
Theoretical Computer Science 326 (2004) 343–362

www.elsevier.com/locate/tcs

Optimal graph exploration without good maps�

Anders Dessmarka,1, Andrzej Pelcb,∗,2
aDepartment of Computer Science, Lund Institute of Technology, Box 118, S-22100 Lund, Sweden

bDépartement d’informatique, Université du Québec en Outaouais, Hull, Québec J8X 3X7, Canada

Received 20 October 2002; received in revised form 29 June 2004; accepted 19 July 2004
Communicated by D. Peleg

Abstract

A robot has to visit all nodes and traverse all edges of an unknown undirected connected graph,
using as few edge traversals as possible. The quality of an exploration algorithmA is measured by
comparing its cost (number of edge traversals) to that of the optimal algorithm having full knowledge
of the graph. The ratio between these costs, maximized over all starting nodes in the graph and over all
graphs in a given classU, is called theoverheadof algorithmA for the classU of graphs. We consider
three scenarios, providing the robot with varying amount of information. The robot may either know
nothing about the explored graph, or have an unlabeled isomorphic copy of it (anunanchored map),
or have such a copy with a marked starting node (ananchored map).

For all of the above scenarios, we construct natural exploration algorithms that have smallest, or—in
one case—close to smallest, overhead. While for the class of all graphs, depth-first search turns out to
be an optimal algorithm for all scenarios, the situation for trees is much different. We show that, under
the scenario without any knowledge, DFS is still optimal for trees but this is not the case if a map
is available. Under the scenario with an unanchored map, we show that optimal overhead is at least√

3 but strictly below 2 (and thus DFS is not optimal). Under the scenario with an anchored map, we
construct an optimal algorithm for trees and show that its overhead is3

2. We also consider exploration
of the class of lines (simple paths). In this case, depth-first search remains optimal for the scenario
without any knowledge, with overhead 2. Under the scenario with an unanchored map, we construct
an optimal algorithm and show that its overhead is

√
3. Finally, under the scenario with an anchored

� A preliminary version of this paper appeared at the 10th European Symposium on Algorithms (ESA 2002).
∗ Corresponding author.
E-mail addresses:andersd@cs.lth.se(A. Dessmark),pelc@uqo.ca(A. Pelc).

1 This research was done during a visit of Anders Dessmark at the Research Chair in Distributed Computing of
the Université du Québec en Outaouais.

2 Andrzej Pelc was supported in part by NSERC grant OGP 0008136 and by the Research Chair in Distributed
Computing of the Université du Québec en Outaouais.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.07.031

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82497274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:andersd@cs.lth.se
mailto:pelc@uqo.ca


344 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

map, we construct an optimal algorithm and show that its overhead is7
5. An important contribution

of this paper is establishing lower bounds that prove optimality of these exploration algorithms.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Algorithm; Exploration; Graph; Map; Robot; Traversal

1. Introduction

A robot has to visit all nodes and traverse all edges of an unknown undirected connected
graph, using as few edge traversals as possible. If the robot has complete knowledge of the
explored graphG, i.e., if it has an oriented labeled isomorphic copy of it showing which
port at a visited node leads to which neighbor, then exploration with fewest edge traversals
starting from nodev corresponds to the shortestcovering walkfrom v: the shortest, not
necessarily simple, path inG starting fromv and containing all edges. The length of this
shortest covering walk is called thecostofG fromv, and is denotedopt(G, v). For example,
if G is an Eulerian graph thenopt(G, v) is the number of edges inG, for anyv, and ifG is
a tree thenopt(G, v) = 2(n− 1)−ecc(v), wheren is the number of nodes inG andecc(v)
is the eccentricity of the starting nodev, i.e., the distance fromv to the farthest leaf. In this
latter case, depth-first search ending in the leaf farthest from the starting nodev clearly uses
fewest edge traversals.

However, graph exploration is often performed when the explored graph is partially or
totally unknown. We consider three scenarios, providing the robot with varying amount of
information. Under the first scenario, the robot does not have any a priori knowledge of the
explored graph. We refer to this scenario asexploration without a map. Under the second
scenario, the robot has an unlabeled isomorphic copy of the explored graph. We call it an
unanchored mapof the graph. Finally, under the third scenario, the robot has an unlabeled
isomorphic copy of the explored graph with a marked starting node. We call it ananchored
mapof the graph. It should be stressed that even the scenario with an anchored map does
not give the robot any sense of direction, since the map is unlabeled. For example, when
the robot starts the exploration of a line, such a map gives information about the length of
the line and distances from the starting node to both ends, but does not tell which way is the
closest end. In the case of ann×m torus, the availability of either type of map is equivalent
to the information that the explored graph is ann × m torus.

In all scenarios we assume that all nodes have distinct labels, and all ports at a nodev

are numbered 1, . . . ,deg(v) (in the explored graph, not in the map). Hence the robot can
recognize already visited nodes and traversed edges. However, it cannot tell the difference
between yet unexplored edges incident to its current position, i.e., it does not know the other
ends of such edges. If the robot decides to use such an unexplored edge, the actual choice
of the edge belongs to the adversary, as we are interested in worst-case performance. For a
given exploration algorithmA, thecostC(A,G, v) of this algorithm run on a graphG from
a starting nodev is the worst-case number of edge traversals taken over all of the above
choices of the adversary.

For a given graphG and a given starting nodev, a natural measure of quality of an
exploration algorithmA is the ratioC(A,G, v)/opt(G, v) of its cost to that of the optimal



A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362 345

algorithm having complete knowledge of the graph. This ratio represents the relative penalty
payed by the algorithm for the lack of knowledge of the environment. For a given classU
of graphs, the number

OU (A) = supG∈U maxv∈G
C(A,G, v)

opt(G, v)

is called theoverheadof algorithmA for the classU of graphs. It is the maximum relative
penalty described above, over all starting nodes in all graphs of the class. The lower the
overhead of an exploration algorithm, the closer is its performance (in the worst case) to that
of the optimal algorithm having full knowledge of the environment. For a fixed scenario,
an algorithm is calledoptimal for a given class of graphs, if its overhead for this class is
minimal among all exploration algorithms working under this scenario.

SinceC(DFS,G, v)�2e, andopt(G, v)�e, for any graphG with e edges and any
starting nodev (depth-first search traverses each edge at most twice, and every edge has
to be traversed at least once), it follows that the overhead of DFS is at most 2, for any
class of graphs. Hence, for any class of graphs, the overhead of an optimal algorithm is
between 1 and 2, under every scenario (DFS does not use any information about the explored
graph).

