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Abstract

A robot has to visit all nodes and traverse all edges of an unknown undirected connected graph,
using as few edge traversals as possible. The quality of an exploration algavitlnmeasured by
comparing its cost (number of edge traversals) to that of the optimal algorithm having full knowledge
of the graph. The ratio between these costs, maximized over all starting nodes in the graph and over all
graphsin agiven clagg, is called theoverheadf algorithm.o/ for the class/ of graphs. We consider
three scenarios, providing the robot with varying amount of information. The robot may either know
nothing about the explored graph, or have an unlabeled isomorphic copy olibéachored may
or have such a copy with a marked starting nodeaf@ahored map

For all of the above scenarios, we construct natural exploration algorithms that have smallest, or—in
one case—close to smallest, overhead. While for the class of all graphs, depth-first search turns out to
be an optimal algorithm for all scenarios, the situation for trees is much different. We show that, under
the scenario without any knowledge, DFS is still optimal for trees but this is not the case if a map
is available. Under the scenario with an unanchored map, we show that optimal overhead is at least
/3 but strictly below 2 (and thus DFS is not optimal). Under the scenario with an anchored map, we
construct an optimal algorithm for trees and show that its overhe%dll&a also consider exploration
of the class of lines (simple paths). In this case, depth-first search remains optimal for the scenario
without any knowledge, with overhead 2. Under the scenario with an unanchored map, we construct
an optimal algorithm and show that its overhead/. Finally, under the scenario with an anchored
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map, we construct an optimal algorithm and show that its overheédAsn important contribution
of this paper is establishing lower bounds that prove optimality of these exploration algorithms.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A robot has to visit all nodes and traverse all edges of an unknown undirected connected
graph, using as few edge traversals as possible. If the robot has complete knowledge of the
explored graplG, i.e., if it has an oriented labeled isomorphic copy of it showing which
port at a visited node leads to which neighbor, then exploration with fewest edge traversals
starting from node corresponds to the shortestvering walkfrom v: the shortest, not
necessarily simple, path i starting fromv and containing all edges. The length of this
shortest covering walk is called thestof G from v, and is denotedpt(G, v). For example,
if G is an Eulerian graph thespt(G, v) is the number of edges i@, for anyv, and if G is
a tree theropt(G, v) = 2(n — 1) — ecdv), wheren is the number of nodes ii andecqv)
is the eccentricity of the starting nodei.e., the distance fromto the farthest leaf. In this
latter case, depth-first search ending in the leaf farthest from the starting cteely uses
fewest edge traversals.

However, graph exploration is often performed when the explored graph is partially or
totally unknown. We consider three scenarios, providing the robot with varying amount of
information. Under the first scenario, the robot does not have any a priori knowledge of the
explored graph. We refer to this scenarioeaploration without a mapUnder the second
scenario, the robot has an unlabeled isomorphic copy of the explored graph. We call it an
unanchored mapf the graph. Finally, under the third scenario, the robot has an unlabeled
isomorphic copy of the explored graph with a marked starting node. We calaietmored
mapof the graph. It should be stressed that even the scenario with an anchored map does
not give the robot any sense of direction, since the map is unlabeled. For example, when
the robot starts the exploration of a line, such a map gives information about the length of
the line and distances from the starting node to both ends, but does not tell which way is the
closest end. In the case of arx m torus, the availability of either type of map is equivalent
to the information that the explored graph isras m torus.

In all scenarios we assume that all nodes have distinct labels, and all ports at & node
are numbered,1.., degv) (in the explored graph, not in the map). Hence the robot can
recognize already visited nodes and traversed edges. However, it cannot tell the difference
between yet unexplored edges incident to its current position, i.e., it does not know the other
ends of such edges. If the robot decides to use such an unexplored edge, the actual choice
of the edge belongs to the adversary, as we are interested in worst-case performance. For a
given exploration algorithmd, thecostC (A, G, v) of this algorithm run on a grapéi from
a starting node is the worst-case number of edge traversals taken over all of the above
choices of the adversary.

For a given graphG and a given starting node a natural measure of quality of an
exploration algorithmA is the ratioC (A, G, v)/opt(G, v) of its cost to that of the optimal
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algorithm having complete knowledge of the graph. This ratio represents the relative penalty
payed by the algorithm for the lack of knowledge of the environment. For a giveni¢lass
of graphs, the number

C(A,G,v)
opt(G, v)

is called theoverheadf algorithm.A for the clasg/ of graphs. It is the maximum relative
penalty described above, over all starting nodes in all graphs of the class. The lower the
overhead of an exploration algorithm, the closer is its performance (in the worst case) to that
of the optimal algorithm having full knowledge of the environment. For a fixed scenario,
an algorithm is calledptimalfor a given class of graphs, if its overhead for this class is
minimal among all exploration algorithms working under this scenario.

SinceC(DFS, G, v)<2e, andopt(G, v) >e, for any graphG with ¢ edges and any
starting nodev (depth-first search traverses each edge at most twice, and every edge has
to be traversed at least once), it follows that the overhead of DFS is at most 2, for any
class of graphs. Hence, for any class of graphs, the overhead of an optimal algorithm is
between 1 and 2, under every scenario (DFS does not use any information about the explored
graph).

The following remark will be useful for proving lower bounds on overhead of exploration
algorithms. Suppose that the robot, at some point of the exploration, is atntitEn moves
along an already explored edgéncident tow, and immediately returns to. For any set
of decisions of the adversary, an algorithm causing such a pair of moves, when run on a
graphG from some starting node, has cost strictly larger than the algorithm that skips
these two moves. Hence, we restrict attention to exploration algorithms that never perform
such returns. We call theregular.

