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$4. IN’IXODUCTION 

LET T be a topology (i.e., a collection of open sets) on a set X. Consider T as a category in 

which the objects are the open sets and such that there is a unique ‘restriction’ morphism 

U -+ V if and only if V c U. For any category A, the functor category F(T, A) (i.e., objects 

are covariant functors from T to A and morphisms are natural transformations) is called the 

category ofpresheaces on X (really, on T) with values in A. A presheaf F is called a sheaf if 
for every open set UE T and for every strong open covering {U,) of U(strong means {U,} is 

closed under finite, non-empty intersections) we have F(U) = Llim F( U,) (Urn means 

‘generalized’ inverse limit. See $4.) The category S(T, A) of sheares on X with values in A 

is the full subcategory (i.e., morphisms the same as in F(T, A)) determined by the sheaves. 

In this paper we shall demonstrate several properties of S(T, A): 

(i) S(T, A) is left closed in F(T, A). (Theorem l(i), $8). This says that if a left limit 

(generalized inverse limit) of sheaves exists as a presheaf then that presheaf is a sheaf. 

(ii) If A has limits (54) and enough small objects ($5) then S(T, A) is right reflective 

(cf. Freyd [3]) in F(T, A); i.e., there is a functor R from presheaves to sheaves which has the 

inclusion functor of sheaves into presheaves as a right adjoint. Equivalently, there is a 

natural transformation rF : F -+ R(F) such that if 4 : F + G, where G is a sheaf, then there 

is a unique 4’ : R(F) -+ G with 4’ 0 rF = 4. As a consequence, right limits (generalized direct 

limits) of sheaves are the reflection R of the corresponding limits calculated as presheaves. 

If A is an AB5 abelian category (Grothendieck 171) then R is an exact functor (Theorem (4), 

$10) from which it follows that S(T, A) is also an AB5 abelian category. Furthermore, in 

this case, sheaf morphisms are characterized by the induced morphisms on the stalks in the 

sense that a sequence of sheaves is exact if and only if the induced sequence of stalk mor- 

phisms is exact at every point. 

(iii) If TX (resp. TY) is a topology on X (resp., Y) and if f : X -+ Y is continuous then 

f -' may be considered as a functor from T, to T,. Composition with this fixed functor 

determines a functor f, from presheaves on X to presheaves on Y. This functor has a left 

adjoint f * which is exact under the same hypotheses on A as in (ii). Furthermore f, and f * 
are ‘functoral’ inJ (Theorem (2), $9) (cf. Grothendieck [S].) 

fThis work has been partially supported by the National Science Foundation under Grant No. G19022 
through Columbia University. 
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2 JOHN W. GRAY 

Applications of these results are given in 411 to relative injective sheaves, to induced 

sheaves on locally closed subspaces and to cosheaves. 

In dealing with categories involving topological spaces it is not at all unusual for a 

significant sub-category to be left closed and right reflective. For example, let T, (resp., 

T,,) be the category of HausdorlI’ (resp., compact Hausdorff) topological spaces. Then 

T,, is left closed (by Tychonoff) and right reflective (by Stone-Cech ‘compactification’) in 

T,. Other examples are Hausdorff or completely regular spaces in the category of all 

topological spaces, complete Hausdorff uniform spaces in the category of all Hausdorff 

uniform spaces, and topological groups in the category of completely regular spaces. (This 

last example is not really a subcategory, but the forgetful functor from topological groups 

to topological spaces has a left adjoint). The basic proposition (Appendix C3) which gives 

the existence of the right reflection for sheaves applies more or less without change to the 

cases cited here as well. 

In order not to impede the exposition unnecessarily we shall merely define adjoint 

functors, reflective sub-categories and limits in the next three paragraphs and relegate the 

statements and proofs (in those cases in which we cannot cite a published reference) of the 

results we shall use to an appendix. Most of these properties, except for Appendices C3 and 

C4, are presumably ‘well-known’. We then prove the promised results for the discrete 

topology on a set and finally show that this implies the general result. All discussion of 

exactness is reserved for $10 and until that point we do not even assume that A is additive, 

only that it has limits and small objects. (For an entirely different approach, see Heller 

and Rowe [lo].) The results here are essentially those that were announced in [6]. 

I would like to thank Peter J. Freyd for many stimulating conversations during the 

preparation of an earlier draft of this paper. 

52. ADJOMT FUNCTORS 

All functors in this paper are covariant. 

A pair of functors S : A -P B and T : B -+ A are called adjoint via (Ii (S the left adjoint 

of T and T the right adjoint of S) if 0 is a natural equivalence between the func- 

tors Hom,(S( -), -) and Hom,(-, T(-)), both from A x B to the category of sets (or 

groups in the case of additive functors.) Thus, for each (A, B)EA x B, 

is an equivalence. 
cf, . Hom,(S(A), B) + Hom,(A, T(B)) A,B . 

Defining tiB = Qb,(‘,,.,(i,(,,) and 8, = CD A,s(A)(is(a)) yields natural transformations 

$:S3T+Zgand 0:I,-+T,Ssuchthatgivenf:S(A)+Bandg:A+T(B)thereare 

unique morphisms f' : A + T(B) and g’ : S(A) -+ B with f = I/I~ o S(f’) and g = T(g’) o @A. 

$ and f3 are called the induced natural transformations. (In the preceeding formulas i,, is 

the identity morphism of the object A and IA is the identity functor of the category A.) 

53. REFLECTIVE SUBCATEGORIES 

A special case arises if one of the functors above is the inclusion functor I,,, : A’ + A of 

a subcategory. A functor L : A + A’ (resp., R : A + A’) which has I,,. as a left (resp. 
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right) adjoint is called a lefr (resp., right) reflection of A in A’. If such a functor exists, A’ 

is called Iefr (resp., right) reflective in A. (This terminolo,v is chosen since the important 

‘left’ property for a functor is for it to hate a left adjoint, not for it to be a left adjoint. The 

term ‘right reflective’ corresponds to ‘reflective’ in Freyd [3].) In each case only one of the 

induced natural transformations is of interest; namely, 

111 *** 0 L -+ I, and ~II~+I~_,,.~R. 