The following remark will be useful for proving lower bounds on overhead of exploration
algorithms. Suppose that the robot, at some point of the exploration, is at nodew, then moves
along an already explored edgee incident tow, and immediately returns tow. For any set
of decisions of the adversary, an algorithm causing such a pair of moves, when run on a
graphG from some starting nodev, has cost strictly larger than the algorithm that skips
these two moves. Hence, we restrict attention to exploration algorithms that never perform
such returns. We call themregular.

1.1. Related work

Exploration and navigation problems for robots in an unknown environment have been
extensively studied in the literature (cf. the survey[19]). There are two principal ways of
modeling the explored environment. In one of them a geometric setting is assumed, e.g.,
unknown terrain with convex obstacles[8], or room with polygonal[9] or rectangular[3]
obstacles. Another way is to represent the unknown environment as a graph, assuming that
the robot may only move along its edges. The graph model can be further specified in two
different ways. In[1,4,5,11]the robot explores strongly connected directed graphs and it
can move only in the direction from head to tail of an edge, not vice-versa. In[2,7,15–17]
the explored graph is undirected and the robot can traverse edges in both directions. The
efficiency measure adopted in most papers dealing with exploration of graphs is the cost of
completing this task, measured by the number of edge traversals by the robot. In some papers
additional restrictions on the moves of the robot are imposed. It is assumed that the robot
has either a restricted tank[2,7], forcing it to periodically return to the base for refueling,
or that it is tethered, i.e., attached to the base by a rope or cable of restricted length[15]. It
is proved in[15] that exploration can be done in time O(e) under both scenarios. Another
direction of research concerns exploration of anonymous graphs. In this case it is impossible
to explore arbitrary graphs if no marking of nodes is allowed. Hence the scenario adopted



346 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

Table 1
Summary of results

Anchored map Unanchored map No map

Lines Overhead:75 Overhead:
√

3 Depth-first
optimal optimal search

Trees Overhead:32 Overhead:< 2 overhead: 2
optimal lower bound

√
3

General graphs Depth-first search, overhead: 2, optimal

in [4,5] is to allowpebbleswhich the robot can drop on nodes to recognize already visited
ones, and then remove them and drop in other places. The authors concentrate attention
on the minimum number of pebbles allowing efficient exploration of arbitrary directed
graphs. Exploring anonymous undirected trees without the possibility of marking nodes is
investigated in[12]. The authors concentrate attention not on the cost of exploration but on
the minimum amount of memory sufficient to carry out this task. Exploration of anonymous
graphs was also considered in[10,13,14].

The work most closely related to the present paper is that from[17]. The authors consider
exploration of undirected graphs (both arbitrary graphs and trees). The adopted efficiency
measure is similar in spirit to our notion of overhead but differs from it in an important
way. Similarly as in the present paper, in[17] the authors consider the ratio of the cost of an
algorithm lacking some knowledge of the graph to that of the optimal algorithm having this
knowledge. (In particular, they study the scenario with an unanchored map.) However, for a
given graph, both costs are maximized over all starting nodes, and the ratio of these maxima is
considered as the performance measure of the algorithm on the graph. (Then the supremum
of this ratio is taken over all graphs in the considered class). This approach should be
contrasted with our definition of overhead, where the ratio is computed for each starting node
individually and then maximized over all possible starting nodes in the graph. In order to see
the difference between both approaches, consider the case of the line with availability of an
unanchored map (which, for the line, is equivalent to knowing its length).The maximum cost
of depth-first search on the lineLn of lengthn is 2n−1 (the maximum taken over all starting
nodes). On the other hand,opt(Ln, v)�3n/2−2 forsomestarting nodev. This gives a ratio
close to4

3 and leads to the conclusion, proved in[17], that DFS is optimal for lines (and in
fact for all trees), according to their measure. However, this measure (and hence the obtained
result) can be viewed as biased in favor of DFS because for some starting nodesv (close to
the endpoints of the line) the ratio of the cost of DFS toopt(Ln, v) is approximately 2. This
is captured by our notion of overhead, and in fact leads to the conclusion that, ifn is known,
there are exploration algorithms of a line better than DFS, according to the overhead measure
(Table1).

1.2. Our results

The aim of this paper is to establish which exploration algorithms have the lowest possible
overhead for each of the three scenarios described above: no knowledge of the graph,
availability of an unanchored map, and availability of an anchored map. It turns out that



A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362 347

some of these algorithms are fairly natural and our main contribution is proving lower
bounds that show their optimality.

Depth-first search is among the most natural exploration algorithms in an unknown
graph. At every point of the exploration the robot chooses an unexplored edge, if it ex-
ists. Otherwise, it backtracks to the most recently visited node with an unexplored incident
edge. If no such node exists, exploration is completed. Since DFS traverses every edge at
most twice, regardless of adversary’s choices, its overhead is at most 2, for all classes of
graphs.

While for the class of all (undirected, connected) graphs, depth-first search turns out
to be an optimal algorithm for all scenarios, the situation for trees is much different. We
show that, under the scenario without any knowledge, DFS is still optimal for trees but
this is not the case if a map is available. Under the scenario with an unanchored map,
we show that optimal overhead is at least

√
3 but strictly below 2 (and thus DFS, with

overhead 2, is not optimal). Under the scenario with an anchored map, we construct an
optimal algorithm for trees and show that its overhead is3

2. We also consider exploration
of the class of lines (simple paths). In this case, depth-first search remains optimal for the
scenario without any knowledge, with overhead 2. Under the scenario with an unanchored
map, we construct an optimal algorithm and show that its overhead is

√
3. Finally, under the

scenario with an anchored map, we construct an optimal algorithm and show that its overhead
is 7

5. A summary of our results is contained in Table1.
The paper is organized as follows. In Section 2 we consider the class of lines, and construct

for it optimal exploration algorithms under all three scenarios. In Section 3 we consider
arbitrary trees: for the scenario with an anchored map we show an optimal exploration
algorithm, and for the scenario with an unanchored map we give estimates on the overhead
of optimal exploration. (For the scenario without any knowledge of the graph, optimality of
DFS follows from Section 2). Finally, in Section 4 we show that any exploration algorithm
has overhead at least 2 for the class of arbitrary graphs, even when an anchored map is
available, and hence DFS is optimal for this class, under all three scenarios.

2. Lines

In this section we construct optimal exploration algorithms for the classL of lines. A
line of lengthn is a graphLn = (V ,E), whereV = {v0, . . . , vn} andE = {[vi, vi+1] :
i = 0,1, . . . , n − 1}. It turns out that, for all three scenarios, optimal algorithms require at
most 2 returns (changes of direction) on the line.

