Fixed Point Theorems for Uniformly Lipschitzian Semigroups in Uniformly Convex Spaces

HONG-KUN Xu

Department of Mathematics, East China Institute of Chemical Technology, Shanghai, China

Submitted by R. P. Boas

Received July 7, 1988

1. INTRODUCTION

Let C be a nonempty closed convex subset of a Banach space X. A mapping $T: C \rightarrow C$ is said to be uniformly k-Lipschitzian if

$$\|T^n x - T^n y\| \leq k \|x - y\|$$

for all x, y in C and each $n = 1, 2, \ldots$. Goebel and Kirk [2] first studied these mappings and they proved that such T has a fixed point if C is a closed bounded convex subset of a uniformly convex Banach space X and $k < k^*$ (k^* is the unique solution of the equation $(1 - \delta_X(1/k^*))k^* = 1$ with $\delta_X(\cdot)$ being the modulus of convexity of X). Lifschitz [5] showed that in a Hilbert space H, a uniformly k-Lipschitzian mapping T with $k < 2^{1/2}$ has a fixed point. Lim [6, 7] and Lim et al. [8] extended Goebel–Kirk’s theorem in L^p spaces. Recently, Downing and Ray [1] and Ishihara and Takahashi [3] verified that Lifschitz’s theorem is valid for uniformly Lipschitzian semigroups in Hilbert spaces.

The purpose of this paper is to prove fixed point theorems for a uniformly k-Lipschitzian semigroup in uniformly convex Banach spaces which is left reversible or for which the space of right uniformly continuous functions on the semigroup has a left invariant mean. The results generalize those of Downing and Ray [1], Lau [4], Lim [6, 7], and Ishihara and Takahashi [3].

2. PRELIMINARIES AND LEMMAS

Let X be a Banach space. Then the modulus of convexity of X is defined as $\delta_X(\epsilon) = \inf \{1 - \frac{1}{2} \|x + y\| : x, y \in B_X \text{ and } \|x - y\| \geq \epsilon\}$, where
$B_X = \{ x \in X : \| x \| \leq 1 \}$ is the closed unit ball of X. We recall that X is said to have the modulus of convexity of power type $p \geq 2$ (and X is said to be p-uniformly convex) if there exists a constant $c > 0$ such that

$$\delta_X(e) \geq ce^p \quad \text{for} \quad 0 < e \leq 2.$$

In this section we establish some inequalities which play key roles in the proofs of the main results (Theorems 1 and 2 below) of this paper, which also have applications in strongly unique best approximation (cf. [8, 11, 12]).

Lemma 1. Let X be a uniformly convex Banach space. Then for any $p > 1$, there exists a continuous nondecreasing function $\varphi_p : [0, \infty) \to \mathbb{R}^+$ with $\varphi_p(0) = 0$ and $\varphi_p(t) > 0$ for $t > 0$ such that

$$\| tx + (1 - t)y \|^p \leq t \| x \|^p + (1 - t) \| y \|^p - W_p(t) \varphi_p(\| x - y \|) \quad (2.1)$$

for all x, y in B_X and t in $(0, 1)$, and

$$\| tx + (1 - t)y \|^p \leq t \| x \|^p + (1 - t) \| y \|^p - W_p(t)(\| x \| \vee \| y \|)^p \varphi_p(\frac{\| x - y \|}{\| x \| \vee \| y \|}) \quad (2.2)$$

for all x, y in X not both zero and t in $(0, 1)$, where $W_p(t) = t(1-t)^p + t^p(1-t)$ and $a \vee b = \max(a, b)$ for real numbers a and b.

Proof. By results of Zalinescu [14, Theorem 4.1 and Remark 4.3], the functional $\| \cdot \|^p$ is uniformly convex on B_X and therefore we have for $0 < e \leq 2$

$$\varphi_p(e) := \inf \left\{ \frac{t \| x \|^p + (1 - t) \| y \|^p - \| tx + (1 - t)y \|^p}{W_p(t)} \right\} > 0,$$

where the infimum is taken over all x, y in B_X with $\| x - y \| \geq e$ and t in $(0, 1)$. It is easy to see that $\varphi_p(\cdot)$ is continuous and nondecreasing. We also see that the inequality (2.1) is valid for all x, y in B_X and t in $(0, 1)$ by definition of φ_p. Now for x, y in X not both zero, replacing x, y in (2.1) by $x/(\| x \| \vee \| y \|)$ and $y/(\| x \| \vee \| y \|)$, respectively, we obtain the inequality (2.2) and the proof is complete.