These satisfy the universal property that given A E A, A’ E A’ and f : A' -+ A (resp., g : A -+ A’) 

then there is a unique f’ : A’ --t L(A) (resp., g’ : R(A) + A') such that f = 1, Of’ (resp., 

g = g’ O rA). It is easily checked that these universal properties characterize L and R in the 

sense that, for example, if for each A EA an object L(A) EA’ together with a morphism 

I : L(A) + A is given satisfying the above universal property then there is a unique extension 

of L to a functor from A to A’ which is a left reflection. 

54. LIMITS 

As an application of the notion of a reflective subcategory, let D be a small category 

(i.e., the collection of objects of D is a set). Then the functor category F(D, A) is well 

defined. We identify A with the subcategory of F(D, A) consisting of constant functors and 

constant natural transformations, i.e., A EA is identified with the functor mapping each 

object of D into A and each morphism of D into i, while a morphism g in A is identified with 

the natural transformation all of whose values are g. 

If there is a right reflection Rlim ,, : F(D, A) -+ A then for any D : D + A, Rlim, D is 

called the right limit of D (or generalized direct or inductive limit). The induced natural 

transformation is denoted by 

rl,: LFCD.h) + LFCD,A).h 0 Rlimn. 

Dually, if there is a left reflection Llim n : F(D, A) 4 A, its values are called feft limits 

(or generalized inverse or projective limits.) The induced natural transformation is denoted 

by 

(cf. Kan [12]). 

We leave the translation of the universal mapping property in this case to the reader. 

From this property it follows immediately that 

Hom,(X, Llim 0) = Llim Hom,(X, D( -)) 

and 

Hom,(Rlim D, X) = Llim Hom,(D( -), X). 

By the uniqueness of the representing object for a representable functor (Grothendieck [9]) 

these equations characterize limits. 

We shall reserve the term direct (resp., inverse) limit for the case when D is an increasing 

directed category; i.e., the objects of D form a directed set (partially ordered with upper 
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bounds) and there is a unique morphism i -j (resp., j -+ i) if and only if i 5 j. If D(i) = A + 

we write Rlim D = dir lim Ai (resp., Llim D = inv lim Ai) in this case. 

Direct products (or left products!), difference kernels and pullbacks (or fibre products) 

are other examples of left limits and their duals are examples of right limits. (In general 

Llim, is dual to Rlim,. where D’ is the opposite category to D.) 

The main facts about limits which we shall make use of are: (i) limits in a functor 

category are computed objectwise, (ii) a functor T with a left adjoint preserves left limits 

(i.e., Llim T, D = T (Urn D)), (iii) all left (resp., right) limits commute with each other. 

(See Appendix B for proofs and references.) 

We shall say that a category has left (resp., right) limits if it has left (resp., right) limits 

of type D for all small categories D. It is easily shown, for instance, that a category has left 

limits if and only if it has arbitrary direct products and arbitrary pullbacks. An abelian 

category has left limits if and only if it has direct products, thus, if and only if it satisfies 

Grothendieck’s axiom AB3* [7]. 

DEFINITION. A subcategory A’ of A is left closed in A ifgiven any D : D -*A such that 

Llim(l,,. 0 D) exists then Llim(l,,,. 0 D) = Llim D E A’ and ll(I,,. c D) = ffD. (I.E., if a 

diagram D in A‘ has a limit in A, then the limit is, in fact, in A’.) Right closed is defined dually. 

If A and A’ have left limits, then A’ is left closed if and only if I,4A. preserves left limits 

Clearly, a left closed subcategory of a category with left limits also has left limits. Finally, 

if A’ is a full subcategory then the condition on 11, is superfluous. 

35. GENERATORS AND SiMALL OBJECTS 

We shall distinguish between two kinds of generators. A set {G,) of objects from a 

category A is called a generating family in A if, given any subobject B of an object A E A, 

B # A (i.e., given any monomorphism B -+ A which is not an equivalence), there is a G, with 

a morphism h : G, + A which does not factor through B. (Cf. Grothendieck [7], $1.9.) For 

the purposes of this paper a set {G:} is called an m-generating family (m for morphism) if 

given f, g : A + C, f # g, there is a GL with a morphism h : G: -f A such thatfh # gh. 

If follows immediately from the definitions that if every monomorphism in A is the 

difference kernel of some pair of morphisms then an m-generating family is a generating 

family. On the other hand, if every pair of morphisms between the same objects has a differ- 

ence kernel (in particular if A has left limits) a generating family is an m-generating family. 

Consequently, if A is abelian then the two notions of generators are equivalent. 

In [7], $1.9, Grothendieck shows that if A has a generating family then any object has 

at most a set of subobjects. Furthermore, Proposition (1.92) can easily be interpreted to 

show that if A has a generating family then so does F(B, A) for any appropriate small 

category B. Hence if A has a generating family then any functor F : B --, A has at most a set 

of subfunctors. One can give an alternative proof of this by noting that if, in addition, A 

has left limits then the generating family in F(B, A) is an m-generating family. From this it 

can be easily shown that a natural transformation 4 in F(B, A) is a monomorphism if and 
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only if for every B E B, $B is a monomorphism in A, which implies directly that any functor 

has at most a set of subfunctors. 

We now introduce a new kind of object, to be called a small object. Let D be an in- 

creasingly directed category and let D : D + A, D(i) = Ai. The natural transformation 

D + dir lim Ai induces a natural transformation 

and hence a map 

HoIII~(X. Ai) -+ Hom,(X, dir lim iii) 

Sx,,] : dir lim Hom,(X, A,) -+ Horn,,, X, dir lim Ai). 

DEFINITION. X E A is called small if for every such directed D and every D : D 4 A, 

(bx,D is an injection. Cosmall objects are defined dually. If there is a generating family of 

small objects then we shall say that _4 has enough small objects. 