2.1. Exploration with an anchored map

We consider the scenario in which an anchored map of the line is available to the robot.
This is equivalent to knowing the lengthn of the line and the distancesa andb between the
starting node and the endpoints. Assume thata�b. We describe an exploration algorithm,
establish its overhead, and prove that it is optimal.



348 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

Algorithm Anchored-Line
• Let x = 3a + n andy = 2n − a.
• If x�y then

◦ go at distancea in one direction, or until an endpoint is reached, whichever comes
first;

◦ if an endpoint is reached then
return, go to the other endpoint, and stop

else
return, go to the endpoint, return, go to the other endpoint, and stop

else
◦ go to the endpoint in one direction, return, go to the other endpoint, and stop.

Theorem 2.1. Algorithm Anchored-Line has overhead7
5 for the classL of lines.

Proof. Denote Algorithm Anchored-Line byA. By definition,C(A, Ln, v) = min(x, y).
Sinceopt(Ln, v) = a + n, we have:
if a��n/4� thenC(A, Ln, v)/opt(Ln, v)� 3�n/4�+n

�n/4�+n
� 7

5;

if a��n/4� thenC(A, Ln, v)/opt(Ln, v)� 2n−�n/4�
�n/4�+n

� 7
5. HenceOL(A)�7/5. Since, for

an arbitraryn divisible by 4 anda = n/4, we haveC(A, Ln, v)/opt(Ln, v) = 7
5, this proves

OL(A) = 7
5. �

The next theorem proves that Algorithm Anchored-Line is optimal for the class of lines.

Theorem 2.2. Every exploration algorithm with an anchored map has overhead at least
7
5 for the class of lines.

Proof. Consider any (regular) exploration algorithmE . If the robot always starts the explo-
ration by going in one direction till the endpoint (in this caseE is simply DFS), then its
overhead is 2 as witnessed by the starting node for whicha = 1, considered for lines of
all possible lengths. Otherwise, letc be the number of steps in one direction after whichE
returns if it has not reached an endpoint. (c can depend onn anda). If c < a then the robot
goesc steps and then back to the starting node (by regularity), regardless of the direction
chosen by the adversary. The algorithm skipping these first 2c steps and then following
E has strictly smaller cost. Suppose thatc > a. In some cases the robot does not reach
the endpoint in the first chosen direction (otherwiseE would be DFS, which was already
analyzed). Hencec must be smaller thanb. In this case, the algorithm in which the robot
goesa step in one direction (instead ofc steps), and then returns if it has not reached an
endpoint, subsequently behaving likeE , has strictly smaller cost thanE , regardless of the
direction chosen by the adversary. It follows that in order to prove the lower bound, it is
enough to restrict attention to algorithms for whichc = a. Suppose that the direction chosen
by the adversary is towards the farthest endpoint. Then the robot is back at the starting node
after making 2a steps and not visiting any endpoint. Consequently the robot has to make
at leasta + n further steps (the value ofopt(Ln, v)) to finish exploration. This implies that



A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362 349

the cost of the algorithm is at least 3a + n, and hence its overhead is not smaller than that
of Algorithm Anchored-Line. �

2.2. Exploration with an unanchored map

We now present an algorithm for exploration of lines with an unanchored map (i.e., the
lengthn of the lineLn is known to the robot but the starting nodev is unknown) that has
overhead

√
3, and show that it is optimal for the class of lines.

Algorithm Unanchored-Line
• Let a = �

√
3−1
2 n�.

• If the starting nodev is an endpoint then
◦ go to the other endpoint and stop.

else
◦ go at distancea in one direction or until an endpoint is reached, whichever comes

first.
◦ if an endpoint is reached then

return, go to the other endpoint, and stop
else

return, go to the endpoint, return, go to the other endpoint, and stop.

Theorem 2.3. Algorithm Unanchored-Line has overhead not larger than
√

3 for the class
L of lines.

Proof. Let x be the distance betweenv and the endpoint ofLn that is not in the direction
chosen by the adversary for the first traversal made by the robot. Ifx�n− a then the robot
finds one endpoint before the first return and the total number of traversals is 2n − x =
opt(Ln, v). If x < n − a then the robot makes 2a + x traversals before reaching the first
endpoint and additionaln traversals to reach the second endpoint, which gives a total of
2a+x+nedge traversals. In order to compute the overhead, we need to computeopt(Ln, v).

If x�n/2 thenopt(Ln, v) = n+x and the ratioC(Unanchored -Line ,Ln,v)
opt (Ln,v)

is maximized
for x = 1 giving

C(Unanchored -Line , Ln, v)

opt(Ln, v)
� 2�(√3 − 1)n/2� + 1 + n

1 + n
�

√
3n + 1

n + 1
�

√
3.

If x > n/2 thenopt(Ln, v) = 2n − x and the ratioC(Unanchored -Line ,Ln,v)
opt(Ln,v)

is maxi-
mized forx = n − a − 1 giving

C(Unanchored -Line , Ln, v)

opt(Ln, v)
� 2a + x + n

n + a + 1
= �(√3 − 1)n/2� + 2n − 1

n + �(√3 − 1)n/2� + 1



350 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

� (
√

3 − 1)n/2 + 2n − 1

n + (
√

3 − 1)n/2
� (3 + √

3)n/2

(
√

3 + 1)n/2

= 3 + √
3√

3 + 1
= √

3.

ThusOL(Unanchored -Line )�
√

3. �

Theorem 2.4. For all algorithmsA with an unanchored map, OL(A)�
√

3.

Proof.The proof is divided in two parts. First we show that for every exploration algorithm
of the line with an unanchored map, there is an algorithm that does at most two returns and
has equal or smaller overhead. In the second part we show that the overhead is at least

√
3

for all algorithms with at most two returns.
For each value ofn, all regular algorithms can be classified according to the maximum

number of returns performed while exploring the lineLn before reaching an endpoint. Fix
n�11 and lettypek be the set of algorithms that always do at mostk returns before reaching
an endpoint, and that do exactly this many returns for some combination of starting node
and (adversary) choice of direction. Notice that one algorithm can be of different types for
different values ofn, and that algorithm Unanchored-Line is of type 1 for everyn�3. We
now show that for every exploration algorithmA there exists an algorithmA′ such thatA′
is of type 1 and maxv∈Ln(

C(A′,Ln,v)
opt(Ln,v)

)� maxv∈Ln(
C(A,Ln,v)
opt(Ln,v)

).

Depth-first search is the only algorithm of type 0. SinceO{Ln}(DFS)� 21
12�

√
3, when

n�11, it follows that the algorithm Unanchored-Line is an algorithm of type 1 with the
required property, for algorithms of type 0.

