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Abstract

This paper is devoted to the study of triangular
√

7 and quadrilateral
√

5 surface subdivisions. Both approximation and in-
terpolatory subdivision schemes are considered, with illustrative examples of both scalar-valued and matrix-valued

√
7 and

√
5

subdivision masks that satisfy the sum rule of sufficiently high orders. In particular, “optimal” Sobolev smoothness is determined
and Hölder smoothness estimates are presented.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Subdivision algorithms provide the most efficient mathematical tools for parametric curve and surface modeling,
rendering, and editing, in Computer Graphics. To generate a smooth surface, a subdivision algorithm is applied to
generate a nested sequence of finer meshes that eventually converges to a (smooth) limiting surface, starting from
an initial choice of (triangular or quadrilateral) mesh with arbitrary topologies, provided that certain conditions are
satisfied. If all the vertices of a coarser mesh (i.e. the mesh before the next iteration step is carried out) are among the
vertices of the finer mesh (i.e. the mesh obtained after the next iteration step has been completed), then the subdivision
scheme is called an interpolatory subdivision scheme. Otherwise, it is called an approximation subdivision scheme.

This iterative process is governed by two sets of rules, namely: the topological rule that dictates the insertion of
new vertices and the connection of them with edges, and the local averaging rule for computing the positions in the
3-dimensional space R

3 of the new vertices (and perhaps the new positions of the old ones as well) in terms of certain
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Fig. 1.
√

7-Subdivision topological rule.

weighted averages of the (old) vertices within certain neighborhood. For regular vertices (i.e. those with valence 6 for
triangular subdivisions, and valence 4 for quadrilateral subdivisions), the rule of the iterative process is described and
represented in the plane, called the “parametric domain,” by a set of triangles or quadrilaterals of regular shapes along
with a set of subdivision templates, usually derived from some refinement (or two-scale) relation of the form:

φ(x) =
∑
k∈Z2

pkφ(Ax − k), x ∈ R
2. (1.1)

Here, φ(x) is called a refinable (or two-scale) function with dilation matrix A, and the finite sequence {pk} is called
its corresponding refinement (or two-scale) sequence. The refinable function φ is also called the “basis function” of
the subdivision scheme, and its corresponding refinement sequence {pk} is commonly called a “subdivision mask.”

The choice of the dilation matrix A depends on the topological rule of the subdivision scheme of interest. In this
paper, we will give two sets of examples of the matrix A for each of the triangular

√
7 and quadrilateral

√
5 topological

rules, construct various subdivision masks, determine their sum rule orders, and their orders on smoothness.
The most popular topological rule for surface subdivisions is the “1-to-4 split” (or dyadic) rule, which dictates

the split of each triangle or rectangle in the parametric domain into four sub-triangles or sub-rectangles, respectively.
Most of the well-known surface subdivision schemes, including the Catmull and Clark [1], Loop [20], and butterfly
[7] schemes, engage the 1-to-4 split topological rule. For the 1-to-4 split rule, the dilation matrix for the corresponding
refinement equation to be selected is simply 2I2, both for the triangular and quadrilateral meshes. Other topological
rules of recent interest include the

√
3 [15–18,23] and the

√
2 [9,10,19,29,30] topological rules, with dilation matrices

given, for example, by
[ 2 −1

1 −2

]
and

[ 1 1
1 −1

]
, respectively. The

√
3 topological rule is designed for the triangular mesh,

while the
√

2 rule for the quadrilateral mesh. In this paper, we will study, in some depth, the so-called
√

7 and
√

5
surface subdivision schemes, studied in [11,22].

The triangular
√

7-subdivision was introduced for potential applications to pyramid algorithm design for human
vision modeling and for representing structures of very large carbon molecules Chemistry (see [21,27,32]). Its topo-
logical rule is shown graphically in Fig. 1. For the purpose of finding the dilation matrices A, let us describe in details
how the finer mesh in the parametric domain of entire x–y plane is derived from the coarser mesh, described by the
triangulation with grid lines x = i, y = j , x − y = k, by applying the

√
7 topological rule transform once. For each

vertex k ∈ Z
2 of this coarser mesh, we put three points k + 1

7 (3,2), k + 1
7 (5,1), k + 1

7 (6,4) inside the triangle with
vertices k,k + (1,0) and k + (1,1) and three points k + 1

7 (1,3), k + 1
7 (4,5), k + 1

7 (2,6) inside the triangle with
vertices k, k + (1,1) and k + (0,1). These points so chosen will be called new vertices (see the figure on the left
of Fig. 1, where k = (0,0)), while the vertices of the coarser mesh will be called old vertices. The following two
steps describe how the finer mesh is obtained as a result of applying the

√
7 topological rule once. The first step is

to connect each of the new vertices with the closest old vertex as well as five closest new vertices, which lie in three
different triangles. This yields the new edges given by the lines with slopes 2

3 ,3,− 1
2 (see the figure in the middle

of Fig. 1, where the coarser mesh is represented by the dotted lines). The second step is to remove the edges of the
coarser mesh as shown in the figure on the right of Fig. 1. See also the figure on the left of Fig. 2, where the coarser
mesh is represented by the dotted lines and the finer mesh by the solid lines. Another formulation of the finer mesh is
obtained simply by reflection across the line x = y of the finer mesh shown in the figure on the left. In other words,
this other formulation of the finer mesh consists of grid lines with slopes 3

2 , 1
3 ,−2 as shown in the figure on the right

of Fig. 2, where again, dotted straight lines are used for the coarser mesh and solid straight lines for the finer mesh.
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Fig. 2. Two types of finer meshes in parametric domain after
√

7-subdivision.

Fig. 3.
√

5-subdivision topological rule.

In [22], by applying composite operations,
√

7-subdivision schemes with high smooth orders were constructed.
However, as also mentioned in [22], the composite approach cannot lead to interpolatory schemes even to achieve C1

smoothness. In this paper, we will outline a procedure, with demonstrative examples, for constructing both interpola-
tory and approximation

√
7-subdivision schemes to achieve desirable order of smoothness.