In the category of sets or topological spaces, a single point is a small generator. In the 

category of modules over a ring R, R is a small generator. In the category of torsion 

abelian groups, {Z,} is a generating family of small objects. Freyd has shown that in the 

category of group-valued functors on a small category, the representable functors form a 

generating family of small objects (unpublished.). 

$6. DIRECT Ah-D INVERSE IhlAGES OF PRESHEAVFS 

Let T, (resp., TY) be a topology on X (resp., Y) and letf: X -+ Y be T, - Tr-contin- 

UOUS. Thenf-’ determines a functor 

f: = (f- 1)a : F(T,, A) -+ F(T,, A) 

(See $1, (iii) and appendix A4); i.e., if F is a presheaf on X then f,F is the presheaf on Y such 

that for any VE:T~, y*,F(V) = F(f-l(V)). f*F’ IS called the direct image of F byf. 

We shall show here that the functor f* has a left adjoint. This would follow immediately 

from Appendix A4 if the functor f - ’ had a right adjoint. But the existence of such a right 

adjoint is equivalent to the arbitrary intersection of open sets being open which, of course, 

is not true in general. 

MAIN LEMMA. If A has direct limits then?, has a left adjointf*. 

If G is a presheaf‘on Y, thenf*G is called the presheaf inverse image of G byf. 

Proof. Let G be a presheaf on Y and define 

[p*G](C;) = dir lim G(V) (for U cf-l(V)) 

with the obvious induced morphism when U’ c U. Similarly, if 4 : G -+ G’ is a presheaf 

morphism, then define 3*4, = dir lim &, (for U cf-‘( V)). It is immediate that f* is a 

functor from presheaves on Y to presheaves on X. To prove thatf* is the left adjoint of 

,f’,, it is sufficient, by Appendix A3, to define natural transformations 0 : IFtTr,Aj -7, op 

and ti : 3* of, -+ IfcTx aj such that 

($ *f*)O(p* * 0) = i *_f* : f* +f* of.+ of* *j* 

(j* 1: II/) o (0 *f*) = i *f* : _f* -+f* of* o_f* -+f* 
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(here i denotes the identity natural transformation and the notation is that of Godement 

[5, Appendix I]). 

By definition 

f*f*G(V) = dir lim G(V’) (forf-‘(V) cf-‘(V’)). 

Since V is itself such a V’, there is a morphism 

(&), : G(V) -fd-*‘WI 

which determines a presheaf morphism 0,. Similarly 

f*f*F(CJ) = dir lim F(f-‘( V)) (for U cf-‘( V)) 

The morphisms F(f- ‘(V)) -+ F(U) therefore induce a morphism ($p)L: : f*f,F(U) + F(U), 

which determines a presheaf morphism tiF. It is easily seen that 0 and $ are natural trans- 

formations. An immediate direct calculation shows that rl/*f*. f,*$, O*f, and f*& are 

identity natural transformations. 

PROPOSITION. If F is a sheaf on X then f*F is a sheaf on Y. 

Proof. Let {I’,} be a strong open covering of VETS. Since f -I preserves all lattice 

operations, {f - ‘( V,)} is a strong open covering off - ‘(V). Hence 

f&T/) = F(f-‘(V)) = Slim F(f-‘(Q) = Llimf,F(V,) 

so f*F is a sheaf. (This also follows from the proof of Theorem (1, i) and the fact that f - ’ 

preserves limits.) 

We denote the induced functor from S(T,,A) to S(T,,A) by f,. If I, (resp., I,) denotes 

the inclusion functor of sheaves on X (resp., Y) into presheaves on X (resp., Y) then clearly 

f*oIx = Iyof*. 

$7. SHEAVES ON A DISCRETE SPACE 

Let T, denote the discrete topology on X. Since for any U c X, {{x,>~,, is an 

open covering of U, a presheaf FE F(T,,A) is a sheaf if and only if F( U) = fl F(x). Further- 
xecl 

more, if C$ : F + F’ is a sheaf morphism then 0” = XvU +{. }, x since for all XE U the adjoining 

diagram must be commutative. 

F(U) + F’(U) 

1 1 
F(x) + F’{x} 

Thus there is a natural equivalence: 

Horn s(Td,~)(F9 F’) = XvX Hom,(FCx), F’(x)). 

PROPOSITION. If A has direct products then there is a right rejection 

R d,x : F(‘LAJ --) SCLA). 

Proof. If F is a presheaf, define R,,F(iJ) : n F(x) and rf : F -+ R,,F by rF,u : F(U) -+ 
XEU 

R,,F(U) where rF,” is the morphism whose co-ordinates are the morphisms F(U) -+ F{sj 

for (x} c U. It is immediate that RdxF is a right reflection since if G is a sheaf then 
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is commutative and ,r& , , is the unique morphism that makes it so. 

98. SHEAVES 

Let T be a topology on X and let T, be the discrete topology on X as in $7. Since the 

identity map i,Y is T, - T-continuous, there is a pair of adjoint functors (1?[)* and (ix)* 

by $6. Let P, = (i,,)* 3 [R,, 3 (I,)*] : F(T, A) -+ S(T, A). To calculate Px on a presheaf F, 

let F, = dir lim F(U)(XE V) (FX is called the stalk of Fat x). Then P,F is the sheaf such that 

for any U E T, P,F(U) = n F,. 
x E L’ 

Since (TX)* is the left adjoint to (ix), and R,, is the left adjoint to the inclusion functor 

Id, it follows by appendix A2 that R,,,((5,y) * is the left adjoint to (LX)* “Id = I,YyJ (ix),. 

Hence there is an induced natural transformation p : IFcT,Aj -+ I?( 3P,y. The definitions 

show that for a presheaf F, pF : F-+ P,F is the presheaf morphism such that on UET, 

pF,” : F(U) -+ n ET is the morphism whose co-ordinates are the induced morphisms 
.XE u 

rx,u : f(U) --t F, = dir lim F(C~)(.YE LJ). 

