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EDITORIAL COMMENT
HDL Dysfunction
Is the Answer in the Sphinx’s Riddle?*
Juan J. Badimon, PHD, Carlos G. Santos-Gallego, MD
S phingosine-1-phosphate (S1P) was named in
1884 (1) after the Greek mythological creature
the Sphinx because of its enigmatic nature,

emulating the Sphinx’s riddle. S1P is a component
of high-density lipoprotein (HDL) (2), but its role
has not received widespread attention. In this issue
of the Journal, Sattler et al. (3) shed light on this
mysterious molecule by demonstrating S1P to be a
mechanistic cause and a therapeutic target for HDL
dysfunction.
SEE PAGE 1470
For the past 60 years, HDL has been widely
considered to reduce the risk of coronary artery dis-
ease (CAD); in fact, the cholesterol carried by HDL
(HDL-C) has earned the moniker of “good cholesterol”
(2). This is of crucial importance because CAD is the
number 1 cause of death in the Western world (4).
HDL is known to possess, in addition to its well
established cholesterol efflux capacity, additional
salutary effects including anti-inflammatory, vaso-
relaxant, endothelium-protective, and antiapoptotic
properties (2). These “pleiotropic” actions contribute
to the benefits conveyed by HDL (2).

Recent studies cast a shadow on the benefits of HDL
on CAD (2); for instance, HDL-C–increasing therapies
such as niacin increase HDL-C levels without reducing
CAD events (5). We previously formulated a compre-
hensive hypothesis that explains this paradox (2). Only
5% of the total HDL-C is derived from macrophage
cholesterol efflux, and HDL-C does not represent
many important antiatherogenic HDL properties
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(e.g., anti-inflammatory or vasorelaxant); thus, HDL-C
may be an insensitive method to quantify the anti-
atherosclerotic properties of HDL. Therefore, we
should focus on validated HDL functions that truly
reflect and are responsible for the actual beneficial ef-
fects of HDL (2). The recent report that cholesterol
efflux predicts CAD events, whereas HDL-C did not (6),
confirms our hypothesis that HDL function (quality) is
more important than HDL-C levels (quantity).

However, HDL loses its beneficial properties in
certain pathological situations such as CAD, which has
been termed “dysfunctional HDL” (2). The oxida-
tion of the HDL particle is the main cause of HDL
dysfunction, thus resulting in a dysfunctional HDL,
which is both proinflammatory and with a reduced
ability to promote cholesterol efflux or vasodila-
tion (7). Changes in the HDL proteome and lipidome
(of which S1P is an essential component) also con-
tribute to dysfunctional HDL (2). Currently, there are
no effective therapies for HDL dysfunction.

S1P is a bioactive lysophospholipid that is derived
from the ubiquitous membrane lipid sphingomyelin.
Sphingosine kinase is responsible for S1P synthesis,
whereas S1P-lyase accounts for S1P irreversible de-
gradation. Erythrocytes are the main source of plasma
S1P because they lack S1P degrading enzymes. Only
S1P-bound HDL (60% of total plasma S1P) seems to be
active, whereas albumin-bound S1P (40% of plasma
S1P) acts as a reservoir. Apolipoprotein (apo) M has
been identified as a S1P-binding protein in HDL (8).

S1P has recently received attention for its benefi-
cial properties, specifically for its antiatherosclerotic
effects. In vivo data demonstrate that the inhibition
of sphingosine kinase results in lower S1P levels and
increased atherosclerosis (9), whereas, conversely,
deficiency of S1P-lyase resulted in higher S1P levels
and reduced atherosclerosis (10). In addition, the S1P
receptor agonist fingolimod reduced atherosclerosis
in murine models (11,12). CAD patients also had lower
HDL-bound S1P levels than healthy volunteers (13),
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and HDL-bound S1P concentrations were inversely
correlated with CAD severity (13). In vitro results
explain the mechanism of S1P atheroprotective ef-
fects. S1P exerts vasodilator effects of HDL because
S1P activates endothelial nitric oxide synthase, stim-
ulates endothelial nitric oxide release, and induces
vasodilation (12,14). S1P also exhibits endothelium-
protective activities because HDL-bound S1P en-
hances survival and migration in endothelial cells
(15). S1P polarizes macrophage from an M1 (classic,
proinflammatory) phenotype into an M2 (alternative,
anti-inflammatory) phenotype (11), reduces inflam-
matory cytokines in plasma, and modulates the ac-
tivity and distribution of T lymphocytes, thus overall
displaying anti-inflammatory properties.