Ou(A) = supg ey Ma%eG

1.1. Related work

Exploration and navigation problems for robots in an unknown environment have been
extensively studied in the literature (cf. the sury&9]). There are two principal ways of
modeling the explored environment. In one of them a geometric setting is assumed, e.g.,
unknown terrain with convex obstaclgd, or room with polygonal9] or rectangulaf3]
obstacles. Another way is to represent the unknown environment as a graph, assuming that
the robot may only move along its edges. The graph model can be further specified in two
different ways. In[1,4,5,11]the robot explores strongly connected directed graphs and it
can move only in the direction from head to tail of an edge, not vice-verga, 1i15-17]
the explored graph is undirected and the robot can traverse edges in both directions. The
efficiency measure adopted in most papers dealing with exploration of graphs is the cost of
completing this task, measured by the number of edge traversals by the robot. In some papers
additional restrictions on the moves of the robot are imposed. It is assumed that the robot
has either a restricted tafik, 7], forcing it to periodically return to the base for refueling,
or that it is tethered, i.e., attached to the base by a rope or cable of restricted[l&sjgth
is proved in[15] that exploration can be done in timg&) under both scenarios. Another
direction of research concerns exploration of anonymous graphs. In this case itis impossible
to explore arbitrary graphs if no marking of nodes is allowed. Hence the scenario adopted
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Table 1
Summary of results
Anchored map Unanchored map No map
Lines Overhead% Overheady/3 Depth-first
optimal optimal search
Trees Overheadg Overhead< 2 overhead: 2
optimal lower bound/3
General graphs Depth-first search, overhead: 2, optimal

in [4,5] is to allowpebblesvhich the robot can drop on nodes to recognize already visited
ones, and then remove them and drop in other places. The authors concentrate attention
on the minimum number of pebbles allowing efficient exploration of arbitrary directed
graphs. Exploring anonymous undirected trees without the possibility of marking nodes is
investigated if12]. The authors concentrate attention not on the cost of exploration but on
the minimum amount of memory sufficient to carry out this task. Exploration of anonymous
graphs was also consideredi9,13,14]

The work most closely related to the present paper is that ft@in The authors consider
exploration of undirected graphs (both arbitrary graphs and trees). The adopted efficiency
measure is similar in spirit to our notion of overhead but differs from it in an important
way. Similarly as in the present paper[i7] the authors consider the ratio of the cost of an
algorithm lacking some knowledge of the graph to that of the optimal algorithm having this
knowledge. (In particular, they study the scenario with an unanchored map.) However, for a
given graph, both costs are maximized over all starting nodes, and the ratio of these maximais
considered as the performance measure of the algorithm on the graph. (Then the supremum
of this ratio is taken over all graphs in the considered class). This approach should be
contrasted with our definition of overhead, where the ratio is computed for each starting node
individually and then maximized over all possible starting nodes in the graph. In order to see
the difference between both approaches, consider the case of the line with availability of an
unanchored map (which, for the line, is equivalent to knowing its length). The maximum cost
of depth-first search on the lidg, of lengthn is 2n — 1 (the maximum taken over all starting
nodes). On the other harapt(L,,, v) > 3n/2— 2 for somestarting node. This gives a ratio
close to%’ and leads to the conclusion, proved17], that DFS is optimal for lines (and in
fact for all trees), according to their measure. However, this measure (and hence the obtained
result) can be viewed as biased in favor of DFS because for some startingurotiese to
the endpoints of the line) the ratio of the cost of DF®pi(L,,, v) is approximately 2. This
is captured by our notion of overhead, and in fact leads to the conclusion that kiiown,
there are exploration algorithms of a line better than DFS, according to the overhead measure
(Tablel).

1.2. Our results

The aim of this paper is to establish which exploration algorithms have the lowest possible
overhead for each of the three scenarios described above: no knowledge of the graph,
availability of an unanchored map, and availability of an anchored map. It turns out that
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some of these algorithms are fairly natural and our main contribution is proving lower
bounds that show their optimality.

Depth-first search is among the most natural exploration algorithms in an unknown
graph. At every point of the exploration the robot chooses an unexplored edge, if it ex-
ists. Otherwise, it backtracks to the most recently visited node with an unexplored incident
edge. If no such node exists, exploration is completed. Since DFS traverses every edge at
most twice, regardless of adversary’s choices, its overhead is at most 2, for all classes of
graphs.

While for the class of all (undirected, connected) graphs, depth-first search turns out
to be an optimal algorithm for all scenarios, the situation for trees is much different. We
show that, under the scenario without any knowledge, DFS is still optimal for trees but
this is not the case if a map is available. Under the scenario with an unanchored map,
we show that optimal overhead is at leaé8 but strictly below 2 (and thus DFS, with
overhead 2, is not optimal). Under the scenario with an anchored map, we construct an
optimal algorithm for trees and show that its overheaé.iWe also consider exploration
of the class of lines (simple paths). In this case, depth-first search remains optimal for the
scenario without any knowledge, with overhead 2. Under the scenario with an unanchored
map, we construct an optimal algorithm and show that its overhed@.iinally, under the
scenario with an anchored map, we construct an optimal algorithm and show that its overhead
is % A summary of our results is contained in Tathle

The paper is organized as follows. In Section 2 we consider the class of lines, and construct
for it optimal exploration algorithms under all three scenarios. In Section 3 we consider
arbitrary trees: for the scenario with an anchored map we show an optimal exploration
algorithm, and for the scenario with an unanchored map we give estimates on the overhead
of optimal exploration. (For the scenario without any knowledge of the graph, optimality of
DFS follows from Section 2). Finally, in Section 4 we show that any exploration algorithm
has overhead at least 2 for the class of arbitrary graphs, even when an anchored map is
available, and hence DFS is optimal for this class, under all three scenarios.