THEOREM (1). (i) S(T, A) is CI left closed ($4) subcategory sfF(T, A). 

(ii) [f A has limits, a zero object and enough small objects (45) then there is n right 

reflection R,y : F(T, A) + S(T, A). If F is a sheaf then R,y(F) z F. 

Proof. (i) Let U = {Or,> be a stron g open covering of UE T and let D : U -+ T be the 

inclusion functor. Then Slim D = u CJz = U. Hence to say that F is a sheaf is to say that 

F(Llim D) = Slim F, D; i.e., a sheaf is a functor bvhich preserves certain left limits; namely, 

left limits of inclusions of subcategories of T corresponding to strong coverings. It therefore 

follows from Appendix B3 that S(T. A) is left closed in F(T, A). 

(ii) If F is a presheaf, define RxF to be the intersection of all subsheaves of the sheaf 

P,F through which the morphism pf : F --) P,F factors. This intersection is well defined by 

$5. It will follow from Appendix C3 that Rx is a right reflection provided that whenever F 

is a sheaf then pF is a (presheaf) monomorphism. To show this it is sufficient to show that 
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for each UET, pr,” : F( Cl) --f P,F( U) is a monomorphism in A. For this it suffices to show 

that if (G,) is a family of generators in A and iff, f’ : G, + F(U) satisfy pF,LV ,f= pf,” 3f’ 

(i.e., rxuof = rxCJ f’ for all XE U) then f =f’. By hypothesis we may assume that the 

G,‘s are small. 

Let XEX and UET be fixed and for XEVC U define fv=rYuof and f;=rYLiOf’ 

where ryu is the ‘restriction’ morphism F(U) + F(V). Then {fV) and {f;} represent ele- 

ments _? and f’ in dir lim Hom,(G,, F(V)). By hypothesis 

$~c. : ciFJ!n~ Hom,(G,, F(V)) -, Hom,(G,, F,) 

is a monomorphism. Since r,,fv = r,,f$ it follows that 4,.(f) = 4,_(J”) and hence f = f’. 

Thus there is a V(x) with XE V(x) c U such that fvC,, = f;(,,. Consider the strong covering 

of U determined by the V(X), XE U. The morphisms fvC,, satisfy 

‘VXYWX) o f V(x) = ~WY)V(Y) o f V(Y) 

where V(xy) = V(X) n V(y). Since F is a sheaf, there is therefore a uniquef” : G, + F(U) 

such that ryCxjLr .,f” = fvC,, for all XE U. But f and f’ both satisfy this condition and hence 

f=f’_ 

It is immediate from the definition that if F is a sheaf then R,(F) sz F. (cf. Note to 

Appendix C2). 

COROLLARY(~). RxOR, zRR,. 

COROLLARY (2). S(T, A) has limits, left limits being computed as presheaves while right 

limits are Rx applied to the corresponding presheaf limits. 

Proof. If A has limits, so does F(T, A). Since S(T, A) is left closed, if D : D + S(T, A) 

then Slim D = Slim Z, O D while, by Appendix C2, Rlim D = R,(Rlim Z, O 0). 

59. DIRECT AND INVERSE IMAGES OF SHEAVES 

Throughout this section, we assume that A has limits and enough small objects. 

Returning to the situation described in 96, our assumptions on A imply that the functors 

7* 

JV.,, A)- .+-----FtTxY, A) + 
iI r:, 

RY IY Rx Ix 
f* Ii 

S(T,, A)yzz1zxZ3(T,, A) 

f* 

R,,R, and p exist, Rx (resp., R,) being the left adjoint to I, (resp., Zy) and p the left 

adjoint toy*. (See the adjoining diagram.) Hence R, Oft* is the left adjoint tof. O I, = Zy of* 

(by Appendix A2). Define 

f* = R, Of* 01, : S(T,, A) + S(T,, A). 

If G is a sheaf on Y then f *G is called the (sheaf) inuerse image of G byf. 
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THEOREM (2). (i) f * is the left adjoint to f, and there is a natural equivalence f * 3 RY x 

R, of*. 

(ii)Ifg: Y-,Zisafsocontinuousthen(gnf)*=g*~f*and(g,f)*=f*,g*. 

Proof. (i) Let F be a sheaf on X and G a sheaf on Y. Then, by the definition off*, 

Hom,,r,,&“*G, F) = Hom,(r,,,,(l,G, 1, .f*F) 

= Horn s(T,+,(G~ f;F) 

the last equality since I, is the inclusion of a full subcategory. Furthermore,f* j RY is a left 

adjoint to 1, c f, =f. O I,y. Since R, “f* is also a left adjoint to f* 3 1, it follows from the 

uniqueness of adjoints (Appendix A2) that f * O R, and R, l3* are naturally equivalent. 

(ii) Since (gOf)-’ =f-‘Og-l, we get immediately that (gTf), = S,Oj$ and hence 

(gTf)* =3* 5 S* (by Appendix A2). But then 

I, 0 (y sf’)* = (gYf)* 3 Ix = g* 07* 0 I, = I, I g* 3f* 

so (g Of)* = g* Of, (since Z, is the inclusion of a full subcategory) and hence(g Jf )* =f * o g*. 

COROLLARY (1). PX 3 RX = P,; thus. if F is a presheaf on X then F, = (R,F),. 

Proof. The identity map i,y is T, i T-continuous. Hence (i,u)* 3 R, = R,,y a (ix)*. Thus 

P, O RX = (ix)* o RdX O (ix)* O R,y = (ix)* O (ix)* O R,y 5 Rx 

= (ix)* O (ix)* O Rx = P, 

since R X O RX = R,y (Corollary 1 to Theorem 1). 

COROLLARY (2). If G is a sheaf on Y, then (f*G), = G,.(,,. 