Since X is p-uniformly convex if and only if there exists a constant $d > 0$ such that $\varphi_p(e) \geq de^p$ for $0 < e \leq 2$, we have the following

Corollary 1 (Prus and Smarzewski [11, Lemma 2.1]). Let X be a
p-uniformly convex Banach space. Then there exists a constant $d > 0$ such that
\[
\|tx + (1 - t)y\|^p \leq t\|x\|^p + (1 - t)\|y\|^p - dW_p(t)\|x - y\|^p
\]
for all x, y in X and t in $(0, 1)$.

Now let G be a semitopological semigroup; i.e., G is a semigroup with a Hausdorff topology such that for each $a \in G$ the mappings $s \to a \cdot s$ and $s \to s \cdot a$ from G to G are continuous. Denote by $C(G)$ the Banach space of bounded continuous real valued functions on G. Then for $f \in C(G)$ and $a \in G$, we define $(l_a f)(s) = f(as)$ and $(r_a f)(s) = f(sa)$ for all $s \in G$. If X is a closed subspace of $C(G)$ containing constants and $l_a(X) \subseteq X$ for all $a \in G$, then $m \in X^*$ is called a left invariant mean if $\|m\| = m(1) = 1$ and $m(l_a f) = m(f)$ for all $a \in G$ and $f \in X$. Let $RUC(G)$ be the space of bounded right uniformly continuous functions on G, i.e., all $f \in C(G)$ such that the function $a \to r_a f$ is continuous when $C(G)$ has the norm topology. Then $RUC(G)$ is a closed translation invariant subalgebra of $C(G)$ containing constants (see [9] for more details). Let $\{x_s : s \in G\}$ be a bounded family of elements of X. Then, as in the proof of Lau [4, Lemma 3.4], we have for each $p > 1$ and x in X that the function $h(s) := \|x_s - x\|^p$ is in $RUC(G)$. For a mean m on $RUC(G)$, we denote by $m_s \|x_s - x\|^p$ the value of m at the function h.

Lemma 2. Let C be a closed convex subset of a p-uniformly convex Banach space X, m a left invariant mean on $RUC(G)$, and $\{x_s : s \in G\}$ a bounded family of elements of X. Then there exists a unique element $z \in C$ such that
\[
m_s \|x_s - z\|^p \leq m_s \|x_s - x\|^p - d\|x - z\|^p
\]
for all $x \in C$, where the constant d is as in Corollary 1.

Proof. Since X is uniformly convex, there exists a unique element $z \in C$ such that
\[
f(z) = \min_{x \in C} f(x),
\]
where $f(x) = m_s \|x_s - x\|^p$. We have from Corollary 1
\[
\|z + t(x - z) - x_s\|^p \leq t\|x - x_s\|^p + (1 - t)\|z - x_s\|^p - dW_p(t)\|x - z\|^p
\]
for all $x \in C$, $t \in (0, 1)$, and $s \in G$. It then follows that
\[
0 \leq \frac{f(z + t(x - z)) - f(z)}{t} \leq f(x) - f(z) - \frac{W_p(t)}{t} d\|x - z\|^p
\]
for $x \in C$ and $t \in (0, 1)$. By taking the limit as $t \to 0$, we arrive at the desired inequality (2.4) and the proof is complete.

3. THE RESULTS

Let C be a nonempty closed convex subset of a Banach space X, let G be a semitopological semigroup, and let $\mathcal{F} = \{T_s : s \in G\}$ be a family of self-mappings of C into itself. Then \mathcal{F} is said to be a uniformly k-Lipschitzian semigroup on C if the following conditions are satisfied:

(i) $T_t(x) = T_s T_t(x)$ for $t, s \in G$ and $x \in C$;

(ii) the mapping $(s, x) \mapsto T_s(x)$ from $G \times C$ into C is continuous when $G \times C$ has the product topology;

(iii) $\|T_s x - T_s y\| \leq k \|x - y\|$ for $x, y \in C$ and $s \in G$.

Now we prove a fixed point theorem for uniformly k-Lipschitzian semigroups in a p-uniformly convex Banach space. In the Hilbert space setting this theorem was proved by Ishihara and Takahashi [3].

Theorem 1. Let C be a nonempty closed convex subset of a p-uniformly convex Banach space X and let $\mathcal{F} = \{T_s : s \in G\}$ be a uniformly k-Lipschitzian semigroup on C with $k < (1 + d)^{1/p}$ and d being as in Corollary 1. Suppose that $\{T_s x_0 : s \in G\}$ is bounded for some $x_0 \in C$ and that $RUC(G)$ has a left invariant mean. Then there exists a $z \in C$ such that $T_s z = z$ for all $s \in G$.