2. Lines

In this section we construct optimal exploration algorithms for the clas$ lines. A
line of lengthn is a graphL,, = (V, E), whereV = {vg, ..., v,} andE = {[v;, vi+1] :
i =0,1,...,n—1}. ltturns out that, for all three scenarios, optimal algorithms require at
most 2 returns (changes of direction) on the line.

2.1. Exploration with an anchored map

We consider the scenario in which an anchored map of the line is available to the robot.
This is equivalent to knowing the lengthof the line and the distancesandb between the
starting node and the endpoints. Assume thath. We describe an exploration algorithm,
establish its overhead, and prove that it is optimal.
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Algorithm Anchored-Line
e Letx =3a+nandy =2n —a.
e If x<ythen
o go at distance in one direction, or until an endpoint is reached, whichever comes
first;
o if an endpoint is reached then
return, go to the other endpoint, and stop
else
return, go to the endpoint, return, go to the other endpoint, and stop
else
o go to the endpoint in one direction, return, go to the other endpoint, and stop.

Theorem 2.1. Algorithm Anchored-Line has overheédor the classC of lines

Proof. Denote Algorithm Anchored-Line byl. By definition,C(A, L,, v) = min(x, y).
Sinceopt(L,, v) = a + n, we have:

if a<|n/4) thenC(A, Ly, v)/opt(L,, v) < 3&1/2?:: <

if a>[n/4] thenC(A, Ly, v)/opt(L,, v) < % < L. HenceO,(A)<7/5. Since, for
an arbitrary: divisible by 4 andi = n/4, we have€ (A, L, v)/opt(L,, v) = % this proves
oA=L O

7
5
7
5

The next theorem proves that Algorithm Anchored-Line is optimal for the class of lines.

Theorem 2.2. Every exploration algorithm with an anchored map has overhead at least
£ for the class of lines

Proof. Consider any (regular) exploration algorittfiif the robot always starts the explo-
ration by going in one direction till the endpoint (in this casés simply DFS), then its
overhead is 2 as witnessed by the starting node for wdiieh 1, considered for lines of

all possible lengths. Otherwise, kebe the number of steps in one direction after whiich
returns if it has not reached an endpoiatcén depend on anda). If ¢ < a then the robot
goesc steps and then back to the starting node (by regularity), regardless of the direction
chosen by the adversary. The algorithm skipping these firstéps and then following

& has strictly smaller cost. Suppose tlkat- a. In some cases the robot does not reach
the endpoint in the first chosen direction (otherwdseould be DFS, which was already
analyzed). Hence must be smaller thah. In this case, the algorithm in which the robot
goesa step in one direction (instead ofsteps), and then returns if it has not reached an
endpoint, subsequently behaving li&kehas strictly smaller cost thafy regardless of the
direction chosen by the adversary. It follows that in order to prove the lower bound, it is
enough to restrict attention to algorithms for whick: a. Suppose that the direction chosen

by the adversary is towards the farthest endpoint. Then the robot is back at the starting node
after making 2 steps and not visiting any endpoint. Consequently the robot has to make
at leasiz + n further steps (the value apt(L,, v)) to finish exploration. This implies that
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the cost of the algorithm is at least 3 n, and hence its overhead is not smaller than that
of Algorithm Anchored-Line. O

2.2. Exploration with an unanchored map

We now present an algorithm for exploration of lines with an unanchored map (i.e., the
lengthn of the lineL,, is known to the robot but the starting nodés unknown) that has
overhead/3, and show that it is optimal for the class of lines.

Algorithm Unanchored-Line
o Leta = 1),
e If the starting node is an endpoint then
o go to the other endpoint and stop.
else
o go at distance in one direction or until an endpoint is reached, whichever comes
first.
o if an endpoint is reached then
return, go to the other endpoint, and stop
else
return, go to the endpoint, return, go to the other endpoint, and stop.

Theorem 2.3. Algorithm Unanchored-Line has overhead not larger thga for the class
L of lines

Proof. Let x be the distance betweenand the endpoint of.,, that is not in the direction
chosen by the adversary for the first traversal made by the robot: #f — a then the robot
finds one endpoint before the first return and the total number of traversals-isx2=
opt(L,, v). If x < n — a then the robot makes:2+ x traversals before reaching the first
endpoint and additional traversals to reach the second endpoint, which gives a total of
2a+-x-+n edge traversals. In order to compute the overhead, we need to covpfiutg, v).

If x <n/2thenopt(L,, v) = n+x and the ratic,C(Una‘nd'g,rf?zJI ;;_lne Ln:V) js maximized
for x = 1 giving "

C(Unanchored -Line , L,, v) < 21(W3=Dn/2) +1+n < Van+1 <3
opt(L,, v) 1+n n+1

If x > n/2thenopt(L,, v) = 2n — x and the raticc(unanChggngn ;;_lne Ln:V) s maxi-
mized forx = n —a — 1 giving

C(Unanchored -Line , L,, v) - 2a+x+n l(W3—Dn/2| +2n—1
Opt(Ly, v) S nda+l n+ [(V3-Dn/2l+1
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_ (Jé—l)n/2+2n—1<(3+ﬁ)n/2
n+(3-Dn/2 " (V3+Dn/2
3+4/3

—T¥°_ /3

V3+1 V3

ThusO,(Unanchored -Line )<+/3. O

Theorem 2.4. For all algorithms.4 with an unanchored ma@ (A) >+/3.

Proof. The proof is divided in two parts. First we show that for every exploration algorithm

of the line with an unanchored map, there is an algorithm that does at most two returns and
has equal or smaller overhead. In the second part we show that the overhead is\&Bleast
for all algorithms with at most two returns.