Proof. Let (p> be a topological space consisting of a single point. Then, clearly, 

F({P)> A) = WP), A) = A; and if gX : {p} + X is the map such that g,@) = x, then with 

respect to this identification (g,)*F = F, for a sheaf F on X. Hence 

(f*G), = (g,)*f*G = U-0 g,)*G = (g/c,,)*G = Gf(,,. 

COROLLARY (3). If F is a sheaf on X then f*F( Y) = F(X). 

Proof. The proof is dual to that of Corollary (2), using the constant map h : Y --* (p}. 

$40. EXACTNESS 

In an additive category the kernel (resp., cokernel) of a morphism is defined to be the 

difference kernel (resp., difference cokernel) of the morphism and zero. An additive 

functor between additive categories is called left (resp., right) exact if it preserves kernels 

(resp., cokernels). By Appendix B2 a functor with a left (resp., right) adjoint is left (resp., 
right) exact. 

If A is an additive (resp., abelian-we assume Grothendieck’s axioms [7]) category then 

so is F@, A) (by Appendix Bl) and left (resp., right) limits are left (resp., right) exact. 

Grothendieck’s axiom AB5 for an abelian category is just the requirement that for every 
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increasingly directed category D, dir iim, exists and is an exacr functor (i.e., both left and 

right exact). 

In this section we assume that A is an ABS-abelian category with direct products (hence 

limits) and with enough small objects. We remark in passing that in such a category it can 

be shown that an object G is small if and only if, given an increasingly directed family of 

subobjects Ai c B and a morphism g : G -+ 1.u.b. Ai, there is a factorization of g through 

some Ai. 

THEOREM (4). The functorsf*, R,,, R,y and f * are exact. 

Proof. The category of sheaves is a full subcategory of the abelian category of pre- 

sheaves and hence is an additive category, but we have not yet shown that it is an abelian 

category so we may not use the usual characterizations of left and right exactness of functors 

in terms of preserving certain short exact sequences which are only valid when both the 

domain and the range category are abelian. All of the functors listed in the theorem have 

right adjoints (namely,f,, IdX, IX, andf*) so they all preserve cokernels. Hence we need only 

show that they preserve kernels. 

(i) SinceJ*G(U) = dir lim G(V) (for U cf- ‘(V)) and since dir lim is exact, f* is exact. 

(ii) Let E : 0 + F’ + F --+ F” be a left exact sequence in the (abelian) category of pre- 

sheaves on T,. By the characterization of limits in $4, it is sufficient to show that the 

sequence 

Horn S(T,,.A)(GI R&J) = ,?, Hom,(G{x), P{.u1) 

is left exact. But 

E(X) : 0 + F’(x) + F‘(x} -+ F”(S) 

is left exact in A since exactness for presheaves means exactness for each open set in T, 

(by Appendix Bl), and fl is a left exact functor. Hence R,, is an exact functor. 
xsx 

(iii) By Appendix C4, to show that R,y is exact, we must verify three things: 

(a) Px 0 Rx FZ P,y. This is just Corollary (1) to Theorem (2), 99. 

(b) A sheaf morphism 4 : F-, F’ is an equivalence if and only if Px@ is an equivalence. 

Suppose Pxq5 is an equivalence. We prove first that 4 is a sheaf epimorphism. Let 

Cok 4 (resp., Cok’$) be the presheaf (resp., sheaf) cokernel of 4. Then it is sufficient to 

show that Cok’ 4 = R(Cok 4) = 0 ( since the category of sheaves is additive). But F -+ F’ --+ 
Cok 4 + 0 is exact so F, ---* F_: -+ (Cok 4), + 0 is exact in A. Since PX+ is an equivalence, 

I$, is an equivalence. Hence (Cok 4), = Cok($,) = 0, so (Cok’4),r = 0 (since P, 0 Rx = Px) 

and therefore P,(Cok’4) = 0. Since p : Cok’4 + P, Cok’$ is a monomorphism, Cok’4 = 0. 

Now let $ : P,F’ + PxF be the inverse of Px$ and let $’ = rc/, pf, : F’ +PxF. Then 

II/’ c 4 = pF (since, after composition with the equivalence P,&, this relation holds.) Hence 
in the abelian category of presheaves (cok pF) J $’ 0 C$ = 0 so (cok pF) 0 t,b’ = 0 (since Cp is an 
epimorphism.) But, since pf is a monomorphism in an abelian category, pF = ker(cok pF), 

so II/’ = pF3 II/” where II/” : F’ -+ F. It is easily checked that $” = 4-l. 
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(c) P, = (ix)* ‘r R,, 3 (T,Y)* is left exact. since (IX)* and R,,Y are exact by parts (i) and (ii) 

above and (ix)* is left exact since it has a left adjoint (i,u)* (by Theorem (2)). 

(iv)f* = Rx 03* C I, is left exact since R,v andf* are exact by parts (i) and (iii) above and 

ZY is left exact since it has a left adjoint Ry. f * is automatically right exact since it has a right 

adjointf,, although this is not at all evident from its definition since I, is not right exact. 

COROLLARY (1). S(T, A) is an ABS-abelian category with limits and enough small 

objects (i.e., S(T, A) inherits everything rce hare assumed about A.) 

Proof. If A is ABS-abelian then so is the functor category F(T, A). Since Rn is exact, it 

follows immediately from Appendix C5 that S(T, A) is AB5-abelian. By Corollary (2) to 

Theorem (I), S(T, A) has limits. Finally, let {G,) be a generating family of small objects 

in A. For each r and for each (/ET, let Fz,L. be the presheaf such that F=.,(V) = G, if 

V c U and zero otherwise, with the obvious morphism (either 0 or iGz) when V’ c V. It is 

easily checked that the F=,,.‘s form a generating family of small sheaces. 

Remark. Since the direct sum of a family of generators is a generator, S(T, A) is an 

ABS-abelian category with a generator. Hence, by Grothendieck [7]. Theoreme 1.10.1. 

S(T, A) has enough injectives. 