To describe the quadrilateral
√

5-subdivision, let us consider the rectangular grid consisting of the horizontal lines
x = i and vertical lines y = j , i, j ∈ Z, as the coarser mesh. First, for each k ∈ Z

2, select four points k + 1
5 (2,1),

k+ 1
5 (4,2), k+ 1

5 (3,4), k+ 1
5 (1,3) (to be called new vertices) within the square with vertices k, k+ (1,0), k+ (1,1)

and k + (0,1). See the figure on the left of Fig. 3 for k = (0,0). Then connect each of the new vertices with the
closest vertex of the coarser mesh as well as three closest new vertices, that lie in different rectangles, to yield the
new edges, as given by the lines with slopes 1

2 ,−2 (see the figure in the middle of Fig. 3, where the coarser mesh
is represented by the dotted lines). Finally, the finer mesh, obtained after applying the

√
5 topological rule once, is

achieved by removing the coarser mesh as shown in the figure on the right of Fig. 3. For the purpose of finding the
dilation matrices A, we also show the mesh in the entire x–y plane, on the left of Fig. 4, where the coarser mesh
consists of the horizontal and vertical dotted lines, and the finer mesh is represented by the solid lines. Similarly,
another formulation of the finer mesh, as shown on the right of Fig. 4, is obtained simply by reflection across the line
x = y of the finer mesh in the figure on the right. The

√
5 rule was first proposed in [28] as a hierarchical sampling

scheme over a regular mesh because of the unique property that the five vertices in each group that corresponds to a
quadrilateral of the coarser mesh, consisting of one old vertex and four new vertices, have different x and y coordinates.
A C1 approximation

√
5-subdivision scheme was constructed in [11]. In our present paper, we will construct both

interpolatory and approximation
√

5-subdivision schemes to achieve both C1 and C2 smoothness.
In the construction of any interpolatory subdivision scheme, we must face the same dilemma as in the construction

of 1-to-4 split interpolatory subdivision schemes, in that subdivision templates with undesirably large size are needed
to achieve subdivision surfaces of any higher order of smoothness. Such subdivision templates are in general too large
to be useful in practice, particularly when they have to be adjusted near extraordinary vertices. For this reason, vector
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Fig. 4. Two types of finer meshes in parametric domain after
√

5-subdivision.

subdivisions for surface design were recently studied in our work [2–6] to provide subdivision templates of minimal
size. Analogous to scalar subdivisions, a vector subdivision scheme for regular vertices is also derived from some
refinement (or two-scale) equation

Φ(x) =
∑
k∈Z2

PkΦ(Ax − k), x ∈ R
2, (1.2)

but with matrix-valued mask {Pk}, where Φ = [φ0, . . . , φr−1]T is called a refinable (or two-scale) function vector.
Corresponding to the refinement equation (1.2), the local averaging rule, from which the subdivision templates (with
matrix-valued weights) can be written down immediately, is given by

vm+1
k =

∑
j

vm
j Pk−Aj, m = 0,1, . . . , (1.3)

where

vm
k =: [vm

k , sm
k,1, . . . , s

m
k,r−1

]
(1.4)

are “row-vectors” with r components of points vm
k , sm

k,i
, i = 1, . . . , r − 1, in R

3. Here, the first components vm
k are

the vertices of the triangular or (non-planar) quadrilateral meshes for the mth iteration, with v0
k being the control

vertices of the surface subdivision. We call the initial (full) row vectors v0
k “control vectors,” and the other components

s0
k,1, . . . , s

0
k,n−1 of v0

k, “shape-control parameters.” In [5], we have shown that under certain conditions, including the
so-called “generalized partition of unity,” the vertices vm

k , for sufficiently large values of m, provide an accurate
discrete approximation of the target subdivision surface, given by the series representation:

F(x) =
∑

k

v0
kφ0(x − k) +

∑
k

(
s0

k,1φ1(x − k) + · · · + s0
k,n−1φn−1(x − k)

)
.

We have demonstrated in [5] that the shape-control parameters s0
k,1, . . . , s

0
k,n−1, could be used to control the shape of

the subdivision surface dramatically.
The most natural definition of interpolatory vector subdivisions was studied in [4], where we say that a vector subdi-

vision scheme, with subdivision mask {Pk} and dilation matrix A, is interpolatory if vm+1
Ak = vm

k , m = 0,1, . . . ,k ∈ Z
2.

Here, vm+1
Ak and vm+1

k are the first components of vm+1
Ak and vm+1

k , respectively. This definition precisely assures that
the control vertices lie on the parametric subdivision surface, as in the scalar-valued setting. The algebraic structure
of an interpolatory mask {Pk} for the vector-valued setting is given by

P0,0 =

⎡
⎢⎢⎢⎣

1 ∗ · · · ∗
0 ∗ · · · ∗
...

... · · · ...

0 ∗ · · · ∗

⎤
⎥⎥⎥⎦ , PAj =

⎡
⎢⎣

0 ∗ · · · ∗
...

... · · · ...

0 ∗ · · · ∗

⎤
⎥⎦ , j ∈ Z

2\{(0,0)
}
. (1.5)
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Observe that when the dimension r is reduced to 1, this property is equivalent to the simple algebraic property

pAj = δ(j), j ∈ Z
2, (1.6)

of an interpolatory mask {pk} for the scalar-valued setting.
We have constructed, in [4], illustrative examples of C2 interpolatory vector 1-to-4 split,

√
3 and

√
2 subdivision

schemes with matrix-valued templates with “minimum size.” In the same paper, we have also constructed C2 inter-
polatory vector 1-to-4 split,

√
3 and

√
2 subdivision schemes with C2-cubic splines and C2-quartic splines as basis

functions, which, as is well known, cannot be achieved in the scalar setting.
One of the main objectives of this present paper is to construct vector interpolatory

√
7 and

√
5 subdivision

schemes for regular vertices. As to extraordinary vertices, one could also design certain local averaging rules to
achieve C1-continuity in a similar way as the scalar-valued setting studied by [26]. For this purpose, the C1-continuity
condition developed in [5] can be used as the design specification. Unfortunately, this is not an easy task for

√
7

and
√

5 subdivisions, and our work in this direction will be published elsewhere. In general, we have extended the
Ck-continuity conditions of [25,26] from the scalar-valued setting to the general matrix-valued setting in [5].

The rest of this paper is organized as follows. In Section 2, certain necessary preliminary materials on sum rule
orders of the subdivision mask and smoothness estimates of the basis functions or function vectors are discussed. Our
results on

√
7-subdivision and

√
5-subdivision schemes will be presented in Sections 3 and 4, respectively.

2. Preliminaries

Let us first take care of some standard notations. N will denote the set of positive integers, and Z+, the set of
non-negative integers. An ordered pair μ = (μ1,μ2) ∈ Z

2+ is called a multi-index. The length of μ is denoted by
|μ| := μ1 + μ2 and the factorial μ! of μ, by μ! := μ1!μ2!. In addition, the partial derivative of a differentiable
function f with respect to the j th coordinate is denoted by Djf , j = 1,2, and for μ = (μ1,μ2) ∈ Z

2+, Dμ denotes
the differential operator D

μ1
1 D

μ2
2 . For a set Ω ⊂ R

2, we introduce the notation

[Ω] := Ω ∩ Z
2.