For each value of, all regular algorithms can be classified according to the maximum
number of returns performed while exploring the libg before reaching an endpoint. Fix
n>11and letypek be the set of algorithms that always do at mosturns before reaching
an endpoint, and that do exactly this many returns for some combination of starting node
and (adversary) choice of direction. Notice that one algorithm can be of different types for
different values of:, and that algorithm Unanchored-Line is of type 1 for every3. We

now show that for every exploration algorith#there exists an algorithtd” such that4’

1 ! Lru an»
is of type 1 and ma,)gLn(—Cgr“;t‘(’Lmv’)’)) < ma&eLn(—%(rﬁLmv”)) .

Depth-first search is the only algorithm of type 0. Sirteg, ;(DFS > % > /3, when
n>11, it follows that the algorithm Unanchored-Line is an algorithm of type 1 with the
required property, for algorithms of type 0.

Consider algorithms of type 2. Every such algoritbdncan be described as follows
(assuming that no endpoint is encountered before the first two returns):

e Traversez edges in one direction.

e Return and traverse+ b edges in the opposite direction.

e Return again and go to the endpoint.

e Return and go to the other endpoint.

We show thatz = 0 minimizes the overhead fod, which in effect proves that for every
algorithm of type 2 there is an algorithm of type 1 with equal or smaller overheaddeghe
distance fromv to the endpoint in the direction of the first traversal. There are three ranges of
values ofx that are of interest for calculating the overheadlofWVhenx < a, thenA makes

x + n traversals, we call this case 1. When< x < n — b, then the number of traversals

is 2a + 2b + x + n, this is case 2. Finally, when>n — b, then the number of traversals

is 2a + 2n — x, this is case 3. Clearlgpt(L,, v) = min(n + x, 2n — x). Observe that for

a > 7, case lisdominated by case 3 (chaose n —1), and sinc m(njj;’"anx) = lwhen

a< % it follows that case 1 never dominates and can be discarded from our considerations.
In case 3,0pt(L,, v) does not depend am anda = O minimizes the ratio in this case.

Case 2 is divided into two subcases. Wher: x <%, we get&illa-t) — 2at2htxin

which is maximized fore = a + 1, giving 22241+ 'When% < x < n — b, we get

opt(L,,v) x+n
CA n+a+1
(A Lp,v) _ 2a42b+x+n inh i i T Nina 2a+b+3n—1
oPL. ) = = Zn-x which is maximized for = n — b — 1, giving <7537 In both
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cases, this maximum value of the ra%%% is minimized fora = 0. Hence for every
algorithm of type 2 there is an algorithm of type 1 with equal or smaller overhead.

Now we consider algorithms of tyge> 2. Let.A be such an algorithm. Assuming that no
endpoint is encountered before the first 3 returns, the initial behavidroai be described
as follows:

e Traversez edges in one direction.

e Return and traverse+ b edges in the opposite direction.

e Return and traversie+ ¢ edges in the first direction.

e Return.

Note thatc > a andb+c<n—2. Let A’ be the algorithm of typé — 1 that behaves exactly
like A but for whicha = 0. Let S be the set of nodase L, such thav is at distance larger
thanb from one endpoint and at distance larger thdrom the other.

Claim 1. C(A’, L,, v)<C(A, L,,v), foranyv € S.

Let v € § and suppose thad and B are endpoints such thalist(v, A) > b and
dist(v, B) > c. Letz = dist(v, A). Consider two cases.

Casel:a <b.

In this cased does not encounter an endpoint before the first return. Hdhperforms
2a fewer traversals thad, regardless of the choice of the initial direction. Hence Claim 1
holds in this case.

Case2:a > b.

In this case we also have< c. If A’ starts towards\ then.A starts towards, which is
at distance larger thamfrom v. HenceA does not encounter an endpoint before the first
return. Consequentlyl’ performs 2 fewer traversals thand.

Suppose thatl’ starts towards. If z > a thenA (starting towards\) does not encounter
an endpoint before the first return. Consequesgtlyperforms 2 fewer traversals thasl.
If z<a then alsaz < c¢. HenceA’ (starting towardsB) performs 2 +z +n<2b +c+n
traversals. So in this case starting towaAdimstead ofB results in more traversals fot':
at least 3 + 2c + n. But, as we showed beford, performs 2 more traversals thad’ for
this initial direction.

Hence, for all cases and for any decision of the adversary concerning the initial direction
of A’, we showed that some decision of the adversary concerning the initial directibn of
yields more traversals. This completes the proof of Claim 1.

Claim 2.
/ / /
max CA, L, v) > CA, L, v)
veS \  Opt(L,, v) opt(L,, v’)
foranyv’ ¢ S.
Consider two cases.
Casel:b < c.

Choose a starting nodeat distancé+1 from an endpoint and choose the initial direction
of algorithm.A’ towards this endpoint. Sindet ¢ <n — 2, we havey € S. By the choice of
the direction, the robot does not encounter an endpoint before returning twice. The number
of traversals in algorithrd’ for this choice of direction is at leasb3+ 2¢ + n + 1, hence
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we haveC(A’, L,,, v) >3b + 2c +n + 1. On the other hanapt(L,, v) =n+ b+ 1, since
the closest endpoint is at distarice- 1 fromv. Hence

C(A’,Ln,v)>3b+2c+n+1
opt(L,,v) = n+b+1

Now take a node’ ¢ S. Letx be the distance from’ to the closest endpoint andy
the distance from’ to the other endpoinB. Hence eithex < bory < c.

Casel.l:x < b.

If A’ starts towardgl then it performsc + n traversals. Otherwise it performg 2 x +n
traversals. Henc@(A’, L, v') <2b+x +n. On the other hanapt(L,,, v) = n+x. Hence

C(.A’,Ln,v’)<2b+x+n
opt(L,,v') = n4+x
We have

3b+2c+n+1>5b+n+2>2b+n>2b+x+n
n+b+1 ~ n+b+1" n 7T n4x

This proves Claim 2 in this case.