COROLLARY (2). A sequence O-F’ + F + F” + 0 of’ sheares is exact in S(T. A) if’and 

only if 

is exact in A for every XE X. 

Proof. Let g be the map of a single point into X whose image is .KE A’. Then it is 

immediate from the definitions that g*F = F.T. Since g* is exact it follows that if a sequence 

of sheaves is exact, then the sequence of stalk morphisms is also exact. Conversely suppose 

F’ 5 F % F” is a pair of morphisms such that 

is exact for all XE X. Then 

0 --t P,F’ + P,YF --) P,F” 

is exact as sheaves since fl is left exact and the category of sheaves is left closed in the 

category of presheaves. As in the proof in Appendix C5. consider the commutative diagram 

i 4 
F’--.-+ F - f”’ 

o- PxLAF* d F”. x 

The vertical arrows are the monomorphisms p. Hence i is a monomorphism and $J (3 i = 0, 

so there is an induced morphism $ : F’ -+ Ker 4. Since P,F’ = Ker(P,4) = P,(Ker 4). 

Px$ is an equivalence. Hence, by the proof of (iii, part (b)) above, $ is an equivalence, so 

F’ = Ker 4. Finally, the proof that 4 is an epimorphism is almost identical with part (iii (b)) 

of the proof of Theorem (4) since 4X is an epimorphism. 



12 JOHX W. GRAY 

$11. APPLICATIOSS 

1. Relative injectives 

Let A be an AB5 abelian category with limits and enough small objects. It follows from 

Butler and Horrocks [2], $13 that the sheaves P,*F are Ginjective where @ is the class of all 

short exact sequences E of sheaves such that. for all sheaves P on the trivial topology, 

Hom(E,(i,),P) is also exact. Equivalently, 0 is the class of short exact sequences which 

split on each stalk, since, in general, if S is the left adjoint to T then the objects of the form 

T(B) are relatively injective for sequences E such that S(E) is split exact. 

2. Locally closed subspaces 

Let A be as above. Let A c Xwith i : A -+ Xas the inclusion map. If F is a sheaf on X 

then i*F is called the sheaf induced on A. 

PROPOSITION. If G is a sheaf on A then i,G is a sheaf on X which induces G on A. 

Proof. One shows easily that $G : i*i,G + G is an isomorphism on each stalk and hence 

an isomorphism. 

PROPOSITION. Let A c X bc locally closed. 

(i) If F is a sheaf on X, then there is a sheaf FA on X which induces the same sheaf on A as 

F and zero on X N A. If A is closed then there is an exact sequence 

O-F,,, +F-tF,+O 

(ii) If G is a sheaf on A then there is a sheaf G,Y on X which induces G on A and zero on 

X-A. 

Proof. By the preceeding proposition, (i) implies (ii). It is sufficient to prove (i) for A 

first closed and then open. For A closed, define FA = i,i*F. Since i*i,i*F= i*F (i* is 

locally epimorphic, so this follows from Appendix A3) F,., induces the same sheaf on A as F 

and if XE A, then (FJx = 0 (since A is closed) so F.4 induces zero on X - A. Furthermore 

the natural transformation 0, : F + i,i*F = FA is an epimorphism since it is an epimorphism 

on each stalk. Finally, if X - A is open, define F, _,,, = Ker(F --f F,.,). Then since i* is an 

exact functor, FxWA has the desired properties. 

3. Cosheaves 

A copresheaf (resp., cosheaf) on Xwith values in A is a presheaf (resp., sheaf) on X with 

values in A0 (the dual category to A) (cf. Kultze [13] and Luft [14].) 

Since the theory of sheaves is completely categorical, there is nothing to prove about 

cosheaves. If A satisfies the dual assumptions to those made above, then the category of 

cosheaves is a right closed, left reflective subcategory of the category of copresheaves. If, 

for example, A is AB5* then the left reflection is exact so the category of cosheaves is 

abelian with enough projectives. Furthermore, it follows immediately from $4 that if F 
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is a cosheaf then G(U) = Hom,h(F(U), il) for A a fixed object of A, defines a sheaf. An 

example of a cosheaf on a locally compact space is given by assigning to each open set the 

set of sections with compact supports of a fixed sheaf of groups. (See Bore1 and Moore [l].) 

A. Adjoint functors 

APPEXDICES 

(1). Let S : A + B and T : B -v A be adjoint functors via cD with $ and 0 the induced natural 

transformations ($2). @ is determined by the other data since, iff: S(A) --f B, then Q(f) = 

T(f) o 8, while, if g : A -+ T(B), then (P-‘(g) = 11~ 0 S(g). Similarly, S and Tare determined 

on morphisms since if f: A' -+ A then S(f) = @$'(f o 0,) and if g : B -+ B’ then T(g) = 

@(ri/BOg). (See Huber [I 1, $41 and Butler and Horrocks [2, $13.1) 

(2). If S’ is the left adjoint to T’ via a” with induced natural transformations $’ and 8’ 

(i = 0, 1) then given a natural transformation 2 : To -+ T’ (resp., /I : S’ + So) there is a 

unique b : S’ -+ So (resp., x : To + T’) making the obvious diagrams commutative; namely, 

#IA = (@‘)- ‘(as o (A) 3 0:) (rev, rB = Q’(~/J~~/?~~~~J.) As a corollary, the adjoint to a 

functor, if it exists, is unique up to a unique equivalence. Furthermore the adjoint of a 

composition of two functors is the composition of their adjoints in the opposite order 

(Freyd 131). 

(3). If $ and 0 are given, define @ and 4-i by the equations in (I). Then S and T are 

adjoint via @ with II/ and 0 as the induced natural transformations if and only if 

(T*lI/)j(B*T)=i*T: T+TST-+T 

Furthermore, if S and T are adjoint then S and STS (resp., T and TST) are naturally 

equivalent if and only if T (resp., s) is locally epimorphic. (I.E., for all B, B’EB, 

T: Hom,(B, B’) --) Hom,,(T(B). T(B’)) is surjective. 

