appear

linked by antibodies. As is best seen in panels 1 and 4, the site

of antibody binding is near the center of the long axis of the

particle. This places the d subunit at or near the intersection

of the two domains of the complex. Panels 3 and 6 show simul-

taneous binding of two antibodies. This indicates the presence

of at least two copies of the d subunit and supports dimeric

models of the complex.
4. Discussion

Several two-dimensional models have been proposed for rel-

ative placement of the components within the ValRS/EF-1H

complex or within EF-1H alone. These are based on interac-

tions obtained by in vitro biochemical studies including recon-

stitution experiments, site-directed mutagenesis and limited

protease cleavage [18,22,27]. There is much inconsistency

among these two-dimensional models. For example, from

in vitro reconstitution experiments, an EF-1H stoichiometry

of a2bcd has been proposed [22]. Both subunits b and d were

shown as binding to the same c subunit, but to different a sub-

units. Based on protein kinase CKII phosphorylation sites [27],

a model for the ValRS/EF-1H complex was developed in

which the particle consists of (a2bcdValRS)2. The N-terminal

extension of each EF-1d would bind to the N-terminal hydro-

phobic extension of ValRS, which is known to mediate its

association with EF-1H [28]. The major difference between

these two models is the presence of b and c dimers in the sec-

ond model. In contrast, the model proposed by Bec et al. [18]

was based on a d dimer in the core held together by the leucine

zipper motif in the subunits N-terminii. Also, each d subunit is

shown binding to a c subunit. The b subunit alone interacts

with an a and a c subunit, while the d subunit interacts with

ValRS to form (abcdValRS)2. This model is different from that

proposed by Sheu and Traugh [27] with regard to formation of

the d dimer and lack of association of a d and an a subunit.

The cartoon in Fig. 5 incorporates the data from this study

with that described above. The model shown is composed of

two ValRS/EF1-H protomers. The antibody binding sites ob-

served (Fig. 4B) adds to the evidence that the d subunits are

at or near the center of the ValRS/EF-1H complex. The

remaining EF-1H subunits are placed to take into account

the associations described above. ValRS is located at one
end based on the reported direct interaction with the d subunit.
Both ValRS and the EF-1a subunits are on the exterior of the

model as is logical for their need to be readily accessible to sub-

strates. This placement is also consistent with the ability of

antibodies directed against the a subunit to bind to this sub-

unit in the native ValRS/EF-1H complex as demonstrated by

immunoblot analysis (data not shown). The protomers are

placed in a head-to-head arrangement due to the marked mor-

phological differences between the two domains in the three-

dimensional reconstruction (Fig. 3).

The combination of the three-dimensional structural infor-

mation presented in this study with previous biochemical stud-

ies also provides some insight into the function of the ValRS/

EF-1H complex. That is, when the reconstruction threshold is

recalculated to accommodate extra EF-1a subunits (Fig. 3B)

the additional mass observed is near the center of the particle

and appears only on one side. Although there is some uncer-

tainty about the significance of this change at the current level

of resolution of the reconstruction, this would suggest that EF-

1a and ValRS are close to one another. This would facilitate

formation of the ternary complex of valyl-tRNA, GTP and

EF-1a. As EF-1a is rather loosely bound to the complex

[29], it can then readily deliver charged valyl-tRNA to the ribo-

some. Thus, coupling two consecutive reactions in one particle

contributes to the high efficiency of protein biosynthesis.

Higher resolution structures and additional protein localiza-

tions are needed to clearly distinguish among the many models

of the component arrangements within the ValRS/EF-1H

complex. However, understanding the structure and function

of the ValRS/EF-1H complex is a fundamental part in under-

standing of eukaryotic protein biosynthesis at the molecular le-

vel. It also bears on the elucidation of the principles underlying

intracellular organization. It is notable that the strength of

interaction of ValRS with EF1 is much weaker in bacteria than

in eukaryotes [15] and no complex of the two is known to exist.

Thus, study of the ValRS/EF-1H complex may provide addi-

tional means of distinguishing between the mechanisms of reg-

ulation of protein synthesis and other complex cellular

processes in bacteria from those in eukaryotes.
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