Casel.2:y < c.

Inthis caser > b. If A’ starts towardg then it performs 8+ y +n traversals. Otherwise
it performs at most 2 + x + n traversals. Hencé€(A’, L,, v')<2b + y + n. As before,
opt(L,,v) = n+ x. Hence

C(A’,Ln,v/)<2b+y+n
opt(L,,v) = n+x

We haven + b+ 1<n+xandd+2c+n+1>2b+ y + n. Hence

3b+2c+n+l>2b+y+n
n+b+1 = n4+x

This proves Claim 2 in this case.

Case2:c<b

Choose a starting node at distancec + 1 from an endpoint and choose the initial
direction of algorithmA’ towards the other endpoint. As in Case 1, the number of traversals
in algorithm A’ for this choice of direction is at leasb3+ 2c + n + 1, hence we have
C(A', L,,v)>3b+2c+n+1.0Onthe other handpt(L,, v) = n+c+ 1, since the closest
endpoint is at distance+ 1 fromv. Hence

C(.A’,L”,v)>3b+20+n+l
opt(L,,v) =  n+c+1

Now take a node’ ¢ S. Let x be the distance from' to the closest endpoint andy the
distance fromy’ to the other endpoinB. Hence eitherx < c ory < b.
Case2.1:x < c.
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If A’ starts towardgl then it performs: + n traversals. Otherwise it performg 2 x +n
traversals. Hencé€(A', L,,, v') <2b + x + n. On the other handypt(L,,v) = n + «x.
Hence

CA, L,,v) . 2b+x+n
opt(L,,v') = n4+x

We have
3b+20+n+1:1 3b+c >1+%22b+x+n.
n+c+1 n+c+1 n n4x
This proves Claim 2 in this case.
Case2.2:y < b.

In this casex > c. If A’ starts towardsi then it performsc + n traversals. Otherwise
it performsy + n traversals. Henc€(A’, L,,, v') <y + n. As beforeopt(L,,, v) = n + x.
Hence
CA, L,,v) <Y +n
opt(L,,v) n+x

We haven +c+1<n+xand 3 +2c+n+ 1>y +n, hence

3b+2€+n+l>y+n
n+c+1 T n+x’
This proves Claim 2 in this case and completes its proof.

By Claim 1 we have

max(—C(A Lo, v)> < max(—C(A’ La. v)> <0y, (A).
ves \ opt(L,, v) ves \ opt(L,, v)

By Claim 2 we have

(C(A/9 Lns U)
max{ —————
veS \ Opt(L,, v)

HenceOr, (A) <Oy, (A).

Thus, for any algorithmd of typek, we have shown an algorithpd’ of typek — 1 such
that the overhead ofl’ for the lineL,, is equal to or less than the overhead/f

It follows by induction that for any regular algorithp there exists an algorithd” of
type 1 such that max;,, (%) < maxer, (%), which concludes the first part
of the proof.

Now it is enough to prove that for any algorithil of type 1 that performs edge

traversals before the first return, there exists a starting nsdeh thal% >3- -

for some positive constait First assume that < ﬁz‘ln. Choose the starting nodeat
distancez + 1 from an endpoinp of the line. The adversary chooses the directiop &r
the first traversal. The algorithm performag- 2n — 1 traversals andpt(L,, v) = a+n+1,

giving Co(‘;f(ﬁf ) = et “jfr’,’:lﬁ —£>/3-¢ fora< ¥3-Ln and asufficiently large

) =0y, (A).
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n. If, on the other hand; > f3T*1n choose at distance 1 from the closest endpginfThe
adversary chooses the opposite directiop &r the first traversal. The algorithm performs

2a+1+ntraversals andpt(L,, v) = 1+n, giving %(SQ’LLJLU)) = 2utlin 5 1{;/,?” >4/3-¢

fora > */*3’2*111 and a sufficiently large. O

2.3. Exploration without a map

We finally consider the scenario when no map is available to the robot, i.e., the robot has
no information about the line whatsoever: it knows neither its length, nor the position of
the starting node. We prove that in this case the overhead of every exploration algorithm
for the classC of lines is at least 2, and consequently depth-first search with overhead 2 is
optimal.

Theorem 2.5. Every exploration algorithm without a map has overhead at |@dst the
class. of lines

Proof. Consider any (regular) exploration algorithh Call the first direction chosen by
the adversary the right direction. By regularity&there are three possible cases for the
initial part of the run of€ before an endpoint is reached for the first time, corresponding to
three types of algorithms:

Typel. There exist two infinite strictly increasing sequenggsay, . ..) and(by, b2, ...)
of natural numbers, such that the robot gegsteps right from the starting node, then goes
back to it, then goes; steps left from the starting node, then goes back to it, then goes
ay steps right from the starting node, then goes back to it, thenigosteps left from the
starting node, etc., until an endpoint is reached for the first time.

Type2. There exist two strictly increasing sequen¢es ao, ..., a;) and(by, bo, . . .,

b;—1) of natural numbers, such that the robot gagsteps right from the starting node,
then goes back to it, then gokssteps left from the starting node, then goes back to it, then
goesay steps right from the starting node, then goes back to it, thenigosteps left from

the starting node, etc., then gagssteps right from the starting node, and then goes left till
the endpoint.

Type3. There exist two strictly increasing sequen@asay, . . ., a;) and(b1, by, ..., b;)
of natural numbers, such that the robot gegsteps right from the starting node, then goes
back to it, then goes; steps left from the starting node, then goes back to it, then goes
ap steps right from the starting node, then goes back to it, thenigogteps left from the
starting node, etc., then gogssteps right from the starting node, then goes back to it, then
goesh; steps left from the starting node, and then goes right till the endpoint.