Consider algorithms of type 2. Every such algorithmA can be described as follows
(assuming that no endpoint is encountered before the first two returns):
• Traversea edges in one direction.
• Return and traversea + b edges in the opposite direction.
• Return again and go to the endpoint.
• Return and go to the other endpoint.
We show thata = 0 minimizes the overhead forA, which in effect proves that for every
algorithm of type 2 there is an algorithm of type 1 with equal or smaller overhead. Letx be the
distance fromv to the endpoint in the direction of the first traversal. There are three ranges of
values ofx that are of interest for calculating the overhead ofA. Whenx�a, thenA makes
x + n traversals, we call this case 1. Whena < x < n − b, then the number of traversals
is 2a + 2b + x + n, this is case 2. Finally, whenx�n − b, then the number of traversals
is 2a + 2n − x, this is case 3. Clearlyopt(Ln, v) = min(n + x,2n − x). Observe that for
a > n

2, case 1 is dominated by case 3 (choosex = n−1), and since x+n
min(n+x,2n−x)

= 1 when
a� n

2, it follows that case 1 never dominates and can be discarded from our considerations.
In case 3,opt(Ln, v) does not depend ona anda = 0 minimizes the ratio in this case.
Case 2 is divided into two subcases. Whena < x� n

2, we get C(A,Ln,v)
opt(Ln,v)

= 2a+2b+x+n
x+n

which is maximized forx = a + 1, giving 3a+2b+n+1
n+a+1 . When n

2 < x < n − b, we get
C(A,Ln,v)
opt(Ln,v)

= 2a+2b+x+n
2n−x

which is maximized forx = n− b− 1, giving 2a+b+3n−1
n+b+1 . In both



A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362 351

cases, this maximum value of the ratioC(A,Ln,v)
opt(Ln,v)

is minimized fora = 0. Hence for every
algorithm of type 2 there is an algorithm of type 1 with equal or smaller overhead.

Now we consider algorithms of typek > 2. LetA be such an algorithm.Assuming that no
endpoint is encountered before the first 3 returns, the initial behavior ofA can be described
as follows:
• Traversea edges in one direction.
• Return and traversea + b edges in the opposite direction.
• Return and traverseb + c edges in the first direction.
• Return.
Note thatc > a andb+c�n−2. LetA′ be the algorithm of typek−1 that behaves exactly
like A but for whicha = 0. LetS be the set of nodesv ∈ Ln such thatv is at distance larger
thanb from one endpoint and at distance larger thanc from the other.

Claim 1. C(A′, Ln, v)�C(A, Ln, v), for anyv ∈ S.
Let v ∈ S and suppose thatA and B are endpoints such thatdist(v, A) > b and

dist(v, B) > c. Let z = dist(v, A). Consider two cases.
Case1: a�b.
In this caseA does not encounter an endpoint before the first return. HenceA′ performs

2a fewer traversals thanA, regardless of the choice of the initial direction. Hence Claim 1
holds in this case.
Case2: a > b.
In this case we also haveb < c. If A′ starts towardsA thenA starts towardsB, which is

at distance larger thana from v. HenceA does not encounter an endpoint before the first
return. ConsequentlyA′ performs 2a fewer traversals thanA.

Suppose thatA′ starts towardsB. If z > a thenA (starting towardsA) does not encounter
an endpoint before the first return. ConsequentlyA′ performs 2a fewer traversals thanA.
If z�a then alsoz�c. HenceA′ (starting towardsB) performs 2b + z + n�2b + c + n

traversals. So in this case starting towardsA instead ofB results in more traversals forA′:
at least 3b + 2c + n. But, as we showed before,A performs 2a more traversals thanA′ for
this initial direction.

Hence, for all cases and for any decision of the adversary concerning the initial direction
of A′, we showed that some decision of the adversary concerning the initial direction ofA
yields more traversals. This completes the proof of Claim 1.

Claim 2.

max
v∈S

(C(A′, Ln, v)

opt(Ln, v)

)
� C(A′, Ln, v

′)
opt(Ln, v′)

for anyv′ /∈ S.
Consider two cases.
Case1: b < c.
Choose a starting nodev at distanceb+1 from an endpoint and choose the initial direction

of algorithmA′ towards this endpoint. Sinceb+ c�n−2, we havev ∈ S. By the choice of
the direction, the robot does not encounter an endpoint before returning twice. The number
of traversals in algorithmA′ for this choice of direction is at least 3b + 2c + n + 1, hence



352 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

we haveC(A′, Ln, v)�3b + 2c + n+ 1. On the other hand,opt(Ln, v) = n+ b + 1, since
the closest endpoint is at distanceb + 1 fromv. Hence

C(A′, Ln, v)

opt(Ln, v)
� 3b + 2c + n + 1

n + b + 1
.

Now take a nodev′ /∈ S. Let x be the distance fromv′ to the closest endpointA andy
the distance fromv′ to the other endpointB. Hence eitherx < b or y < c.
Case1.1:x < b.
If A′ starts towardsA then it performsx +n traversals. Otherwise it performs 2b+x +n

traversals. HenceC(A′, Ln, v
′)�2b+x+n. On the other hand,opt(Ln, v) = n+x. Hence

C(A′, Ln, v
′)

opt(Ln, v′)
� 2b + x + n

n + x
.

We have

3b + 2c + n + 1

n + b + 1
� 5b + n + 2

n + b + 1
� 2b + n

n
� 2b + x + n

n + x
.

This proves Claim 2 in this case.
Case1.2:y < c.
In this casex > b. If A′ starts towardsA then it performs 2b+y+n traversals. Otherwise

it performs at most 2b + x + n traversals. HenceC(A′, Ln, v
′)�2b + y + n. As before,

opt(Ln, v) = n + x. Hence

C(A′, Ln, v
′)

opt(Ln, v′)
� 2b + y + n

n + x
.

We haven + b + 1�n + x and 3b + 2c + n + 1�2b + y + n. Hence

3b + 2c + n + 1

n + b + 1
� 2b + y + n

n + x
.

This proves Claim 2 in this case.
Case2: c�b

Choose a starting nodev at distancec + 1 from an endpoint and choose the initial
direction of algorithmA′ towards the other endpoint. As in Case 1, the number of traversals
in algorithmA′ for this choice of direction is at least 3b + 2c + n + 1, hence we have
C(A′, Ln, v)�3b+2c+n+1. On the other hand,opt(Ln, v) = n+c+1, since the closest
endpoint is at distancec + 1 fromv. Hence

C(A′, Ln, v)

opt(Ln, v)
� 3b + 2c + n + 1

n + c + 1
.

Now take a nodev′ �∈ S. Let x be the distance fromv′ to the closest endpointA andy the
distance fromv′ to the other endpointB. Hence eitherx < c or y < b.
Case2.1:x < c.