Next, for s � 0, a function f is said to be in the Sobolev space Ws(R2), if its Fourier transform f̂ (ω) satisfies
(1 + |ω|2) s

2 f̂ (ω) ∈ L2(R2). Let s2(f ) denote its critical Sobolev exponent defined by

s2(f ) := sup
{
s: f ∈ Ws

(
R

2)}.
For a vector-valued function F = [f0, . . . , fr−1]T , we will use the analogous notation

s2(F ) := min
{
s2(fj ): 0 � j � r − 1

}
.

On the other hand, the critical Hölder exponent is defined as follows. For a function f ∈ C(R2), the j th difference
in the direction t ∈ R

2 is denoted by

∇j
t f := ∇1

t

(∇j−1
t f

)
, ∇1

t f (x) := f (x) − f (x − t), x ∈ R
2.

Then the j th modulus of smoothness is defined by

ωj (f,h) := sup
|t |�h

∥∥∇j
t f

∥∥
C
, h � 0.

We also use the standard notation Lip(s), s > 0, for the generalized (Lipschitz–)Hölder class consisting of all bounded
functions f ∈ C(R2) with

ωj (f,h) � Chs, h > 0,

where C is a constant independent of h, and j is any fixed integer greater than s. We remark that it is a common
practice to set Cs(R2) := Lip(s) for non-integer s > 0 to extend the definition of the spaces of k-times continuously
differentiable functions, for positive integers k. Then the critical Hölder exponent of f is defined by

s∞(f ) := sup
{
s: f ∈ Lip(s)

}
.
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Also, analogous to Sobolev exponents for vector-valued functions, the critical Hölder exponent of a vector-valued
function F = [f0, . . . , fr−1]T is defined by

s∞(F ) := min
{
s∞(fj ): 0 � j � r − 1

}
.

We remark that by the Sobolev imbedding theorem, we have

s∞(F ) � s2(F ) − 1.

Let A be a 2 × 2 dilation matrix in (1.1) or (1.2), and assume that A is similar to a diagonal matrix diag(λ1, λ2)

with |λ1| = |λ2|. Set

σ := (λ1, λ2)

and

s := |detA|.
Then taking the Fourier transform of both sides of (1.2), we obtain

Φ̂(ω) = P
(
A−T ω

)
Φ̂

(
A−T ω

)
, ω ∈ R

2, (2.1)

where A−T denotes the transpose of A−1, and

P(ω) := 1

s

∑
k∈Z2

Pke−ik·ω, ω ∈ R
2, (2.2)

is the symbol associated with {Pk}. Here, P(ω) is an r × r matrix with trigonometric polynomial entries.
Let ηj + AT

Z
2, j = 0, . . . , s − 1, be the s distinct elements of Z

2/(AT
Z

2) with η0 = 0. For the scalar-valued
setting with r = 1, we say that P(ω) or {Pk} satisfies the sum rule of order k if

P(0) = 1, DμP
(
2πA−T ηj

) = 0, j = 1, . . . , s − 1, |μ| < k. (2.3)

For r > 1, we say that P satisfies sum rule of order k provided there exists a 1 × r function vector B(ω) with
trigonometric polynomial components and B(0) 	= 0, such that

Dμ
(
B

(
AT ·)P(·))(2πA−T ηj

) = δ(j)DμB(0), j = 0, . . . , s − 1, |μ| < k. (2.4)

By setting

yα := (−iD)αB(0), |α| < k, (2.5)

it follows that

xj =
∑

k

{∑
α�j

j!
α!(j − α)!kj−αyα

}
Φ(x − k), x ∈ R

2, j ∈ Z
2+, |j| < k. (2.6)

This is an explicit local polynomial preservation formula in terms integer translates of Φ (see the survey paper [13]
and the references therein for more details).

Without loss of generality, assume that the support of the subdivision mask {Pk} is in [−N,N ]2, i.e., Pk = 0,
k /∈ [−N,N ]2, for some N > 0. Let

Ω :=
{ ∞∑

j=1

A−j xj : xj ∈ [−N,N ]2, ∀j ∈ N

}
, (2.7)

and consider the matrix

TP = [BAk−j]k,j∈[Ω], (2.8)

where

Bj = 1

s

∑
k

Pk−j ⊗ P k,

and ⊗ denotes the Kronecker product of A and B , namely A ⊗ B = [aijB].
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In the following, assume that P(ω) satisfies the sum rule of order k and that the matrix P(0) is similar to a diagonal
matrix diag(1, λ2, . . . , λr) with |λj | < 1, j = 2, . . . , r . Set

Sk := spec(TP )\S̄k, (2.9)

where

S̄k := {
σ−αλj , σ−αλj , σ

−β : α,β ∈ Z
2+, |α| < k, |β| < 2k, 2 � j � r

};
and

ρ0 = max
{|λ|: λ ∈ Sk

}
.

It was shown in [14] that

s2(Φ) � − logs ρ0, (2.10)

and that if Φ is L2-stable, then we have

s2(Φ) = − logs ρ0. (2.11)

We will use the formula in (2.10) to compute the Sobolev smoothness estimates of refinable function/vectors Φ .
Next, let us consider the Hölder smoothness estimates v∞(Φ) of refinable function/vectors Φ . For a finite set A of

operators acting on a fixed finite-dimensional space V , the joint spectral radius ρ∞(A) of A is defined by

ρ∞(A) := lim
l→∞

∥∥Al
∥∥1/l

∞ ,

where∥∥Al
∥∥∞ := max

{‖A1 · · ·Al‖: An ∈A, 1 � n � l
}
.

Here, the operator norm ‖ · ‖ is induced by the norm on V and the value of ρ∞(A) does not depend on the choice of
the latter. The interested reader is referred to [24,33] on the computational aspect of joint spectral radii.

Let γj + AZ
2, j = 0, . . . , s − 1, be the s distinct elements of Z

2/(AZ
2) with γ0 = 0. Set Γ := {γj , j = 0,1, . . . ,

s − 1}. Let P = {Pk}k∈[−N,N ]2 be a subdivision mask satisfying the sum rule of order k, namely, (2.4) for some
B(ω) = ∑

k∈[−N,N ]2 Bke−ikω. For γ ∈ Γ , define the operators AP,γ , on �0(Z
2)r×1 by

(AP,γ v)α =
∑
β∈Z2

Pγ+Aα−βvβ, α ∈ Z
2, v ∈ �0

(
Z

2)r×1
. (2.12)

In the following, we use the notation

Ω1 :=
{ ∞∑

j=1

A−j xj : xj ∈ [−N,N ]2 − Γ, ∀j ∈ N

}
. (2.13)

Let Vk be the subspace of �(Z2)r×1 consisting of v with support in [Ω1] that satisfy

Dν
(
B(ω)v(ω)

)∣∣
ω=0 = 0, |ν| < k, (2.14)

where v(ω) := ∑
α∈[Ω1] vαe−iαω. Note that Vk is a finite-dimensional space and is invariant under the operators