We will show that each of the above three types of exploration algorithms has overhead
at least 2.

Algorithms of typd.. By regularity we havé; > 1. Leta = ap, b = b1, and letthe lind.,,
be[-b—1,—b,...,0,...,a,a+ 1], where Ois the starting node and positive numbers go
in the right direction. The line has lengih= a + b+ 2. We haveC (€, L,,, 0) > 3a +4b +5.

This is proved as follows. By the time the robot makes the second turn left it already made
at least 2+ 2b + a steps. Then it makes at least- b additional steps left, by regularity.
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Atthis pointitis atdistance 1 from the left endpoint, and the right endpointis yet unexplored.
Hence at least + 1 = a + b + 3 additional steps are needed, for a total @-34b + 5
steps.
On the other handypt(L,,0) = 2b + a + 3, if b<a andopt(L,,0) = 2a + b + 3, if
a <b. In the first case we have
C(E&, Ly, 0
opt(L,, 0) ~

in view of ¢ > 1, and in the second case we have

C(&, Ly, 0) >4a+2b+6>2
opt(L,,0) = 2a+b+3

in view of b >1 and ofa <b. This provesD . (£) > 2 for algorithms of type 1.
Algorithms of typ&. It is enough to show that, for amy> 0, there exists a liné,,, and
a position of the starting nodein it, such that

C(gv Ln, U) >2 — e
Opt(Ly, v)

Fix ane > 0, and the index given by the algorithm (the index of the last turn left before
going indefinitely left, until the endpoint is reached). ket «;. Letn be a positive integer
larger tharu + 1, such that2n +a — 1)/ (n+a+1) > 2—¢. (Such an integer exists, since,
for any fixeda, this fraction converges to 2 agrows.) Letk = n —a — 1. Let the lineL,,
be[—k,—k+1,...,0,...,a,a + 1], where 0 is the starting node and positive numbers
go in the right direction. We havé(&, L,,0)>2n + a — 1. Indeed, by the last turn left
before going indefinitely left, the robot makes at leasteps. Then it makes— 1 steps to
reach the left endpoint, and still has to makemore steps to reach the right endpoint, yet
unexplored.

On the other handypt(L,,, 0) <n + a + 1. Hence we have

C(87Ln’0)>2n+a_1>2—8
opt(L,, 0) n+a+1

This provesO,(€) >2 for algorithms of type 2. For algorithms of type 3 the proof is
analogous to that for type 2. Thus we have shown tha(&)>2 for all exploration
algorithms. [

3. Arbitrary trees

In this section we describe an optimal algorithm for tree exploration with an anchored
map and prove that its overhead%isfor the classy of all trees. As for the scenario with
an unanchored map, we show that the optimal algorithm has overhead strictly smaller
than 2, and hence it is not DFS. (By Theor@m, the optimal overhead for the clags
cannot be smaller thay3.) Notice that if no map is available then depth-first search is an
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Vi X1 Vo X2 V3 Vm Xm Vm+1
Y1 Y2 Y3 Ym

Fig. 1. The tredl".

optimal algorithm for exploring the class of all trees. Its overhead is 2. This follows from
Theorem2.5.

3.1. Exploration with an anchored map
Lemma 3.1. For all algorithms.A with an anchored map)1(A) > 3/2.

Proof. We construct a tred& of arbitrarily large size:, with starting nodevq, for which
M >3 5 — =, for some constanrtand any algorithrd. The treel” of sizen = 3m +1
|s deflned by the set of nodé&T) = {v1, ..., Unt1, X1, - -+ » Xm» V1, - - - » Y} @Nd the set
of edgesE(T) = {[v;, yil, [vi, x:1, [x;, vig1] : 1<i <m) (see Figl).

Clearlyopt(T, v1) = 4m: every edgév;, y;] is traversed twice and the remaining edges
only once. Consider a robot that has an anchored map. When the robat; sl the
edges|v;, y;] and [v;, x;] are both unexplored, the adversary chooses the ggdge;]
when A decides to use an unexplored edge. igeg m be the integer such that the robot
concludes exploration im;, or v;,11. For alli € {1,..., m}\{io}, the robot traverses the
edgedv;, yil, [vi, x;] and[x;, v;+1] no less than 6 times in total: the ede, y;] twice
and eitheffv;, x;] 3 times andx;, v;+1] once (if it returns immediately), or each of the two
edgeqv;, x;] and[x;, v;1+1] twice (otherwise). Foig, the number is at least 5, giving the

( CA TV < 6m—1
ratio s = 2 , which proves the lemma. [

We now present an optimal algorithm for exploring a tfeeith an anchored map. L&
be the eccentricity of the starting nodeConsider all elementary paths of lenddhstarting
atv. Two such path®; = (vo = v, v1,...,vp) andP = (vyg = v, vy, ..., v)) are called
isomorphic if there exists an automorphism of T such fhat) = v}, foralli =0, ..., D.

Algorithm Anchored-Tree

Choose one node on the map7ft distanceD from v. Let P be the path on the map
from v to this node. Perform a depth-first search with the following adjustments. Suppose
that at some point of the exploration the robot, using the map, can determine that its current
position corresponds to a noden a path isomorphic t&, and there is at least one visited
node different fromu, with unexplored edges. Call this situatiorbeeak When a break
occurs, continue depth-first search in the subfremontaining: and resulting from removal
of all unexplored edges incident#o Call this procedure Emited depth-first search. When
no unexplored edges remain in this subtree, resume “standard” depth-first search, i.e., move
to u and continue depth-first search in the rest of the tree, until the next break. (Notice that
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many breaks can occur during the exploration.) The robot stops when there are no more
unexplored edges.