Proof. For the first part see Huber [I 11, 54 or Shih Weishu [15]. To prove the second 

part, it is sufficient, by (2).. to show that STS is a left adjoint to T. Consider 

Hom’(S1: B)\+Hom*(j, T(B)\, 
Hom,(STS(A), B$Hom,(TS(A), T(B)) 

Hom(L T(B)) 
Since the diagonal @ is a bijection, T is an injection and by hypothesis it is a surjection, 

hence a bijection. Hence Hom(B,, T(B)) IS a bijection. The desired natural equivalence is 

Hom(f?,, T(B)) o 0. 

(4). Let S : A + B and let C be a fixed category. Let 5, : F(C, A) + F(C, B) be composition 

on the left with S and SC : F(B, C) +F(A, C) composition on the right. (The notation S, 

agrees with Kan [12], $7, but Sc does not agree with [12], $8.) 
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PROPOSITION. If S is the left adjoint to T then SC is the left adjoint to T, and Tc is the left 

adjoint to SC. 

Proof. We outline a proof of the first half whose dual is a proof of the second half. 

Let Ic/ and Q be the induced natural transformations. If z : S3 F -+ G, define 

@,(@=(7-*r)3(t)*F): F-TOG 

and if fl: F --* TO G, define 

O’(P) = ($*G).(S*P) : SF-+ G 

The proof that 0’ = @- ’ is an immediate consequence of the five rules of functorial calculus 

of Godement [5]. Appendix I. For an alternative proof of the first part, see Kan [12, 

Theorem (12.1)]. 

B. Limits 

(1). PROPOSITION. If A has left or right limits of type D, then so does F(B, A) for any 

small category B, the limit being calculated objectwise. Hence if A is abelian (resp., AB5) so is 

F(B, A), a sequence being exact ifand only ifit is exact on each object. 

Proof. F(B, A) c F( D , F ( B, A)) M F(D x B, A) z F(B, F(D, A)) the categorical 

equivalences being given by the usual formulas. Thus, if Slim : F(D, A) + A is adjoint to 

the inclusion A c F(D, A) then, by A4, 

(Slim), : F(B, F(D, A)) -+ F(B, A) 

is adjoint to the above inclusion. 

COROLLARY. Let S : A -+ B. Then SC preserces limits. 

Proof. Let D : D +F(B, C) be such that Slim D exists. Since limits are computed 

objectwise, for any A E A, 

[Llim SC D D](A) = Llim[P O D(A)] = [Llim D](S(A)) 

= [SC(Llim D)](A). 

Similarly, SC preserves right limits. We know of no analogous facts concerning Sc. 

(2). PROPOSITION. If S : A + B has a right (resp., left) adjoint then S preserres right 

limits and epimorphisms (resp., left limits and monomorphisms). 

Proof. We repeat the proof of Freyd [3] since we make crucial use of this proposition. 

Let T be the right adjoint to S and let D : D + A be such that Rlim D exists. Then for any 

BEB, 

Hom,(S(Rlim D), B) = Hom,(Rlim D, T(B)) 

= Llim[Hom,(D(-), T(B))] = Llim[Hom,(S O D( -), B)] 

= Hom,(Rlim SO D, B). 

The representable functors defined by S(Rlim D) and Rlim So D being thus equivalent, it 

follows that the objects S(Rlim D) and Rlim(SO D) are equivalent (Grothendieck [9]). 
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To show that .S preserves epimorphisms, recall thatf’: A -+ B is an epimorphism if and 

only if Hom(J Y) is a monomorphism for all Y. But 

Hom,(S(f’). Y) = @ - ’ 2 Hom,(f, 77 Y)) SO 

so S(f) is an epimorphism iff‘is. 

COROLLARY. If A and B are abelian and S : A + B has a right (resp., left) adjoint then 

S is right (resp., left) exact. 

Proof Right exactness is equivalent to preserving cokernels which are special cases of 

right limits. 

COROLLARY. All types of left (resp., right) limits commute \c,ith each other and a left 

(resp., right) limit of monomorphisms (resp., epimorphisms) is a monomorphism (resp.. 

epimorphism). In the abelian case, left (resp., right) limits are left (resp., right) exact. 

Proof. Slim : F(D, A) -+ A has the inclusion functor A c F(D, A) as a left adjoint. 

(3). Let {OX : D, -+ A} be a collection of functors such that Slim D, exists in A and let 

F,(A, B) be the full subcategory of F(A, B) determined by those functors such that 

F(Llim 0,) = Liim(F, D,) for all D, in the collection. 

PROPOSITION. F,(A, B) is left closed ($4) in F(A, B). 

Proof. Let D : D -+ F,(A, B) be such that Slim D exists in F(A, B). Changing notation 

slightly, if D(i) = Pi, iED and D,(j) = Aj, LED,, then 

Liimj[(Llim, Fi)(Aj)] = Llimj[Llimi(Fi(Aj))] 

= Llimi[Llimj(F,(Aj))] 

= Llimi[Fi(LlimjAj)] 

= [LlimiFi](LlimjAj) 

the first and last equalities since limits of functors are computed objectwise, the second 

since all types of left limits commute and the third since F,EF~(A, B). Hence 

Slim DEF,(A, B). 

C. Reflective subcategories 

(1). Two immediate facts are the following: 

PROPOSITION. Let R : A + A’ be a right reJection. If {G,} is a family of generators in A, 

then {R(G,)) is a family of generators in A’. 

PROPOSITION. Let A’ be a full subcategory of A and R : A + A‘ a locally epimorphic 

(see Al) right reflection. If A E A is injectice then R(A) E A’ is injectire. (This does not apply 

to sheaves.) 

(2). PROPOSITION. Let A’ be a full subcategory of a category A with right limits and let 

R : A -+ A’ be a right reflection such that R 0 I,,,. F=Z IA,. Then A’ has right limits. 