AP,γ , γ ∈ Γ . Denote by ρk the joint spectral radius of the family Ak := {AP,γ |Vk
, γ ∈ Γ }. Then, we have

s∞(Φ) � −2 logs ρk. (2.15)

In practice, it is difficult to find the joint spectral radius ρk in general. Instead, we consider sequences of lower and
upper estimates, namely:

ρl
k := max

{
ρ(A1 · · ·Al)

1/l : An ∈ Ak, 1 � n � l
}

� ρk � ρl
k := max

{‖A1 · · ·Al‖1/l

2 : An ∈Ak, 1 � n � l
}
, (2.16)

where ‖ · ‖2 denotes the spectral norm for matrix operators. Set

sl∞(Φ) := −2 logs ρl , sl∞(Φ) := −2 logs ρl . (2.17)
k k
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We will use sl∞(Φ) and sl∞(Φ) in (2.17) to give Hölder smoothness estimates of Φ . In practice, depending on the sup-
port of {Pk}k∈[−N,N ]2 , one could choose some subset of Vk which is invariant under AP,γ , γ ∈ Γ , for an appropriate
subset of [Ω1]. In the scalar-valued setting, if P(ω) � 0, then s∞(φ) = s1∞(φ), see [8,12,31].

In the next two sections, we will construct various approximation and interpolatory
√

7 and
√

5 subdivision
schemes, for both the scalar and vector settings. Following [4], the general procedure is outlined as follows:

(i) Formulate a subdivision mask {Pk} of an acceptable size that satisfies certain symmetry properties, as governed
by the need of symmetry for the subdivision templates. Start with zero values for most of the weights, but allow
non-zero values gradually, to provide sufficient freedom to accommodate the requirements of the desired sum
rule order and the order of smoothness.

(ii) Formulate a set of linear equations with scalar or matrix entries that have not yet been determined as unknowns,
by imposing the requirement of the desired sum rule orders (2.3) or (2.4). In addition, to construct interpolatory
schemes, the interpolatory conditions (1.6) or (1.5) is imposed as constraints on the unknowns.

(iii) The general solution of the equations is formulated in terms of some free parameters.
(iv) Finally, the free parameters are to be adjusted by applying the algorithm/software in [14]/[15] to achieve the

“optimal” Sobolev smoothness, namely by maximizing − logs ρ0.

In addition to (iv), we may also need the Hölder smoothness estimates, determined by applying (2.17), to ensure
that the subdivision schemes are C1 or C2 schemes.

3.
√

7-Subdivision schemes

First we need to find a dilation matrix A for the
√

7-subdivision. Such dilation matrices should have integer entries,
and as a convenient guideline, their inverses should map the coarse mesh onto one of the finer meshes in Fig. 2. There
are many choices for the matrix A that satisfy the above-mentioned properties, namely:

±
[

3 −1
1 2

]
, ±

[
2 −3
3 −1

]
, ±

[
1 2

−2 3

]
, ±

[
3 −2
2 1

]
, ±

[
2 1

−1 3

]
, ±

[
1 −3
3 −2

]
, (3.1)

and

±
[

1 2
3 −1

]
, ±

[
3 −1
2 −3

]
, ±

[ −2 3
1 2

]
, ±

[
2 1
3 −2

]
, ±

[ −1 3
2 1

]
, ±

[
3 −2
1 −3

]
. (3.2)

We remark that the dilation matrix
[ 2 1

−1 3

]
, from the list in (3.1), was used in the paper [22]. The dilation matrices in

the second list (3.2), satisfy A2 = 7I2. In this paper we choose

M :=
[

1 2
3 −1

]
(3.3)

from the second list (3.2), and consider the corresponding finer mesh as shown on the left of Fig. 2. For this dilation
matrix M , the choice of

η0 = (0,0), η1 = (1,0), η2 = (0,1), η3 = (−1,0),

η4 = (0,−1), η5 = (1,−1), η6 = (−1,1), (3.4)

results in 7 distinct elements ηj + MT
Z

2, j = 0, . . . ,6, of Z
2/(MT

Z
2).

In the following two subsections, we will discuss scalar and vector
√

7-subdivision schemes separately.

3.1. Scalar
√

7-subdivision schemes

We will use the general templates with restricted size, as shown in Fig. 5, for deriving the local averaging rules
that meet certain requirements on sum rule orders and smoothness conditions. Observe that for this study of scalar
subdivisions, the values x = 1 and y = 0 in the template on the left of Fig. 5 correspond to interpolating subdivision
schemes. The subdivision mask {pk} associated with the templates in Fig. 5 is given by the matrix in (3.5), whose
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Fig. 5. Templates for scalar
√

7-subdivision schemes.

(k1, k2)-entry will be denoted by pk2−6,−(k1−6), to match the notation in (1.1), where the dilation matrix A is given by
the matrix M in (3.3).⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 n j m 0 0
0 0 0 0 0 k h g f k n

0 0 0 m f e y d e h j

0 0 j g d c b c y g m

0 n h y b a a b d f 0
0 k e c a x a c e k 0
0 f d b a a b y h n 0
m g y c b c d g j 0 0
j h e d y e f m 0 0 0
n k f g h k 0 0 0 0 0
0 0 m j n 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.5)

3.1.1. Approximation
√

7-subdivision scalar templates
First we consider subdivision schemes with reasonable small template sizes, namely: g = h = j = k = m =

n = 0. Let {pk} be the corresponding mask and p(ω) = 1
7

∑
k pke−ikω. We then eliminate some of the parameters

a, b, c, d, e, f, x, y by considering the mask {pk} with sum rule of order 3 and particularly the linear system governed
by

p(0) = 1, Dμp
(
2πM−T ηj

) = 0, j = 1, . . . ,6, |μ| < 3, (3.6)

with ηj given by (3.4). Then solution of this linear system (3.6) yields

x = 31/49 − 3f, y = 3/49 + f/2, a = 24/49 − f,

b = 12/49 − f, c = 9/49 − f, d = 3/49 + f, e = 1/49 + f. (3.7)

Hence, we have a family of subdivision masks of sum rule order 3.
Following procedure (iv) (to maximize − log7 ρ0), we can obtain, for f = −0.003703, the refinable function with

the highest order of Sobolev smoothness φ ∈ W 2.786639. The plot of Sobolev smoothness exponents of φ against the
parameter f is shown on the left of Fig. 6, with the zoom-in to the maximum near 0 on the right. The following
two particular values of f that are close to the maximum of the Sobolev exponents are of particular interesting to
us. One is the choice of f = 0, with the corresponding basis function φ in W 2.7816, and the other is the choice of
f = − 10

74 , with the resulting φ ∈ W 2.7865. In Table 1, we compile the s∞(φ) estimates of φ for f = 0 and f = − 10
74 .

