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length, aspect ratio, fractal dimension etc. Simultaneously we also use orthog-
onal polynomial decompositions using Zernike moments to calculate shape
characteristics. Using statistical data analysis we compare the ability of the
Zernike moment expansion to capture the different shapes and their perturba-
tions with that of the geometric parameters. We find that both types of shape
calculations give insights into how a cell determines its shape on a surface.
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Different types of cells, i.e. from different tissues, typically look quite
different from each other. Even when cultured on two-dimensional surfaces
like glass slides or tissue culture polystyrene under identical conditions, cells
adopt different shapes. These shapes are in general functions of the cytoskel-
etal properties of those cells, itself a subset of what we call the ‘‘state’’ of the
cell. Moreover the changes in cell shape upon perturbation of the surface or of
the cells themselves should reflect their intrinsic cellular properties, i.e. the
cell state. Significant evidence has accumulated that changes in shape can
also alter cellular properties, at least for some cells. Our experiments suggest
that for Mesenchymal Stem Cells (MSCs), shape perturbations have conse-
quences for their differentiation into osteoblasts. Thus shape seemed linked
to fate. These statements beg the question: is it possible to use cell shape
to assess cell state? For example can we back-calculate the cytoskeletal prop-
erties of the cell from the way it looks on surfaces? This question becomes all
the more interesting for cancer cells since cancer cells are known to have
altered mechanical properties compared to normal cells, and invasive cancer
cells appear to have altered mechanical properties compared to non-
invasive cancer cells. In this work we present a combination of experiments
and statistical data analysis to try to begin to understand how cell shapes
are affected by changes in surface properties or by perturbations of the cyto-
skeleton. We use fluorescent imaging to obtain the two-dimensional profile of
cells and novel Third Harmonic Generation methods to obtain three-
dimensional images on cells on substrates. We use these experiments to infer
how the cell shape of cancer cells could be associated with their invasive
properties. We discuss some rudimentary mathematical models based on these
results.
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Changes in cell function are often accompanied by alterations of the intrinsic
cell structure particularly the cytoskeleton. This leads to distinct mechanical
changes. For example, cells become softer during malignant transformation
and stiffer during differentiation. Exploiting the mechanical phenotype of cells
as an inherent, label-free marker requires a high-throughput and robust mea-
surement technique. Here, we introduce real-time deformability cytometry
(RT-DC) for mechanical single cell classification of heterogeneous cell popu-
lations at rates of several hundred cells per second in real-time. Performing RT-
DC on primary human hematopoietic stem cells and mature blood cells we
demonstrate its capability to detect lineage and source specific mechanical phe-
notypes. We also find that different stages of the cell cycle possess a unique me-
chanical fingerprint allowing the distinction between cells in G2 and M phase.
In summary, RT-DC represents a novel flow cytometric approach that enables
the translation of mechanical phenotyping from basic research into applications
in biology and medicine.
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The cortical actin cytoskeleton lies just beneath the cell membrane to define
cell shape and mechanical properties and thus plays a key role in cell biology
processes such as migration and morphogenesis. The organization of actin fil-
aments and actomyosin contractility are known to contribute to modifying the
mechanical properties of the cortex. However, recent work report how these
properties contribute to cortex tension and intracellular pressure. Here we pro-
pose a new method for using an atomic force microscope to determine actin
cortex mechanical properties of non-adherent human foreskin fibroblasts
including the cortex tension and intracellular pressure, but additionally, the cor-
tex elastic modulus which has not been measured before. First, we validated the
method by measuring the surface tension of water-in-oil microdrops deposited
on a glass surface. We extracted an average tension of T~20.2 nN/mm, which
agrees with macroscopic experimental methods. We then proceeded to measure
cortical actin mechanical properties in non-adherent fibroblasts, and compare
this to the properties after inducing two perturbations (i) adding blebbistatin
which inhibits myosin II molecular motor activity, and (ii) adding CK-666
which inhibits Arp2/3-mediated actin branching. Our results show that perturb-
ing the actin cortex had significant changes in each of the cortical mechanical
properties: blebbistatin reduced them by ~50%, while CK-666 increased them
by ~2-fold. These results validate our novel method for determining the quan-
titative mechanics of the actin cortex in eukaryotic cells.
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Mechanical processes regulate cell physiology primarily at the molecular level,
but current techniques have difficulty achieving mechanical contrast at molec-
ular length scales. We recently developed an AFM-based tool that can probe
mechanical properties of living cells with nanoscale resolution. However, the
measurements we obtained at the nanoscale are hard to reconcile with the
viscoelastic view of cell mechanical behavior. We predominantly observe
elastic response with little hysteresis in the corresponding force distance
curves. In addition, force distance curves are surprisingly linear, which would
not be the case for viscoelastic materials indented by conical AFM tips. We
have created a model for the nanomechanical response of cells that takes intra-
cellular forces into account. The model not only explains the near-elastic
response and the linearity of force distance curves, but also makes quantitative
predictions about cell shape and its relationship to the local nanomechanical
response. We experimentally tested and verified these predictions on cells ex-
hibiting different morphologies. In addition to these predictions, the model
allows determining intracellular forces from the AFM images, such as tension
across actin fibers and cortex tension. This work expands the existing cell
mechanical models into the nanoscale and enables AFM to obtain physiologi-
cally relevant parameters from mechanical images.
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Using an Atomic Force Microscope (AFM) with a 5.3 um diameter spherical
probe we are measuring the elastic modulus of human mammary epithelial cells
(HMEC) as they are co-cultured with immortal, tumorigenic, and finally met-
astatic. We are performing measurement over both normal cells and cancer
cells. In order study the change induced by the co-culturing, our measurements
will include the cell-pairs (normal cells and neighboring cancer cells).
So far, we found that normal cells show a significant difference in modulus
after co-culturing with cancer cells. Measurements to date indicate that the
moduli of HMEC increased more than 20% after co-culture with metastatic
cells for 6 hours. We expect to report moduli under similar conditions for
immortalized and tumorigenic HMEC cells and metastatic cells known as
MDA-MB-231. In addition, we observe modulus differences due to transfec-
tion treatments. We also plan to report on these differences for immortalized,
tumorigenic and metastatic versions of HMEC cells.
This material is based upon work supported by the National Science Founda-
tion under Grant Number 1106105.
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The spectrin based membrane skeleton plays important roles in the mechanical
and biological functions of living cells. Unlike the membrane skeleton of red
blood cells, its non-erythroid counterpart has seen very little attention. Yet, it
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