A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362 353

If A′ starts towardsA then it performsx +n traversals. Otherwise it performs 2b+x +n

traversals. HenceC(A′, Ln, v
′)�2b + x + n. On the other hand,opt(Ln, v) = n + x.

Hence

C(A′, Ln, v
′)

opt(Ln, v′)
� 2b + x + n

n + x
.

We have

3b + 2c + n + 1

n + c + 1
= 1 + 3b + c

n + c + 1
�1 + 2b

n
� 2b + x + n

n + x
.

This proves Claim 2 in this case.
Case2.2:y < b.
In this casex > c. If A′ starts towardsA then it performsx + n traversals. Otherwise

it performsy + n traversals. HenceC(A′, Ln, v
′)�y + n. As before,opt(Ln, v) = n + x.

Hence

C(A′, Ln, v
′)

opt(Ln, v′)
� y + n

n + x
.

We haven + c + 1�n + x and 3b + 2c + n + 1�y + n, hence

3b + 2c + n + 1

n + c + 1
� y + n

n + x
.

This proves Claim 2 in this case and completes its proof.

By Claim 1 we have

max
v∈S

(C(A′, Ln, v)

opt(Ln, v)

)
� max

v∈S

(C(A, Ln, v)

opt(Ln, v)

)
�OLn(A).

By Claim 2 we have

max
v∈S

(C(A′, Ln, v)

opt(Ln, v)

)
= OLn(A′).

HenceOLn(A′)�OLn(A).
Thus, for any algorithmA of typek, we have shown an algorithmA′ of typek − 1 such

that the overhead ofA′ for the lineLn is equal to or less than the overhead ofA.
It follows by induction that for any regular algorithmA there exists an algorithmA′ of

type 1 such that maxv∈Ln(
C(A′,Ln,v)
opt(Ln,v)

)� maxv∈Ln(
C(A,Ln,v)
opt(Ln,v)

), which concludes the first part
of the proof.

Now it is enough to prove that for any algorithmA′ of type 1 that performsa edge
traversals before the first return, there exists a starting nodev such thatC(A,Ln,v)

opt(Ln,v)
�

√
3− c

n

for some positive constantc. First assume thata�
√

3−1
2 n. Choose the starting nodev at

distancea + 1 from an endpointp of the line. The adversary chooses the direction ofp for
the first traversal. The algorithm performsa+2n−1 traversals andopt(Ln, v) = a+n+1,

giving C(A,Ln,v)
opt(Ln,v)

= a+2n−1
a+n+1 � a+2n+√

3
a+n+1 − c

n
�

√
3− c

n
, fora�

√
3−1
2 nand a sufficiently large



354 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

n. If, on the other hand,a >
√

3−1
2 n, choosev at distance 1 from the closest endpointp. The

adversary chooses the opposite direction ofp for the first traversal. The algorithm performs

2a+1+n traversals andopt(Ln, v) = 1+n, giving C(A,Ln,v)
opt(Ln,v)

= 2a+1+n
1+n

� 1+√
3n

1+n
�

√
3− c

n

for a >
√

3−1
2 n and a sufficiently largen. �

2.3. Exploration without a map

We finally consider the scenario when no map is available to the robot, i.e., the robot has
no information about the line whatsoever: it knows neither its length, nor the position of
the starting node. We prove that in this case the overhead of every exploration algorithm
for the classL of lines is at least 2, and consequently depth-first search with overhead 2 is
optimal.

Theorem 2.5. Every exploration algorithm without a map has overhead at least2 for the
classL of lines.

Proof. Consider any (regular) exploration algorithmE . Call the first direction chosen by
the adversary the right direction. By regularity ofE there are three possible cases for the
initial part of the run ofE before an endpoint is reached for the first time, corresponding to
three types of algorithms:
Type1. There exist two infinite strictly increasing sequences(a1, a2, . . .) and(b1, b2, . . .)

of natural numbers, such that the robot goesa1 steps right from the starting node, then goes
back to it, then goesb1 steps left from the starting node, then goes back to it, then goes
a2 steps right from the starting node, then goes back to it, then goesb2 steps left from the
starting node, etc., until an endpoint is reached for the first time.
Type2. There exist two strictly increasing sequences(a1, a2, . . . , ai) and(b1, b2, . . . ,

bi−1) of natural numbers, such that the robot goesa1 steps right from the starting node,
then goes back to it, then goesb1 steps left from the starting node, then goes back to it, then
goesa2 steps right from the starting node, then goes back to it, then goesb2 steps left from
the starting node, etc., then goesai steps right from the starting node, and then goes left till
the endpoint.
Type3. There exist two strictly increasing sequences(a1, a2, . . . , ai) and(b1, b2, . . . , bi)

of natural numbers, such that the robot goesa1 steps right from the starting node, then goes
back to it, then goesb1 steps left from the starting node, then goes back to it, then goes
a2 steps right from the starting node, then goes back to it, then goesb2 steps left from the
starting node, etc., then goesai steps right from the starting node, then goes back to it, then
goesbi steps left from the starting node, and then goes right till the endpoint.

We will show that each of the above three types of exploration algorithms has overhead
at least 2.
Algorithms of type1. By regularity we haveb1�1. Leta = a2, b = b1, and let the lineLn

be[−b−1,−b, . . . ,0, . . . , a, a+1], where 0 is the starting node and positive numbers go
in the right direction. The line has lengthn = a+b+2. We haveC(E, Ln,0)�3a+4b+5.
This is proved as follows. By the time the robot makes the second turn left it already made
at least 2+ 2b + a steps. Then it makes at leasta + b additional steps left, by regularity.



A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362 355

At this point it is at distance 1 from the left endpoint, and the right endpoint is yet unexplored.
Hence at leastn + 1 = a + b + 3 additional steps are needed, for a total of 3a + 4b + 5
steps.

On the other hand,opt(Ln,0) = 2b + a + 3, if b�a andopt(Ln,0) = 2a + b + 3, if
a�b. In the first case we have

C(E, Ln,0)

opt(Ln,0)
�2

in view of a�1, and in the second case we have

C(E, Ln,0)

opt(Ln,0)
� 4a + 2b + 6

2a + b + 3
�2

in view of b�1 and ofa�b. This provesOL(E)�2 for algorithms of type 1.
Algorithms of type2. It is enough to show that, for any� > 0, there exists a lineLn, and

a position of the starting nodev in it, such that

C(E, Ln, v)

opt(Ln, v)
�2 − �.