Proof. Let m be a left invariant mean on $RUC(G)$. Then, by Lemma 2, we can inductively define a sequence $\{x_n\}_{n \geq 1}$ in C such that

$$m_t \|T_t x_{n-1} - x_n\|^p \leq m_t \|T_t x_{n-1} - x\|^p - d \|x - x_n\|^p$$

(3.1)

for $x \in C$ and $n = 1, 2, \ldots$

Putting $x = T_s x_n$ into (3.1), we have

$$d \|T_s x_n - x_n\|^p \leq m_t \|T_t x_{n-1} - T_s x_n\|^p - m_t \|T_t x_{n-1} - x_n\|^p$$

$$= m_t \|T_t x_{n-1} - x_n\|^p - m_t \|T_t x_{n-1} - x_n\|^p$$

$$\leq (k^p - 1) m_t \|T_t x_{n-1} - x_n\|^p$$

and hence

$$m_s \|T_s x_n - x_n\|^p \leq \frac{k^p - 1}{d} m_t \|T_t x_{n-1} - x_n\|^p.$$

(3.2)
Inserting \(x = T_s x_{n-1} \) into (3.1) and in a similar way to above, we obtain

\[
m_t \| T_s x_{n-1} - x_n \|^p \leq \frac{k^p}{1 + d} m_t \| T_s x_{n-1} - x_{n-1} \|^p.
\]

Combining (3.2) and (3.3) yields

\[
m_t \| T_s x_n - x_n \|^p \leq \frac{k^p(k^p - 1)}{d(1 + d)} m_t \| T_s x_n - x_{n-1} \|^p \cdot \ldots \cdot \leq A^p m_t \| T_s x_0 - x_0 \|^p,
\]

where \(A = \frac{k^p(k^p - 1)}{d(1 + d)} \). Since \(k < (1 + d)^{1/p} \), it follows that

\[
\| x_n - x_{n-1} \|^p \leq m_t (\| x_n - T_s x_{n-1} \| + \| T_s x_{n-1} - x_{n-1} \|)^p
\]

\[
\leq 2^{p-1} (m_t \| x_n - T_s x_{n-1} \|^p + m_t \| T_s x_{n-1} - x_{n-1} \|^p)
\]

\[
\leq 2^{p-1} \left(1 + k^p/(1 + d)\right) m_t \| T_s x_{n-1} - x_{n-1} \|^p
\]

\[
\leq 2^{p-1} \left(1 + k^p/(1 + d)\right) A^{n-1} m_t \| T_s x_0 - x_0 \|^p,
\]

which shows that \(\{x_n\} \) is Cauchy. Let \(z = \lim_{n \to \infty} x_n \). Then for each \(s \in G \) we have

\[
\| z - T_s z \|^p \leq \left(\| z - x_n \| + \| x_n - T_s x_n \| + \| T_s x_n - T_s z \|\right)^p
\]

\[
\leq (1 + k) \| z - x_n \| + \| x_n - T_s x_n \|^p
\]

\[
\leq 2^{p-1} \left((1 + k)^p \| z - x_n \|^p + \| x_n - T_s x_n \|^p\right) \to 0
\]
as \(n \to \infty \). Therefore \(T_s z = z \) for all \(s \in G \). The proof is complete.

Next by using the method similar to that in the proof of Theorem 1, we extend Downing and Ray's theorem in [1] to \(p \)-uniformly convex Banach spaces. A semitopological semigroup \(G \) is said to be left reversible if any two closed right ideals have nonvoid intersection. In this case, \((G, \leq) \) is a directed system when the binary relation "\(\leq \)" on \(G \) is defined by \(a \leq b \) if and only if \(\{a\} \cup aG = \{b\} \cup bG \).

Let \(\{x_a : a \in S\} \) be a bounded net in a uniformly convex Banach space \(X \) and \(C \) a nonempty closed convex subset of \(X \). For a fixed \(p > 1 \), let us set

\[
r(x) = \inf_{b \in S} \sup_{a \geq b} \| x_a - x \|^p
\]

and

\[
r = \inf \{r(x) : x \in C\}.
\]
Then we have a unique point $z \in C$ (called the asymptotic center of the net \{${x_a}$\} in C) such that $r(z) = r$. Exactly as in the proof of Lemma 2, we have the following

Lemma 3. Let X be a p-uniformly convex Banach space for some $p > 1$. Then, we have

$$r(z) \leq r(x) - d \|x - z\|^p$$

for all $x \in C$, where the constant d is as in Corollary 1.

Theorem 2. Let X be a p-uniformly convex Banach space for some $p > 1$, C a nonempty closed convex subset of X, and $\mathcal{F} = \{T_s : s \in G\}$ a uniformly k-Lipschitzian semigroup on C with $k < (1 + d)\frac{1}{p}$ and d the constant in Corollary 1. Suppose that G is left reversible and $\{T_s x_0 : s \in G\}$ is bounded for some x_0 in C. Then there exists an element $z \in C$ such that $T_s(z) = z$ for every $s \in G$.