Lemma 3.2. Algorithm Anchored-Tree explores any tréeof sizen with starting nodev,
using at most#i(n — 1) — 3D edge traversals

Proof. It is clear that the robot traverses every edge outside tfice. The edges o

are traversed at least once. After every break, when the robot interrupts depth-first search

and performs a limited depth-first search, some edge® @me traversed 2 more times.

After completing a limited depth-first search in a subti€e started ats, the treeT’ is

entirely explored, thus no edges #nare traversed more than 3 times. It remains to count

the number of edges oA that are traversed 3 times. An edgen P is traversed during

standard depth-first search only if there are either no other unexplored edges incident to

visited nodes, or if the robot cannot determine that itis on a path isomorpRi¢ttherwise

a break occurs). In the first casewill not be traversed again hence the total number of

its traversals is 1. For the second case to occur, there must be at least one more edge on

the map at the same distance fronor else the robot could determine that it is on a path

isomorphic toP. Only such edges oA can be traversed 3 times. Thus the number of edges

on P traversed 3 times is bounded by the number of edges nét,ar., byn — 1 — D.

Consequently we have three groups of traversals.

(1) n — 1 — D edges outside oP are traversed exactly twice, contributing:2- 1 — D)
traversals.

(2) Firsttraversals of edges ah a total of D traversals.

(3) Two additional traversals of at most— 1 — D edges onP, a total of 2n — 1 — D)
traversals.

Thus, the total number of traversals is at mogt 4 1) — 3D. [

We use a modified version of Anchored-Tree that runs Anchored-Tiee-if2n /3, and
otherwise runs DFS.

Theorem 3.1. O (Modified -Anchored -Tree ) = 3/2.

Proof. If D<2n/3, the ratio isc(gf(gf)*“) < Z(i(fI)l—)EnlB <3/2.1f D > 2n/3, the ratio is

c¢(Anchored-Tree .7.v) < 4n=1)-3D

which is maximized foD = 2n/3, giving the ratio

opt(7,v) =~ 2(mn—1)-D
4(n—1)—2n
=D -273 < 3/2. O

3.2. Exploration with an unanchored map

We now show that an optimal algorithm with an unanchored map has overhead strictly
smaller than 2, and thus it is not DFS. We do not make any attempt at optimizing the
constant, and show an algorithm with overhead at most 1.99. We first present an al-
gorithm that improves on depth-first search for trees of high diameter and at least 100
nodes.
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Fig. 2. Nodes visited in phase 1 of Algorithm Unanchored-Tree.

Algorithm Unanchored-Tree
The algorithm explores a treof sizen > 100 and diametep > 0.99. It works in three

phases. Let be the starting node and let= |0.3n]. Let P be a path of lengttD on the

map.

(1) Perform depth-first search until a nogdés found at distance from v. Let P’ be the
path fromv to z, and letu be the node orP’ at distancefla — 0.01n] from v (see
Fig. 2). Move tou.

(2) Perform a partial depth-first search to explore all unvisited nodes in the s@bwé&
containingv and resulting from the removal af Then return ta:.

(3) Perform depth-first search in the remaining part of Feevith the following modifi-
cation. If the robot, using the map, can identify a nonemptySsaft nodes onP such
that the current positiom corresponds to an element of this set (i.e. the robot “knows”
that it is on P), and there is at least one visited node different frerwith incident
unexplored edges, we say thdiraakoccurs. When a break occurs, continue depth-first
search in the subtree containingand resulting from removal of all unexplored edges
incident tow. Call this alimited depth-first search. When no unexplored edges remain
in this subtree, return te and resume depth-first search in the remaining part of the
tree, until the next break. (Notice that many breaks can occur during the exploration.)
The robot stops when there are no more unexplored edges.

Lemma 3.3. Let7* be the class of trees with>>100and D >0.9%.
We haveDs+(Unanchored -Tree )<1.99.

Proof. Let x be the number of nodes in the subt@edefined in phase 2 of the algorithm).
We first compute the total number of edge traversals performed by the algorithm, by looking
at each phase separately.

(1) SinceD >0.99 anda = |0.3n], clearly some edges of P are traversed during phase
1 andP N P’ will contain at leasi0.3n] — [0.01nz] > [0.29 | nodes. The node at
distancga —0.01n7 from an endpoint of?’ must therefore be oA. Assume that during
this phase no endpoint d@f is visited. (The other case will be discussed separately.)
As there are no more thg®.01n | edges outside aP, a node at distanceis reached
using at most M2n + a edge traversals. Going back#aequires additional0.01x |
traversals, for a total of.03z + a traversals.

(2) This phase is a straightforward depth-first search of a treexwitll edges. Counting
the return tas, the number of traversals required is at most 2
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(3) During the last phase, in the subtrE®T’, edges outside of are traversed exactly
twice and edges oR are traversed at least once. No edge®@re traversed more than
3 times for the following reason. During “standard” depth-first search, every edge on
is traversed exactly once. During a single limited depth-first search, every edgjeson
traversed at most twice. Since the limited depth-first search explores the entire subtree
resulting from a break in depth-first search, no edge#® @me traversed in subsequent
calls of limited depth-first search. Thus every edgehois traversed at most 3 times
(in this phase). It remains to count the number of edgeB tmat are traversed 3 times;
call these edgespecial In order to do this, we need to study under what circumstances
a break occurs. Since the nodeés on P, one endpoint of? has been visited during
depth-first search performed in phase 2. The distance to this endpoint is known to the
robot during phase 3. At any point of the exploration, there are no more than 2 possible
nodes onP (on the map) that can correspond to the current position of the robot.
(In Fig. 3, A and B are such nodes.) A break can occur only when the robot is
able to exclude all other nodes on the map as possible current locations. (In the sit-
uation depicted in Fig3, nodeC cannot be excluded, and thus prevents a break.)
Suppose that at some point of the exploration, there exist visited nodes, other than
the current location, with unexplored incident edges. To every edgatside of P
we can assign at most two special edgésande”, such that the existence efon
the map causeg ande¢” to be special. If the robot is at nodé (see Fig.3), it
traverses’ during standard depth-first search because it cannot distingliisbm
e. At a later point of standard depth-first search the robot traversésr the same
reason. (Bothe’ and ¢” are then traversed during limited depth-first search twice
each.)
The total number of edges ab that are traversed 3 times during this phase is thus
bounded by M2x. There arer — 1 — x edges in the subtree explored during this phase.
The total number of traversals during phase 3 can be estimated as follows: at®2ast O
traversals of edges outside Bf at mostn — 1 — x first traversals of edges o and
finally at most 004n extra traversals of special edges (2 extra traversals of each of at
most 002z edges), for a total of 06n — 1 — x traversals.