For the scheme with f = 0, we present the templates in Fig. 7. From Table 1, we can see that this is a C2 subdivision
scheme. With extensive experience by us and other researchers on computing Hölder exponents by joint spectral radius
approximations, one might guess that the Hölder exponent should be 2.2971 for f = 0, and 2.3068 for f = − 10

4 . If

7
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Fig. 6. Sobolev smoothness exponents of φ as a function of parameter f .

Fig. 7. C2 approximation scalar
√

7-subdivision scheme.

Table 1
Hölder smoothness estimates for approximation scalar

√
7-subdivision schemes with f = 0 (with templates given in Fig. 7), f = − 10

74 , g = h =
j = k = m = n = 0, and x, y, a, b, c, d, e as given in (3.7)

� 1 2 3 4 5 6 7 8 9

f = 0 s�∞(φ) 2.4171 2.2971 2.3833 2.2971 2.3779 2.2971 2.3755 2.2971 2.3728

s�∞(φ) 0.3551 1.3051 1.7056 1.8172 1.9447 1.9786 2.0456 2.0583 2.1015

f = − 10
74 s�∞(φ) 2.4748 2.3086 2.4373 2.3086 2.4327 2.3086 2.4307 2.3086 2.4082

s�∞(φ) −0.6076 0.8548 1.4062 1.6099 1.7732 1.8446 1.9268 1.9607 2.0117

we pay close attention to s�∞(φ), we find that s�∞(φ) is larger for f = 0 than for f = − 10
74 . This is perhaps due to

the fact that since the subdivision mask of for f = − 10
74 is larger, the estimate of s�∞(φ) for the corresponding basis

function φ is less effective.
Next we would like to mention the scheme given by

x = 25/49, y = 4/49, a = 136/343, b = 12/49, c = 64/343, d = 4/49,

e = 16/343, f = 4/343, g = 6/343, h = 4/343, k = 1/343.

This scheme has sum rule order 4 and its corresponding φ in W 3.8688, and this scheme is the composite subdivision
scheme S2

lin introduced in [22]. Since the symbol is positive, we have s∞(φ) = s1∞(φ). Therefore, φ is in C3.2928.

3.1.2. Interpolatory
√

7-subdivision scalar templates
For a scalar subdivision scheme to be interpolatory, we need x = 1, y = 0. First we consider the schemes with

reasonably small template sizes, by setting g = h = j = k = m = n = 0.
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Again, with x = 1, y = 0, the solution of the linear system governed the sum rules yields a family of interpolatory
masks that assures sum rule order 2, with parameters given by

a = 1 − c − b − e − d − f, b = 2/7 − f + d − e, c = 1/7 − d + e − f.

If we choose

d = − 16

343
, e = − 6

343
, f = − 17

343
(and hence, a = 201

343 , b = 15
49 , c = 76

343 ), then the corresponding φ is in W 1.7405 with Hölder smoothness estimates
shown in Table 2. Although the Hölder smoothness order of this scheme seems to be too small from the lower-bound
values s�∞(φ), we believe that the Hölder exponent of φ should be 1.0028 as given by the upper-bounds s�∞(φ). This
is indeed justified by plots of the first divided differences from numerical discrete values of φ, which suggest that φ is
in C1.

Next, we consider interpolatory schemes with a larger template size. With x = 1 and y = 0, the solution of the
linear system governed by the sum rules yields a family of interpolatory masks of sum rule order 3 with parameters
given by

a = 30/49 + 2(k + m − h − g) + n + j, b = 18/49 + 2(g + n − j − k) + m + h,

c = 15/49 + 2(h + j − n − m) + g + k, d = −3/49 − m − k − n − g,

e = −5/49 − j − m − k − h, f = −6/49 − n − j − h − g. (3.8)

When m = k = j = n = 0, if we choose g = −8/343, h = −11/343 (hence, a = 248/343, b = 99/343,
c = 75/343, d = −24/343, e = −13/343, f = −23/343), then the resulting φ is in W 1.9734 with Hölder smoothness
estimates shown in Table 3. We see that this is a C1 scheme, and the template of this C1 interpolatory subdivision
scheme is displayed in Fig. 8.

Table 2
Hölder smoothness estimates for scalar interpolatory

√
7-subdivision scheme with a = 201

343 , b = 15
49 , c = 76

343 , d = − 16
343 , e = − 6

343 , f = − 17
343 ,

g = h = j = k = m = n = 0

� 1 2 3 4 5 6 7 8 9

s�∞(φ) 1.0028 1.0028 1.0028 1.0028 1.0028 1.0028 1.0028 1.0028 1.0028

s�∞(φ) −1.1274 0.0734 0.3628 0.5297 0.6213 0.6859 0.7303 0.7646 0.7908

Table 3
Hölder smoothness estimates for interpolatory

√
7-subdivision scheme with templates in Fig. 8

� 1 2 3 4 5 6 7 8 9

s�∞(φ) 1.7329 1.4623 1.6537 1.4623 1.6124 1.4623 1.5777 1.4623 1.5538

s�∞(φ) −1.3166 0.1698 0.6468 0.8153 0.9719 1.0293 1.1116 1.1373 1.1895

Fig. 8. C1 interpolatory
√

7-subdivision scheme.
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Finally, we present an interpolatory scheme with larger template size to achieve a higher order of smoothness. For
the choice of

[n, j,m,h, k, g] = 1

74
[−26,−33,−26,−72,−62,−90], (3.9)

the resulting φ ∈ W 2.57786. From the Hölder smoothness estimates (not provided here), we see that this scheme is still
not C2 yet.

To construct C2 interpolatory schemes, we need to consider templates, with size so large that no longer have any
practical value. In the next subsection we will construct C2 vector interpolatory schemes with significantly smaller
template sizes.

3.2. Vector
√

7-subdivision schemes

The general templates for the (approximation and interpolatory) vector
√

7-subdivision schemes are shown in
Fig. 9, where X,Y,L,B,C,D,E,F are 2 × 2 matrices. The corresponding subdivision mask {Pk} is given by the
following block-matrix in (3.10), whose (k1, k2)-block is Pk2−5,−(k1−5), to match the notation in (1.2), where the
dilation matrix A is given by the matrix M in (3.3).⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 F 0
0 0 0 F E Y D E 0
0 0 0 D C B C Y 0
0 0 Y B L L B D F

0 E C L X L C E 0
F D B L L B Y 0 0
0 Y C B C D 0 0 0
0 E D Y E F 0 0 0
0 F 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.10)