Fix an� > 0, and the indexi given by the algorithm (the index of the last turn left before
going indefinitely left, until the endpoint is reached). Leta = ai . Letn be a positive integer
larger thana+1, such that(2n+a−1)/(n+a+1)�2−�. (Such an integern exists, since,
for any fixeda, this fraction converges to 2 asn grows.) Letk = n− a − 1. Let the lineLn

be [−k,−k + 1, . . . ,0, . . . , a, a + 1], where 0 is the starting node and positive numbers
go in the right direction. We haveC(E, Ln,0)�2n + a − 1. Indeed, by the last turn left
before going indefinitely left, the robot makes at leasta steps. Then it makesn− 1 steps to
reach the left endpoint, and still has to maken more steps to reach the right endpoint, yet
unexplored.

On the other hand,opt(Ln,0)�n + a + 1. Hence we have

C(E, Ln,0)

opt(Ln,0)
� 2n + a − 1

n + a + 1
�2 − �.

This provesOL(E)�2 for algorithms of type 2. For algorithms of type 3 the proof is
analogous to that for type 2. Thus we have shown thatOL(E)�2 for all exploration
algorithms. �

3. Arbitrary trees

In this section we describe an optimal algorithm for tree exploration with an anchored
map and prove that its overhead is3

2 for the classT of all trees. As for the scenario with
an unanchored map, we show that the optimal algorithm has overhead strictly smaller
than 2, and hence it is not DFS. (By Theorem2.4, the optimal overhead for the classT
cannot be smaller than

√
3.) Notice that if no map is available then depth-first search is an



356 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

v1

y1 y2 y3 ym

vm+1xmvmv3x2x1 v2

Fig. 1. The treeT .

optimal algorithm for exploring the class of all trees. Its overhead is 2. This follows from
Theorem2.5.

3.1. Exploration with an anchored map

Lemma 3.1. For all algorithmsA with an anchored map, OT (A)�3/2.

Proof. We construct a treeT of arbitrarily large sizen, with starting nodev1, for which
C(A,T ,v1)
opt(T ,v1)

� 3
2 − c

n
, for some constantc and any algorithmA. The treeT of sizen = 3m+1

is defined by the set of nodesV (T ) = {v1, . . . , vm+1, x1, . . . , xm, y1, . . . , ym} and the set
of edgesE(T ) = {[vi, yi], [vi, xi], [xi, vi+1] : 1� i�m} (see Fig.1).

Clearlyopt(T , v1) = 4m: every edge[vi, yi] is traversed twice and the remaining edges
only once. Consider a robot that has an anchored map. When the robot is invi and the
edges[vi, yi] and [vi, xi] are both unexplored, the adversary chooses the edge[vi, xi]
whenA decides to use an unexplored edge. Leti0�m be the integer such that the robot
concludes exploration inyi0 or vi0+1. For all i ∈ {1, . . . , m}\{i0}, the robot traverses the
edges[vi, yi], [vi, xi] and[xi, vi+1] no less than 6 times in total: the edge[vi, yi] twice
and either[vi, xi] 3 times and[xi, vi+1] once (if it returns immediately), or each of the two
edges[vi, xi] and[xi, vi+1] twice (otherwise). Fori0, the number is at least 5, giving the
ratio C(A,T ,v1)

opt(T ,v1)
� 6m−1

4m , which proves the lemma. �
We now present an optimal algorithm for exploring a treeT with an anchored map. LetD

be the eccentricity of the starting nodev. Consider all elementary paths of lengthD starting
atv. Two such pathsP1 = (v0 = v, v1, . . . , vD) andP2 = (v′

0 = v, v′
1, . . . , v

′
D) are called

isomorphic if there exists an automorphism of T such thatf (vi) = v′
i , for all i = 0, . . . , D.

Algorithm Anchored-Tree
Choose one node on the map ofT at distanceD from v. Let P be the path on the map

from v to this node. Perform a depth-first search with the following adjustments. Suppose
that at some point of the exploration the robot, using the map, can determine that its current
position corresponds to a nodeu on a path isomorphic toP , and there is at least one visited
node different fromu, with unexplored edges. Call this situation abreak. When a break
occurs, continue depth-first search in the subtreeT ′ containingu and resulting from removal
of all unexplored edges incident tou. Call this procedure alimiteddepth-first search. When
no unexplored edges remain in this subtree, resume “standard” depth-first search, i.e., move
to u and continue depth-first search in the rest of the tree, until the next break. (Notice that



A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362 357

many breaks can occur during the exploration.) The robot stops when there are no more
unexplored edges.

Lemma 3.2. Algorithm Anchored-Tree explores any treeT of sizen with starting nodev,
using at most4(n − 1) − 3D edge traversals.

Proof. It is clear that the robot traverses every edge outside ofP twice. The edges onP
are traversed at least once. After every break, when the robot interrupts depth-first search
and performs a limited depth-first search, some edges onP are traversed 2 more times.
After completing a limited depth-first search in a subtreeT ′, started atu, the treeT ′ is
entirely explored, thus no edges onP are traversed more than 3 times. It remains to count
the number of edges onP that are traversed 3 times. An edgee on P is traversed during
standard depth-first search only if there are either no other unexplored edges incident to
visited nodes, or if the robot cannot determine that it is on a path isomorphic toP (otherwise
a break occurs). In the first case,e will not be traversed again hence the total number of
its traversals is 1. For the second case to occur, there must be at least one more edge on
the map at the same distance fromv, or else the robot could determine that it is on a path
isomorphic toP . Only such edges onP can be traversed 3 times. Thus the number of edges
onP traversed 3 times is bounded by the number of edges not onP , i.e., byn − 1 − D.
Consequently we have three groups of traversals.
(1) n − 1 − D edges outside ofP are traversed exactly twice, contributing 2(n − 1 − D)

traversals.
(2) First traversals of edges onP , a total ofD traversals.
(3) Two additional traversals of at mostn − 1 − D edges onP , a total of 2(n − 1 − D)

traversals.
Thus, the total number of traversals is at most 4(n − 1) − 3D. �

We use a modified version of Anchored-Tree that runs Anchored-Tree ifD > 2n/3, and
otherwise runs DFS.

Theorem 3.1. OT (Modified -Anchored -Tree ) = 3/2.

Proof. If D�2n/3, the ratio isC(DFS,T ,v)
opt(T ,v)

� 2(n−1)−1
2(n−1)−2n/3 �3/2. If D > 2n/3, the ratio is

C(Anchored-Tree ,T ,v)
opt(T ,v)

� 4(n−1)−3D
2(n−1)−D

which is maximized forD = 2n/3, giving the ratio
4(n−1)−2n

2(n−1)−2n/3 < 3/2. �

3.2. Exploration with an unanchored map

We now show that an optimal algorithm with an unanchored map has overhead strictly
smaller than 2, and thus it is not DFS. We do not make any attempt at optimizing the
constant, and show an algorithm with overhead at most 1.99. We first present an al-
gorithm that improves on depth-first search for trees of high diameter and at least 100
nodes.