The total number of traversals for all three phases is not more tié&n % a + x. In the

case when an endpoint &fis visited during phase 1, observe that while some edge3 on

are traversed 2 times during phase 1 in addition to the above stated number of traversals,

exactly the same number of traversals are saved in phase 2. Thus, the esO@ated+ x

on the number of traversals holds also in this case (phase 3 remains unaffected).

We now need to calculatept(7, v) which depends on. The value ofopt(7, v) is
2(n — 1) — ecdv). We haveecqv) < max(x —a + 0.02n, n — x + a — 0.01n). This gives

O7(Unanchored-Tree )< mln(2.28n}3379’)1c-.i_0).c7]n72+x) which is strictly less than.99 for
n>100. O '

Itis easy to verify tha% <1.99 for all trees with less than 100 nodes and for all

trees of diameteD < 0.99%. Together with Lemm&.3this gives the following theorem.

Theorem 3.2. There exists an algorithm4 with an unanchored mapfor which
O7(A)<1.99.
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Direction of exploration
(unknown to the robot)

Fig. 3. Edgee causes edges ande" to be traversed 3 times.

Recall that Theorer2.4 implies O7(A) >+/3, for all algorithms with an unanchored
map. The construction of an optimal exploration algorithm with an unanchored map,
for the class of trees, and establishing the value of the best overhead remains an open
problem.

4. Arbitrary graphs

In this section we consider the clagsof arbitrary undirected connected graphs, and
prove that the overhead of any exploration algorithm for this class is at least 2, under all
three scenarios. This implies that, for the clgsslepth-first search is optimal. Since the
scenario with an anchored map provides most information among all three scenarios, it is
enough to prove this lower bound under this scenario. To this end, we construct a class of
Eulerian graphs,, of arbitrarily large size, each with a distinguished starting ngdgich
that for any exploration algorithndl, C(A, S,,, x) >2e¢ — o(e), wheree is the number of
edges inS,,. Sinceopt(S,,, x) = e, this will prove our result.

The building blocks of graphs;,, are graphs callettick lines defined if17]. A thick line
L of lengthn is a graph defined by the set of nodég.) = {vg, v1, ..., vy, X1, ..., X, ¥1,

.., yny and the set of edgds(L) = {[x;, v;—1l, [xi, vil, [yi, vi—al, [yi, vil @ 1<i<n}.
The nodesg andv, are called thendsof L. Fori € {0, ..., n—1},the cycldv;, x;+1, vi+1,
yi+1, v;] is called thecycle connecting; andv; ;1. We denotd. by vgovi¢- - - o v,. Notice
that a thick line of length is an Eulerian graph withrdedges.

Thick lines were used ifiL7] to prove that DFS is optimal under the scenario with an
unanchored map. (Notice that since a thick lines an Eulerian graphopt(L, v) does not
depend orv, and hence, in this special case, the measure fiofhcoincides with our
measure of overhead.) In fact, the following lemma is provdd .

Lemma 4.1. Suppose that the robot starts at nagef a thick line of lengtlk and consider
any exploration algorithm. Then there exists an adversary suchwinen the robot reaches
vk, k € {2,...,n}, for the first time, then at leag moves have already been performed
along the edges of the cycle connecting2 andvy_1.

Lemma4.1lwas used if17] to show that, under the scenario with an unanchored map,
the cost of every exploration algorithm in a thick line of lengtls at least 8 — 12 which
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is enough to prove that overhead is at least 2. However, for the scenario with an anchored
map, this is not the case. If the distances of the starting node from both ends of the thick
line are known, there is a simple exploration algorithm with overhead 15/8. (It is based on
the same idea as the algorithm for ordinary lines constructed in Section 2.) Thus, in order to
strengthen the result frofh 7] to the scenario with an anchored map, we need the following,
slightly more complicated class of graphs.

A thick starof radiusm is a graphs,, consisting ofm thick lines of lengttvz, which
have exactly one common node: one of the ends of each of these lines. Call thisanutle
consider it to be the starting node of the robot. All thick lines of lengthttached toc are
calledbranchesof §,,.

Lemma 4.2. For any exploration algorithmA with an anchored mapC(A, S, x) >
8m?2 — o(m?).

Proof. By Lemmad.1, at the time when the robot reaches the other end of any branch it must
use atleast@: — 1) + 2 edge traversals in this branch. At least 2dditional traversals are
needed to return to the starting nodeT his must be repeated at least- 1 times (there is

no need of returning from the last branch), for a total&# — 4)(m — 1) = 8m?2 — o(m?)

edge traversals. [J

Since every grapls,, is an Eulerian graph with»? edges, this proves the following
result.

Theorem 4.1. For any exploration algorithmA, Oy, (A) = 2, for the class of all undi-
rected connected graphs

Hence depth-first search is an optimal exploration algorithm for the ¢lassder all
three scenarios.
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