3.2.1. Approximation
√

7-subdivision matrix templates
First let us study approximation schemes. By solving the linear system (2.4) for the matrix-valued mask with ηj as

in (3.4) and yα in (2.5) given by

y0,0 = [1,0], y1,0 = y0,1 = [0,0], y2,0 = y0,2 = [0,1], y1,1 =
[

0,
1

2

]
, (3.11)

we have a family of matrix-valued masks for sum rule order 3, given by

X =
[

1 − 6y11 −6y12

−4y11 − 6y21
1
7 − 4y12 − 6y22

]
, Y =

[
y11 y12
y21 y22

]
,

L =
[

24
49 − f11 −f12

− 12
49 − 2f11 − b21 − c21 − d21 − e21 − f21

1
7 − 2f12 − b22 − c22 − d22 − e22 − f22

]
,

Fig. 9. Templates for (approximation and interpolatory) vector
√

7-subdivision schemes.
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Table 4
Hölder smoothness estimates for approximation vector

√
7-subdivision scheme with parameters given by (3.14)

� 1 2 3 4 5 6 7 8 9

s�∞(Φ) 2.6496 2.6496 2.6496 2.6496 2.6496 2.6496 2.6496 2.6496 2.6496

s�∞(Φ) −2.1813 0.4407 1.0731 1.51755 1.7297 1.9085 2.0107 2.0936 2.2332

B =
[

12
49 − f11 −f12

b21 b22

]
, C =

[
9
49 − f11 −f12

c21 c22

]
,

D =
[

3
49 + f11 f12

d21 d22

]
, E =

[
1
49 + f11 f12

e21 e22

]
, F =

[
f11 f12
f21 f22

]
. (3.12)

When F = 0, we may choose the parameters (which are not provided here to save space) such that the correspond-
ing Φ is in W 2.8441. For the purpose of integer implementations, we choose

[y11, y12, y21, y22, b21, b22, c21, c22, d21, d22, e21, e22]
= 1

74
[171,423,−66,−202,−159,86,−127,77,−21,25,−53,39]. (3.13)

Then the corresponding Φ is in W 2.8434.
More generally, when F = 0 in not imposed, there exist parameters (not provided here to save space), such that the

corresponding Φ is in W 2.9952. For the purpose of integer (or fixed point) implementations, we choose

[y11, y12, y21, y22, b21, b22, c21, c22, d21, d22, e21, e22, f11, f12, f21, f22]
= 1

74
[192,418,−79,−224,−159,72,−125,77,−27,32,−59,59,22,14,−19,−11]. (3.14)

Then the corresponding Φ is in W 2.9942, with Hölder smoothness estimates shown in Table 4. From Table 4, we see
that this is a C2 scheme.

The matrix-valued subdivision masks constructed above satisfy the sum rule of order 3. If we want a matrix-valued
mask to satisfy sum rule of order 4, then we need to use templates of larger sizes. Fortunately, as shown above,
masks that satisfy the sum rule of order 3 are good enough for the purpose of constructing C2 subdivision schemes.
Therefore, we will not consider matrix-valued

√
7-subdivision masks with sum rule of order 4 or higher.

3.2.2. Interpolatory
√

7-subdivision matrix templates
Let X,Y,L,B,C,D,E,F be the matrices as given in (3.12). Then by choosing

y11 = 0, y21 = 0,

X,Y become

X =
[

1 −6y12

0 1
7 − 4y12 − 6y22

]
, Y =

[
0 y12
0 y22

]
,

so that the corresponding mask {Pk} satisfies the interpolatory condition (1.5). It is clear from the previous subsection
that the interpolatory mask also satisfies the sum rule of order 3 with the vectors yα given in (3.11).

In particular, for F = 0, there exist parameters (not provided here to save space), such that the corresponding
refinable function vector Φ is in W 2.6256. For integer implementations, we choose

[y21, y22, b21, b22, c21, c22, d21, d22, e21, e22]
= 1

74
[2059/4,−150,−167,94,−118,38,−14,−15,−36,−27]. (3.15)

Then Φ is in W 2.6253.
Without assuming F = 0, there exist parameters (not provided here to save space) to yield an even smoother

refinable function vector Φ in W 2.9037. For integer implementations, we choose
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Table 5
Hölder smoothness estimates for interpolatory vector

√
7-subdivision scheme with parameters given by (3.16)

� 1 2 3 4 5 6 7 8 9

s�∞(Φ) 2.5371 2.5371 2.5371 2.5371 2.5371 2.5371 2.5371 2.5371 2.5371

s�∞(Φ) −1.7109 0.2956 1.0054 1.3467 1.5600 1.6948 1.8546 1.9535 2.0248

[y21, y22, b21, b22, c21, c22, d21, d22, e21, e22, f11, f12, f21, f22]
= 1

74
[1101/2,−171,−174,90,−128,34,−18,−13,−43,−19,16,22,−5,−7]. (3.16)

Then Φ is in W 2.8945, with Hölder smoothness estimates shown in Table 5. From Table 5, we see that this is a C2

scheme.

4.
√

5-Subdivision schemes

First we need to find an appropriate dilation matrix A for the
√

5-subdivision. Again, such dilation matrices should
have integer entries and that their inverses should map the coarse mesh onto one of the finer meshes, shown in Fig. 4.
There are many such matrices, such as

±
[

1 −2
2 1

]
, ±

[
1 2

−2 1

]
, ±

[
2 −1
1 2

]
, ±

[
2 1

−1 2

]
, (4.1)

and

±
[

2 1
1 −2

]
, ±

[ −2 1
1 2

]
, ±

[
1 2
2 −1

]
, ±

[ −1 2
2 1

]
. (4.2)

Observe that the dilation matrices in the second list (4.2) satisfy A2 = 5I2. In the following, we will choose the matrix

N :=
[

2 1
1 −2

]
(4.3)

from the second list as the dilation matrix for our study of
√

5-subdivisions and consider the finer mesh on the left of
Fig. 4. For this dilation matrix N , the choice of

η0 = (0,0), η1 = (1,0), η2 = (0,1), η3 = (−1,0), η4 = (0,−1), (4.4)

yields 5 distinct elements ηj + NT
Z

2, j = 0, . . . ,4, of Z
2/(NT

Z
2). Both scalar and vector

√
5-subdivision schemes

will be constructed in the next subsections.

4.1. Scalar
√

5-subdivision schemes

The general templates for the local averaging rules are shown in Fig. 10. In particular, interpolating schemes are
achieved by setting x = 1, y = 0 and z = 0. Observe that the corresponding subdivision mask {pk} is given by the
following matrix in (4.5), whose (k1, k2)-entry matches with pk2−5,−(k1−5).⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 k m 0 0 0 0
0 n j f g z h n 0
0 h e y d c e j 0
0 z c b a b y f k

m g d a x a d g m

k f y b a b c z 0
0 j e c d y e h 0
0 n h z g f j n 0
0 0 0 0 m k 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.5)



1218 C.K. Chui et al. / J. Math. Anal. Appl. 338 (2008) 1204–1223
Fig. 10. Templates for scalar
√

5-subdivision schemes.