358 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

P´

P

u

v

z

Fig. 2. Nodes visited in phase 1 of Algorithm Unanchored-Tree.

Algorithm Unanchored-Tree
The algorithm explores a treeT of sizen�100 and diameterD�0.99n. It works in three

phases. Letv be the starting node and leta = �0.3n�. Let P be a path of lengthD on the
map.
(1) Perform depth-first search until a nodez is found at distancea from v. Let P ′ be the

path fromv to z, and letu be the node onP ′ at distance�a − 0.01n� from v (see
Fig. 2). Move tou.

(2) Perform a partial depth-first search to explore all unvisited nodes in the subtreeT ′ of T
containingv and resulting from the removal ofu. Then return tou.

(3) Perform depth-first search in the remaining part of treeT , with the following modifi-
cation. If the robot, using the map, can identify a nonempty setS of nodes onP such
that the current positionw corresponds to an element of this set (i.e. the robot “knows”
that it is onP ), and there is at least one visited node different fromw with incident
unexplored edges, we say that abreakoccurs. When a break occurs, continue depth-first
search in the subtree containingu and resulting from removal of all unexplored edges
incident tow. Call this alimiteddepth-first search. When no unexplored edges remain
in this subtree, return tow and resume depth-first search in the remaining part of the
tree, until the next break. (Notice that many breaks can occur during the exploration.)
The robot stops when there are no more unexplored edges.

Lemma 3.3. LetT ∗ be the class of trees withn�100andD�0.99n.
We haveOT ∗(Unanchored -Tree )�1.99.

Proof. Let x be the number of nodes in the subtreeT ′ (defined in phase 2 of the algorithm).
We first compute the total number of edge traversals performed by the algorithm, by looking
at each phase separately.
(1) SinceD�0.99n anda = �0.3n�, clearly some edges of P are traversed during phase

1 andP ∩ P ′ will contain at least�0.3n� − �0.01n���0.29n� nodes. The nodeu at
distance�a−0.01n� from an endpoint ofP ′ must therefore be onP .Assume that during
this phase no endpoint ofP is visited. (The other case will be discussed separately.)
As there are no more than�0.01n� edges outside ofP , a node at distancea is reached
using at most 0.02n + a edge traversals. Going back tou requires additional�0.01n�
traversals, for a total of 0.03n + a traversals.

(2) This phase is a straightforward depth-first search of a tree withx − 1 edges. Counting
the return tou, the number of traversals required is at most 2x.



A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362 359

(3) During the last phase, in the subtreeT \T ′, edges outside ofP are traversed exactly
twice and edges onP are traversed at least once. No edges onP are traversed more than
3 times for the following reason. During “standard” depth-first search, every edge onP

is traversed exactly once. During a single limited depth-first search, every edge onP is
traversed at most twice. Since the limited depth-first search explores the entire subtree
resulting from a break in depth-first search, no edges onP are traversed in subsequent
calls of limited depth-first search. Thus every edge onP is traversed at most 3 times
(in this phase). It remains to count the number of edges onP that are traversed 3 times;
call these edgesspecial. In order to do this, we need to study under what circumstances
a break occurs. Since the nodeu is onP , one endpoint ofP has been visited during
depth-first search performed in phase 2. The distance to this endpoint is known to the
robot during phase 3. At any point of the exploration, there are no more than 2 possible
nodes onP (on the map) that can correspond to the current position of the robot.
(In Fig. 3, A and B are such nodes.) A break can occur only when the robot is
able to exclude all other nodes on the map as possible current locations. (In the sit-
uation depicted in Fig.3, nodeC cannot be excluded, and thus prevents a break.)
Suppose that at some point of the exploration, there exist visited nodes, other than
the current location, with unexplored incident edges. To every edgee outside ofP
we can assign at most two special edges,e′ ande′′, such that the existence ofe on
the map causese′ and e′′ to be special. If the robot is at nodeA (see Fig.3), it
traversese′ during standard depth-first search because it cannot distinguishe′ from
e. At a later point of standard depth-first search the robot traversese′′ for the same
reason. (Bothe′ and e′′ are then traversed during limited depth-first search twice
each.)
The total number of edges onP that are traversed 3 times during this phase is thus
bounded by 0.02n. There aren− 1− x edges in the subtree explored during this phase.
The total number of traversals during phase 3 can be estimated as follows: at most 0.02n
traversals of edges outside ofP , at mostn − 1 − x first traversals of edges onP and
finally at most 0.04n extra traversals of special edges (2 extra traversals of each of at
most 0.02n edges), for a total of 1.06n − 1 − x traversals.

The total number of traversals for all three phases is not more than 1.09n + a + x. In the
case when an endpoint ofP is visited during phase 1, observe that while some edges onP

are traversed 2 times during phase 1 in addition to the above stated number of traversals,
exactly the same number of traversals are saved in phase 2. Thus, the estimate 1.09n+a+x

on the number of traversals holds also in this case (phase 3 remains unaffected).
We now need to calculateopt(T , v) which depends onx. The value ofopt(T , v) is

2(n − 1) − ecc(v). We haveecc(v)� max(x − a + 0.02n, n − x + a − 0.01n). This gives
OT (Unanchored-Tree )� 1.39n+x

min(2.28n−3−x,0.71n−2+x)
which is strictly less than 1.99 for

n�100. �

It is easy to verify thatC(DFS,T ,v)
opt(T ,v)

�1.99 for all trees with less than 100 nodes and for all
trees of diameterD < 0.99n. Together with Lemma3.3this gives the following theorem.

Theorem 3.2. There exists an algorithmA with an unanchored map, for which
OT (A)�1.99.



360 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

Direction of exploration
(unknown to the robot)

A

C

B

e" e´

e

Fig. 3. Edgee causes edgese′ ande" to be traversed 3 times.

Recall that Theorem2.4 implies OT (A)�
√

3, for all algorithms with an unanchored
map. The construction of an optimal exploration algorithm with an unanchored map,
for the class of trees, and establishing the value of the best overhead remains an open
problem.

4. Arbitrary graphs

In this section we consider the classG of arbitrary undirected connected graphs, and
prove that the overhead of any exploration algorithm for this class is at least 2, under all
three scenarios. This implies that, for the classG, depth-first search is optimal. Since the
scenario with an anchored map provides most information among all three scenarios, it is
enough to prove this lower bound under this scenario. To this end, we construct a class of
Eulerian graphsSm of arbitrarily large size, each with a distinguished starting nodex, such
that for any exploration algorithmA, C(A, Sm, x)�2e − o(e), wheree is the number of
edges inSm. Sinceopt(Sm, x) = e, this will prove our result.