Proof Since R has a right adjoint, R preserves right limits. Hence 

R[Rlim I,,. O D] = Rlim[R 3 I,,,, O D] = Rlim D. 
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Note. The hypothesis R3 IA,&, NN Z,. is a consequence of the requirement that A’ be a 

full subcategory of A. However, in the case of sheaves, this hypothesis is obviously satisfied 

so that we omit the proof of this fact. 

(3). PROPOSITION. Assume 

(i) A has left limits and a set of generators; 

(ii) A’ is a full, left closed subcategory of A; 

(iii) There exists a jiinctor P : A + A’ and a natural transformation p : IA -+ I,,. 0 P 

such that for A’ E A’, pa, is a monomorphism. 

Then there is a right reflection R : A + A’ with R(A’) = A' for A’ E A’. 

Proof Define R(A) to be the intersection of all of the subobjects of P(A) which belong 

to A’ and through which pA : A --*P(A) factors. Since A has a set of generators, P(A) has 

at most a set of subobjects (See $5) so R(A) is well-defined. (Clearly, R(A’) = A’ if A’ E A’.) 

Since an intersection means a left limit of monomorphisms, our hypotheses imply that 

R(A)E A’, that R(A) is a subobject of P(A) and, by the definition of left limits, that pA still 

factors through R(A). Thus pA = uA O rA, where rA : A -+ R(A) and pA : R(A) 4 P(A) is a 

monomorphism (in A). 

To show that r A : A + R(A) satisfies the required universal mapping property (see $3), 

consider f: A -*A’, A’E A’. In the adjoinin g diagram P(f)-‘(A’) is the pullback of the 

morphisms P(f) and pA,. Since pA, is a monomorphism, P(f)-‘(A’) is a subobject of P(A). 

It belongs to A’ because A’, P(A’) and P(A) are all objects of A’ and A’ is left closed (a 

pullback is a left limit). Since p is a natural transformation, the outer rectangle commutes 

and hence there is a morphism3 : A + P(f)- ‘(A’); i.e. P(f)- ‘(A’) is an A’-subobject of P(A). 

through which pA factors. Thus R(A) c P(f -‘)(A). We definef’ : R(A) -+ A’ byf’ = g(R(A) 

(g as indicated in the diagram). Then, clearly, f’ o rA = f 

To show that f’ is unique, supposef” also has this property. Let k : K -+ R(A) be the 

difference kernel off’ and f #. Then, again since A’ is left closed, KE A’ and since f’ o rA = 

f” o rA, r, factors through K. Since k is a monomorphism, it follows from the definition of 

R(A) that k is an equivalence. Hence f’ = f “. 

(4). PROPOSITION. Let A’ be a subcategory of an abelian category A satisfying the 

hypotheses in (3) above. If in addition, 

(i) P D R z P( z means ‘naturally equiuaient’) ; 
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(ii) A morphism C#J in A’ is an equiralence if and only lfP4 is an equicalence; 

(iii) P is left exact. 

Then R is exact. 

Proof. See $10 for the definitions of exactness. R preserves cokernels since it has a 

right adjoint. To show that R preserves kernels, let A’ = Ker(A + A”) (in A). Then 
P(A’) = Ker(P(A) --+ P(A”)) and, since IAA, is left exact, we have a diagram 

R(A’) + R(A) + R(A”) 

0 + P(!4’) ---f P(jl) + P(J) 

in A with the bottom row left exact. The vertical arrows are monomorphisms so 

R(A’) -+ R(A) is a monomorphism and the composition in the top row is zero since R is an 

additive functor. Hence there is a morphism 

4 : R(A’) + K = Ker[R(A) + R(A”)]. 

Since A’ is left closed, KE A’. Furthermore, P$ is an equivalence since 

P(K) = Ker[PR(A) -+ PR(A”)] = Ker[P(/-L) -+ P(A”)] = P(A’). 

Hence, 4 is an equivalence, so R(A’) = K 

(5). PROPOSITION. Let A’ be a full, left closed subcategory of an abelian category A. 

If R : A -+ A’ is an exact right rejection then A’ is abelian. IA in addition, A is AB5 then 

so is A’. 

Proof. (i) (F. W. Lawvere, unpublished). Since A’ is full, A’ is additive, and since it is 

left closed it has kernels and finite products. By C2, A’ has cokernels. Iffis a morphism in 

A’, let Ker’f (resp., Ker f) denote the kernel off in A’ (resp., A). Similarly for Cok’j; etc. 

To verify Grothendieck’s axioms [7] for an abelian category, it remains to show that 

Coim’f= Im’f. But Ker’f= Ker f and Cok’f = R[Cok fl. Hence 

Coim’f= Cok’(ker’f) = R[Cok(kerf)] = R[Coimf] 

and, since R is exact, 

Im’f = Ker’(cok’f) = Ker’[R(cokf)] = R[Ker(cokf)] = R[Imf] 

Since Coim f = ImA we have that Coim’f = Im’J 

(ii) Now suppose A is AB5. Let 0 + D’ + D -+ D” + 0 be an exact sequence of directed 

systems in A’. The direct limit is automatically right exact and we must show it is left exact. 

But, since I,,. has a left adjoint, 

O-,I,,,oD’-+I,,.oDjIAA’ODn 

is exact in A. Hence, since A is AB5, 

O-+dirlimI.D’-+dirlim I,D+dirlimI.D” 

is exact in A. Since R is an exact functor, the sequence remains exact after applying R. But 

R(dir lim 10 0’) = dir lim D’ (by B2) etc., giving the desired result. 

B 
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NOTE ADDED IN PRESS. An earlier version of this paper appeared as NSF Report Gl9022 hf. 
Without my being aware of it, much of this report was reproduced in BOURGIN: Modern 

Algebraic Topology, Chapter 17, under the notion of “general sheaves”. Unfortunately, 

in this version the exactness proofs are incomplete, and the adjointness proof for the 

functors on presheaves induced by a continuous map contains an incorrect statement. 
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