Table 6
Hölder smoothness estimates for the scalar approximation

√
5-subdivision scheme in [11]

� 1 2 3 4 5 6 7 8 9

s�∞(φ) 1.2829 1.2829 1.2829 1.2829 1.2829 1.2829 1.2829 1.2829 1.2829

s�∞(φ) −3.4428 −1.1394 −0.3565 0.0547 0.3091 0.4787 0.6018 0.6941 0.7667

Table 7
Hölder smoothness estimates for approximation

√
5-subdivision scheme with templates in Fig. 11

� 1 2 3 4 5 6 7 8 9

s�∞(φ) 1.6425 1.6425 1.6425 1.6425 1.6425 1.6425 1.6425 1.6425 1.6425

s�∞(φ) −3.0579 −0.9530 −0.1279 0.3638 0.6350 0.8201 0.9537 1.0530 1.1331

4.1.1. Approximation
√

5-subdivision scalar templates
First we consider subdivision schemes with small template sizes, by setting z = 0, e = f = g = h = j = k = m =

n = 0. Let {pk} be the corresponding mask and p(ω) = 1
5

∑
k pke−ikω. We may eliminate some of the parameters

a, b, c, d, x, y by considering masks {pk} with sum rule of order 2 only, namely: the solution of the linear system
governed by

p(0) = 1, Dμp
(
2πN−T ηj

) = 0, j = 1, . . . ,4, |μ| < 2, (4.6)

with ηj given by (4.4), yields a family of masks of sum rule order 2, satisfying:

a = 3/5 − d, c = 1/5 − d, b = 1/5 + d, x = 1 − 4y.

In [11], the authors chose y = 1/5, d = 1/10 (and hence, x = 1/5, a = 1/2, b = 3/10, c = 1/10). The reason for
such choices is that the authors of [11] tried to force the fourth leading eigenvalue of the corresponding subdivision
matrix S to be 1

5 , which happens to be the product of the second and third leading eigenvalues 1√
5
i, − 1√

5
i. (Observe

that the C1 condition implies that 1, 1√
5
i, − 1√

5
i are the leading eigenvalues of S.) For this scheme, we see that the

corresponding basis function φ is in W 1.5539, with s∞(φ) estimates shown in Table 6. On the other hand, by choosing

y = 1/10, d = 2/15

(and hence, x = 3/5, a = 7/15, b = 1/3, c = 1/15), we have a smoother refinable function φ ∈ W 1.9713, with
s∞(φ) estimates φ shown in Table 7. Therefore, the choice of y = 1/10 and d = 2/15 provides a smoother C1√

5-subdivision scheme with templates of the same size as those in [11]. The subdivision templates of our C1 scheme
are displayed in Fig. 11.
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Fig. 11. C1 approximation
√

5-subdivision scheme.

Table 8
Hölder smoothness estimates for approximation

√
5-subdivision scheme with templates in Fig. 12

� 1 2 3 4 5 6 7 8 9

s�∞(φ) 2.7080 2.4063 2.5171 2.4063 2.4728 2.4063 2.4538 2.4063 2.4432

s�∞(φ) −1.8490 −0.2444 0.5605 1.0489 1.3413 1.5068 1.6466 1.7297 1.8134

Table 9
Hölder smoothness estimates for scalar approximation

√
5-subdivision scheme with x = 61/125, y = 16/125, a = 46/125, b = 41/125, c = 2/25,

d = 21/125, e = 6/125, f = 1/125, and z = g = h = j = k = m = n = 0

� 1 2 3 4 5 6 7 8 9

s�∞(φ) 2.6442 2.4966 2.6308 2.4966 2.5779 2.4966 2.5551 2.4966 2.5423

s�∞(φ) −1.7882 −0.1995 0.6048 1.1195 1.4343 1.6003 1.7400 1.8239 1.9057

Next let us construct subdivision schemes with slightly larger templates to gain higher order of smoothness, by
allowing e, f to be non-zero (though z = 0 and g = h = j = k = m = n = 0). Then by solving the linear system
governed by the sum rules, we obtain a family of masks of sum rule order 3, with parameters given by

x = 13/25 − 4f, y = 3/25 + f, a = 2/5 − 4f, b = 8/25 + f,

c = 2/25, d = 4/25 + f, e = 1/25 + f. (4.7)

For f = 0, the corresponding refinable φ is in W 2.8637 with s∞(φ) estimates shown in Table 8. For f = 1/125, we
have φ ∈ W 2.9015 with s∞(φ) estimates shown in Table 9. Though the estimates of s�∞(φ) in Tables 8 and 9 cannot be
used to justify that these two subdivision schemes are C2 schemes, we believe that they are actually C2, judging from
the pictures of the second order partial derivatives of the basis functions. The templates for the scheme with f = 0 are
displayed in Fig. 12.

Finally, let us consider the following particular choices of parameters:

[x, y, z, a, b, c, d, e, f, g,m, j,h, k,n]
= 1

125
[61,12,4,40,36,12,22,6,4,4,1,0,0,0,0], (4.8)

with corresponding symbol

pcomp(ω) = 1

25

(
1 + 2

5

(
z1 + z2 + 1

z1
+ 1

z2

)
+ 2

5

(
z1z2 + 1

z1z2
+ z1

z2
+ z2

z1

)
+ 1

5

(
z2

1 + z2
2 + 1

z2
1

+ 1

z2
2

))2

,

where z1 = e−iω1 , z2 = e−iω2 . This symbol satisfies the sum rule of order 4. Analogous to the study of
√

7-subdivision
schemes in [22], the subdivision scheme corresponding to the symbol pcomp(ω) can be described as a composite
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Fig. 12. “C2” approximation
√

5-subdivision scheme.

√
5-subdivision scheme, with basis function φ ∈ W 2.5389. Since pcomp(ω) � 0, we have s∞(φ) = s1∞(φ) = 2.4634.

Thus, φ is in C2.4634.
We remark that the non-zero coefficients pk in all of the above subdivision schemes are positive.

4.1.2. Interpolatory
√

5-subdivision scalar templates
For the subdivision schemes to be interpolatory, we must set x = 1, y = z = 0. Consider

a = 61/125, b = 39/125, c = 11/125, d = 14/125,

e = f = g = h = j = k = m = n = 0. (4.9)

Then the corresponding mask satisfies the sum rule of order 2, with φ ∈ W 1.6496. From the Hölder smoothness esti-
mates of this subdivision scheme (not provided here), we see that this scheme is probably not C1. For this reason, we
consider slightly larger templates.

By solving the linear system governed by the sum rules, we obtain a family of masks of sum rule order 3, with
parameters given by

a = 22/25 + 2g + 2h + 3j + 3k + 2m + 2n, b = 1/5 − h − 2g − 3j − m + n,

c = 2/25 + g + h − 2m − 2n, d = 1/25 − g − 2h − n − 3k + m,

e = −2/25 − g − n − k, f = −3/25 − h − j − m. (4.10)

For the case j = k = m = n = 0, by choosing

g = −10/125, h = −3/125, (4.11)

we have φ ∈ W 1.7337. from the Hölder smoothness estimates, we see the order of smoothness of this scheme is still
too small.