The building blocks of graphsSm are graphs calledthick lines, defined in[17].A thick line
L of lengthn is a graph defined by the set of nodesV (L) = {v0, v1, . . . , vn, x1, . . . , xn, y1,

. . . , yn} and the set of edgesE(L) = {[xi, vi−1], [xi, vi], [yi, vi−1], [yi, vi] : 1� i�n}.
The nodesv0 andvn are called theendsofL. Fori ∈ {0, . . . , n−1}, the cycle[vi, xi+1, vi+1,

yi+1, vi] is called thecycle connectingvi andvi+1. We denoteL byv0�v1�· · ·�vn. Notice
that a thick line of lengthn is an Eulerian graph with 4n edges.

Thick lines were used in[17] to prove that DFS is optimal under the scenario with an
unanchored map. (Notice that since a thick lineL is an Eulerian graph,opt(L, v) does not
depend onv, and hence, in this special case, the measure from[17] coincides with our
measure of overhead.) In fact, the following lemma is proved in[17].

Lemma 4.1. Suppose that the robot starts at nodev0 of a thick line of lengthn and consider
any exploration algorithm. Then there exists an adversary such that,when the robot reaches
vk, k ∈ {2, . . . , n}, for the first time, then at least6 moves have already been performed
along the edges of the cycle connectingvk−2 andvk−1.

Lemma4.1was used in[17] to show that, under the scenario with an unanchored map,
the cost of every exploration algorithm in a thick line of lengthn is at least 8n − 12 which



A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362 361

is enough to prove that overhead is at least 2. However, for the scenario with an anchored
map, this is not the case. If the distances of the starting node from both ends of the thick
line are known, there is a simple exploration algorithm with overhead 15/8. (It is based on
the same idea as the algorithm for ordinary lines constructed in Section 2.) Thus, in order to
strengthen the result from[17] to the scenario with an anchored map, we need the following,
slightly more complicated class of graphs.

A thick starof radiusm is a graphSm consisting ofm thick lines of lengthm, which
have exactly one common node: one of the ends of each of these lines. Call this nodex and
consider it to be the starting node of the robot. All thick lines of lengthm attached tox are
calledbranchesof Sm.

Lemma 4.2. For any exploration algorithmA with an anchored map, C(A, Sm, x)�
8m2 − o(m2).

Proof.By Lemma4.1, at the time when the robot reaches the other end of any branch it must
use at least 6(m−1)+2 edge traversals in this branch. At least 2m additional traversals are
needed to return to the starting nodex. This must be repeated at leastm − 1 times (there is
no need of returning from the last branch), for a total of(8m − 4)(m − 1) = 8m2 − o(m2)

edge traversals. �
Since every graphSm is an Eulerian graph with 4m2 edges, this proves the following

result.

Theorem 4.1. For any exploration algorithmA, OU (A) = 2, for the classG of all undi-
rected connected graphs.

Hence depth-first search is an optimal exploration algorithm for the classG, under all
three scenarios.

References

[1] S. Albers, M.R. Henzinger, Exploring unknown environments, SIAM J. Comput. 29 (2000) 1164–1188.
[2] B. Awerbuch, M. Betke, R. Rivest, M. Singh, Piecemeal graph learning by a mobile robot, in: Proc. 8th Conf.

on Computer Learning Theory,1995, pp. 321–328.
[3] E. Bar-Eli, P. Berman, A. Fiat, R. Yan, On-line navigation in a room, J. Algorithms 17 (1994) 319–341.
[4] M.A. Bender, A. Fernandez, D. Ron, A. Sahai, S. Vadhan, The power of a pebble: exploring and mapping

directed graphs, in: Proc. 30th Ann. Symp. on Theory of Computing,1998, pp. 269–278.
[5] M.A. Bender, D. Slonim, The power of team exploration: two robots can learn unlabeled directed graphs, in:

Proc. 35th Ann. Symp. on Foundations of Computer Science,1994, pp. 75–85.
[7] M. Betke, R. Rivest, M. Singh, Piecemeal learning of an unknown environment, Mach. Learn. 18 (1995)

231–254.
[8] A. Blum, P. Raghavan, B. Schieber, Navigating in unfamiliar geometric terrain, SIAM J. Comput. 26 (1997)

110–137.
[9] X. Deng, T. Kameda, C.H. Papadimitriou, How to learn an unknown environment I: the rectilinear case, J.

ACM 45 (1998) 215–245.
[10] X. Deng, A. Mirzaian, Competitive robot mapping with homogeneous markers, IEEE Trans. Robotics

Automat. 12 (1996) 532–542.
[11] X. Deng, C.H. Papadimitriou, Exploring an unknown graph, J. Graph Theory 32 (1999) 265–297.



362 A. Dessmark, A. Pelc / Theoretical Computer Science 326 (2004) 343–362

[12] K. Diks, P. Fraigniaud, E. Kranakis, A. Pelc, Tree exploration with little memory, in: Proc. 13th Ann. ACM-
SIAM Symp. on Discrete Algorithms (SODA’2002), San Francisco, U.S.A.,January 2002, pp. 588–597.

[13] G. Dudek, M. Jenkin, E. Milios, D. Wilkes, Robotic exploration as graph construction, IEEE Trans. Robotics
Automat. 7 (1991) 859–865.

[14] V. Dujmović, S. Whitesides, On validating planar worlds, in: Proc. of the 12th Annual ACM-SIAM Symp.
on Discrete Algorithms (SODA’2001), Washington DC, U.S.A,January 2001, pp. 791–792.

[15] C.A. Duncan, S.G. Kobourov, V.S.A. Kumar, Optimal constrained graph exploration, in: Proc. 12th Ann.
ACM-SIAM Symp. on Discrete Algorithms,2001, pp. 807–814.

[16] P. Panaite, A. Pelc, Exploring unknown undirected graphs, J. Algorithms 33 (1999) 281–295.
[17] P. Panaite, A. Pelc, Impact of topographic information on graph exploration efficiency, Networks 36 (2000)

96–103.
[19] N.S.V. Rao, S. Hareti, W. Shi, S.S. Iyengar, Robot navigation in unknown terrains: Introductory survey of

non-heuristic algorithms, Technical Report ORNL/TM-12410, Oak Ridge National Laboratory, July 1993.


	Optimal graph exploration without good maps62626262
	Introduction
	Related work
	Our results

	Lines
	Exploration with an anchored map
	Exploration with an unanchored map
	Exploration without a map

	Arbitrary trees
	Exploration with an anchored map
	Exploration with an unanchored map

	Arbitrary graphs
	References