Proof. Define a sequence $\{x_n\} \subset C$ in the following way: x_{n+1} is the asymptotic center of the net $\{T_s x_n\}$ in C. Then, by Lemma 3, we have for $x \in C$ and $n = 1, 2, ...$

$$d \|x_{n+1} - x\|^p \leq \inf_{s \geq s} \sup_{t \geq s} \|T_t x_n - x\|^p - \inf_{s \geq s} \sup_{t \geq s} \|T_t x_n - x_{n+1}\|^p.$$ \hspace{1cm} (3.4)

Noting the inequality

$$\inf_{s \geq s} \sup_{t \geq s} \|T_t y - x\|^p \leq \inf_{s \geq s} \sup_{t \geq s} \|T_{at} y - x\|^p$$

is valid for all $x, y \in C$ and every $a \in G$, we get from (3.4)

$$d \|x_{n+1} - T_a x_{n+1}\|^p \leq \inf_{s \geq s} \sup_{t \geq s} \|T_t x_n - T_a x_{n+1}\|^p - \inf_{s \geq s} \sup_{t \geq s} \|T_t x_n - x_{n+1}\|^p \leq \inf_{s \geq s} \sup_{t \geq s} \|T_{at} x_n - T_a x_{n+1}\|^p \leq (k^p - 1) \inf_{s \geq s} \sup_{t \geq s} \|T_t x_n - x_{n+1}\|^p \leq (k^p - 1) \inf_{s \geq s} \sup_{t \geq s} \|T_t x_n - x_n\|^p.$$

Then as in the proof of Theorem 1, it follows that the sequence $\{x_n\}$ converges in norm to some element $z \in C$ for which $T_s(z) = z$ for each $s \in G$. The proof is complete.
Remark 1. Since a Hilbert space H is 2-uniformly convex and the identity
\[\|tx + (1 - t)y\|^2 = t\|x\|^2 + (1 - t)\|y\|^2 - t(1 - t)\|x - y\|^2 \]
holds for all $x, y \in H$ and $t \in (0, 1)$, we have the following

Corollary 2 (Downing-Ray [1] and Ishihara and Takahashi [3]). Let C be a closed convex subset of a Hilbert space H and let $\mathcal{F} = \{ T_s : s \in G \}$ be a uniformly k-Lipschitzian semigroup on C with $k < 2^{1/2}$. Suppose that there is $x_0 \in C$ such that $\{ T_s x_0 \}$ is bounded and that either G is left reversible or the space $RUC(G)$ has a left invariant mean. Then there is some $z \in C$ such that $T_s(z) = z$ for every $s \in G$.

Remark 2. Since for L^p spaces, $1 < p < \infty$, we have (cf. [6, 8, 12])
\[\|tx + (1 - t)y\|^q \leq t\|x\|^q + (1 - t)\|y\|^q - c_p W_q(t)\|x - y\|^q \]
for all $x, y \in L^p$ and $t \in (0, 1)$, where $q = \max(2, p)$, $W_q(t) = t^q(1 - t) + t(1 - t)^{q/2}$, and
\[c_p = \begin{cases} \frac{(1 + b^{p-1})}{(1 + b)^{p-1}} & \text{if } 2 < p < \infty, \\ p - 1 & \text{if } 1 < p \leq 2, \end{cases} \]
with b being the unique solution of the equation
\[(p - 2) t^{p-1} + (p - 1) t^{p-2} - 1 = 0, \ t \in (0, 1). \]
As a consequence of Theorems 1 and 2, we have

Corollary 3. Let C be a nonempty closed subset of L^p, $1 < p < \infty$, G a semitopological semigroup which is left reversible or for which $RUC(G)$ has a left invariant mean, and $\mathcal{F} = \{ T_s : s \in G \}$ a uniformly k-Lipschitzian semigroup on C with $k < p^{1/2}$ if $1 < p \leq 2$ or $k < (1 + (1 + b^{p-1})/(1 + b))^{1/p}$ if $2 < p < \infty$ (b is as above). Suppose that there is some $x_0 \in C$ such that $\{ T_s x_0 : s \in G \}$ is bounded. Then there exists an element $z \in C$ such that $T_s(z) = z$ for each $s \in G$.

Remark 3. As remarked in [3, 4], there exist topological semigroups for which $RUC(G)$ (or even $C(G)$) has a left invariant mean and yet G is not left reversible. Hence the conditions "$RUC(G)$ has a left invariant mean" and "G is left reversible" are, in general, independent. Also, when G is discrete, "$RUC(G)$ has a left invariant mean" implies "G is left reversible," so in this case Theorem 2 implies Theorem 1.
ACKNOWLEDGMENTS

The author is grateful to Professor T. C. Lim and the referee for noting an error in the proof of Lemma 1.

REFERENCES

2. K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135–140.
8. T. C. Lim, H. K. Xu, and Z. B. Xu, An L^p inequality and its applications to fixed point theory and approximation theory, submitted for publication.