Next, we choose

[g,h, j, k,m,n] = 1

54
[7,11,31,6,2,13], (4.12)

so that

[a, b, c, d, e, f ] = 1

54
[373,232,62,83,−24,−31]. (4.13)

Then we have φ ∈ W 2.6030, which assures that this subdivision scheme is a C1 interpolatory scheme. From the Hölder
smoothness estimates of φ, we know that this is not a C2 scheme.
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Fig. 13. Templates for (approximation and interpolatory) vector
√

5-subdivision schemes.

4.2. Vector
√

5-subdivision schemes

The general subdivision templates for both approximation and interpolatory vector
√

5-subdivision schemes are
shown in Fig. 13, where X,Y,Z,L,B,C,D,E,F,G,H are 2 × 2 matrices. The corresponding subdivision mask
{Pk} is given by the following block-matrix in (4.14), whose (k1, k2)-block entry is Pk2−4,−(k1−4).⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 F G Z H 0
H E Y D C E 0
Z C B L B Y F

G D L X L D G

F Y B L B C Z

0 E C D Y E H

0 H Z G F 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.14)

4.2.1. Approximation
√

5-subdivision matrix templates
We first consider small templates by setting Z = G = H = 0. Then solving the linear system (2.4) for the matrix-

valued mask with ηj as in (4.4) and yα in (2.5) given by

y0,0 = [1,0], y1,0 = y0,1 = [0,0], y2,0 = y0,2 = [0,1], y1,1 = [0,0], (4.15)

we obtain a family of matrix-valued masks of sum rule order 3, given by

X =
[

1 − 4y11 −4y12

−2y11 − 4y21
1
5 − 2y12 − 4y22

]
, Y =

[
y11 y12
y21 y22

]
,

L =
[

2
5 − 4f11 + 2g11 − 2h11 −4f12

− 6
25 − 2f11 − b21 − c21 − d21 − e21 − f21

1
5 − 2f12 − b22 − c22 − d22 − e22 − f22

]
,

B =
[

8
25 + f11 f12

b21 b22

]
, C =

[
2
25 0

c21 c22

]
,

D =
[

4
25 + f11 f12

d21 d22

]
, E =

[
1
25 + f11 − g11 + h11 f12

e21 e22

]
, F =

[
f11 f12
f21 f22

]
. (4.16)

For a smaller template with F = 0, there exist parameters (not provided here to save space) such that the resulting
Φ is in W 2.9084. Even for integer implementations with

[y11, y12, y21, y22, b21, b22, c21, c22, d21, d22, e21, e22]
= 1

54
[126,181,−49,−93,−54,19,−13,14,−23,31,3,27], (4.17)

we already have Φ ∈ W 2.9045. From the Hölder smoothness estimates, we know it is a C2 scheme.
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Next, we consider the subdivision masks that satisfy the sum rule of the higher order 4, with Z = 0 but no restriction
on F,G,H . For the choices of

X =
[

1 − 4y11 −4y12

−2y11 − 4y21
1
5 − 2y12 − 4y22

]
, Y =

[
y11 y12
y21 y22

]
,

L =
[

54
125 − 4f11 −4f12

− 18
125 − 2f11 − d21 − e21 − 2f21 − 2h21

3
25 − 2f12 − d22 − e22 − 2f22 − 2h22

]
,

B =
[

34
125 + f11 f12

−6/125 + d21 − e21 + f21 − 2g21 + 2h21 1/25 + d22 − e22 + f22 − 2g22 + 2h22

]
,

C =
[

4
125 0

−8/125 − d21 + e21 + g21 − h21 1/25 − d22 + e22 + g22 − h22

]
,

D =
[

16
125 + f11 f12

d21 d22

]
, E =

[
3

125 + f11 f12

e21 e22

]
, F =

[
f11 f12
f21 f22

]
,

G =
[

3/125 0
g21 g22

]
, H =

[
1/125 0
h21 h22

]
, (4.18)

we have a family of subdivision masks which satisfy the sum rule of order 4 with the vectors yα in (2.4) or (2.6) given
by (4.15) and

y3,0 = y2,1 = y1,2 = y0,3 = [0,0]. (4.19)

Although there exist parameters (not provided here to save space) such that the resulting Φ is in W 3.8063, we prefer
integer implementations with

[y11, y12, y21, y22, d21, d22, e21, e22, f11, f12, f21, f22, g21, g22, h21, h22]
= 1

54
[90,54,−26,−13,−35,−10,−16,−27,24,61,−10,−26,−6,3,−4,−3],

with corresponding Φ ∈ W 3.7489. Since Φ is already in C2, there is no need to provide the Hölder smoothness esti-
mates here.

4.2.2. Interpolatory
√

5-subdivision matrix templates
First we consider smaller templates by setting G = H = 0. Let L,B,C,D,E,F be the matrices as given in (4.16),

and X,Y,Z chosen to be

X =
[

1 −4y12 − 4y12

0 1
5 − 2y12 − 4y22 − 4z12 − 4z22

]
, Y =

[
0 y12
0 y22

]
, Z =

[
0 z12
0 z22

]
. (4.20)

Then the corresponding subdivision masks satisfy (1.5), and hence, the subdivision schemes are interpolatory. These
interpolatory masks also satisfy the sum rule of order 3 with vectors yα given in (4.15). Although there exist parameters
(not provided here to save space) such that the resulting Φ is in W 2.6230, we prefer integer implementations with

[y12, y22, b21, b22, c21, c22, d21, d22, e21, e22, z12, z22, f11, f12, f21, f22]
= 1

54
[169,−53,−36,32,−21,10,−16,−5,−1,−13,65,−23,−26,34,5,−9], (4.21)

for which the corresponding Φ is in W 2.6172.
Finally, we construct interpolatory subdivision masks with the higher sum rule order 4, by allowing F,G,H to

be non-zero. For L,B,C,D,E,F,G,H as given in (4.18) and X,Y,Z given in (4.20), we do have interpolatory
subdivision masks that satisfy the sum rule of order 4, with vectors yα given in (4.15) and (4.19). Although there exist
parameters (not provided here to save space) such that the resulting Φ is in W 3.4378, we prefer integer implementations
with
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[y12, y22, d21, d22, e21, e22, f11, f12, f21, f22, g21, g22, h21, h22, z12, z22]
= 1

54
[216,−73,−26,10,−4,−5,−5,8,1,−3,−4,−3,−1,−2,68,−21],

for which Φ ∈ W 3.3787, so that Φ is already in C2.
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