Therefore, it is tempting to hypothesize that re-
duced S1P content in CAD-HDL could be responsible
for HDL dysfunction. The authors investigated this
hypothesis and the corollary of raising the S1P cargo
as potential therapeutic strategy to restore CAD-HDL
function (3).

Several important observations are presented in
this paper (3). The authors first report that CAD-HDL
contains 5-fold less S1P concentration than HDL from
healthy individuals, thus confirming their previous
findings (13). They also corroborate that CAD-HDL
functionality was less efficient than healthy HDL,
both at activating endothelial molecular pathways
and at inducing vasodilation. Second, HDL-induced
endothelial signaling is mediated by the S1P-load
because it was completely abrogated in the presence
of both S1P receptor antagonists and S1P-neutralizing
antibodies. Third, the authors demonstrate that the
oxidative modifications present in CAD-HDL truly
decreased the S1P content in HDL. The authors sub-
sequently designed an ingenious model of S1P-
loading of HDL (i.e., incubation of HDL with erythro-
cytes, which have increased their S1P levels by pre-
incubation with sphingosine). Finally, and most
important, the authors demonstrated that S1P-loading
improved CAD-HDL functionality, as demonstrated by
improved HDL-mediated signaling in vitro and
enhanced HDL vasodilatory capacity.

This paper’s importance stems from the convincing
demonstration of the mechanistic role of reduced S1P
as a cause of HDL dysfunction. Moreover, HDL
dysfunction seems to be exclusively due to the lower
S1P content because healthy HDL and CAD-HDL with
the same S1P content were equally efficient. In the
most translational part of the paper, the authors
develop an innovative strategy to S1P-load the HDL
in vivo (transfusion of S1P-loaded erythrocytes), thus
hinting at its potential applicability in humans. It is
crucial to note that this S1P-loading completely cor-
rects the functional impairment of CAD-HDL. Of note,
this procedure loads CAD-HDL with S1P as efficiently
as healthy HDL and transfers 100% of the erythrocyte
S1P content to HDL in 5 min, thereby increasing S1P
content in HDL by 4-fold. Finally, the discovery that
HDL does not require apo M to effectively carry S1P is
of extreme importance. S1P was absent in HDL from
apo M knockout mice (8), which led to the belief that
S1P only could bind HDL via apo M. The authors show
that CAD-HDL, despite exhibiting very low levels of
apo M, was able to be efficiently loaded with S1P. This
fact prompts the investigation of the specific mole-
cule responsible for binding S1P, and targeting that
structure appears an attractive therapeutic strategy.

Some questions remain unanswered and warrant
further investigation. Although the authors explore in
depth the endothelium-protective and vasodilatory
effects of HDL, HDL also exerts cholesterol-efflux
inducing, anti-inflammatory, antioxidant, and anti-
apoptotic effects. Whether S1P-loading the HDL will
also enhance these additional beneficial effects of
HDL remains unexplored. Furthermore, the identity
of S1P receptors responsible for the atheroprotective
effects of S1P has not been unequivocally established
so far. Also, the authors have selected a mild CAD
population; whether S1P-loading the HDL in patients
with more severe CAD is possible and whether it im-
proves mores severe HDL dysfunction still need to be
proved.

S1P was named in reference to the Sphinx due its
enigmatic nature. More than a century later, we are
just beginning to unravel the riddle of S1P. Sattler
et al. (3) found that S1P improves HDL dysfunction.
Perhaps the key to understanding HDL dysfunction is
in the Sphinx’s riddle, specifically in S1P.
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