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Abstract

In this paper we offer a topology-driven (‘na&li) definition of subclsters of an undirected
graph or network. In addition we find rules for assigning unique roles (from a small set of possible
roles) to each node in the network. Our approach is based on the use of a ‘smooth’ index for well-
connectedness (eigenvector centrality) whigltomputed for each node. This index, viewed as a
height function, then guides the decomposition of the graph into regions (associated with local peaks
of the index), and borders (valleys) between regions. We propose and compare two rules for assigning
nodes to regions. We illustrate our approach vgiimple test graphs, analso by applying it to
snapshots of the Gnutella peer-to-peer network from late 2001. This latter analysis suggests that our
method implies novel ways of interpreting the notion of well-connectedness for a graph, as these
snapshots represent very well connected networks. We argue that our approach is well suited for
analyzing computer networks, towards the goal of enhancing their security.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Networks (graphs) are intesting objects. Thepave a great deal of structure, and yet
at the same time are simple: they consist (in simplest form) only of nodes, connected
by links. The abstract idea of a network (or graph—we use the terms interchangeably)
is also hghly useful in modeling structures observed in the world. Examples include:
socal networks, communications networks, the World Wide Web, metabolic and genetic
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networksin biological systerms, foodwebs . ... In short, anetworkis a smple, nontrivial
abstract structure, fascitidg in its own right, and also ghly relevant for many branches
of science and technology.

System administration invariably inwas mamaging a network, which is composed
of multiple types of links. Examples inafle: the physical links between the machines,
the logical lnks between users and files, and the social links between users. An
important aspect of system admstration is to ensure the free flow of needed information
ove the nework, while at the same time inhibiting the flow of harmful or damaging
information over thé same atwork. Thestructure of he networkplays a crucial role
in the implementing of these two imponta(and partly conflicting) goals of system
administration. Both goals involve the spreading of information over links of the network;
hence both problems are strongly sensitigethe network structure. Because of this
dependence, we feel that the understanding of network structure can be a valuable
component of effective system administration.

For these easons, networks merit serious study. A network is one of the simplest
abstractions of structure that we can study; yet, understanding the structure of a network
is a nontrivial undertaking. This questiorasireceived a great deal of attention in the
last decade or so. Most of the measures dfvoek structure that have been studied to
date B] take the fam of ‘whole-graph’ properties—that is, scalar measures or distributions
which gpply to the graph as a whole, and are caltedlausing averaging. Examples of such
whole-graph properties include the node degree distribution, the diameter or average path
length, clustering coefficients, and the notion of ‘small worlds’ (which is based on the
previous two).

Whole-graph properties are important and useful; however, they cannot be the complete
answer to the question: How can we understand the structure of a network? Suppose,
for example, we look at a small neighborhood, or even a single node, and wish to say
samething meaningful about the role that subgraph or node plays in the overall structure
of the network. We can of course say where the single node lies on the node degree
distribution. Similarly, we can compare the clustering coefficient of a neighborhood with
that for the whole graph. What else cae say about small pieces of the whole?

The work of KleinbergT] gives a @rtial answer. Kleinberg considered a directed graph,
defined two distinct types of roles for the nodes on the graph, and gave a way to calculate
indices which quantify the degree to whieach node plays the two types of role. That
is, each node in a directed graph may be assigned an Authority score and a Hub score. It
is important to na¢ that hese scores can be based solely ontdipelogyof the graph—
independent of any questions of content @aming, or of any ‘properties’ of the nodes.

The names of these two role types convey their meaning. Nodes with high Authority
are nodes which are important because theypamted to by important nodes—in fact, by
nodes with high Hub scores. And the latter obtain their high Hub scores by pointing to good
Authority nodes. In short: Hubs point, and thorities are pointed to. These ideas can be
highly useful in analyzing the structuretbie WWW: Authorities are likely good endpoints
of an information search, while Hubs are useful in leading the search to the Authorities. It
seems clear that similar roles arise in sbdatworks:sometimespne knows who has the
needed information (the Authority); at other times, one needs to ask a good Hub.
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Kleinberg’'s work gives usndicesfor each node in the network. These indices tell us
useful information abut the role(s) the node plays in the network. Such information is quite
distinct from whole-graph information; and yet it is still derived (at least as originally
presented) purely from the topological structure of the graph.

Another aspect of a graph, which is again distinct from whole-graph properties, is the
community sticture of the graph. In the same paper, Kleinberg suggested a way to find
such communities in graphs such as the Web graph. The mathematical tools used are
basically the same as those used to find Hub/Authority scores—which means, among other
things, that the decomposition of the graph into communities was also based purely on
the dructure of the graph, without invoking any knowledge or properties of the nodes
or links. Furthermore, we note that decomposing a graph into subcommunities provides
new information about the roles played by nodes: they may be members of community
X; they may happen to lie ino community; they may be ‘leaders’ in some sense of their
community, or they may lie on the ‘edge’; and they may play an important role in linking
multiple communities.

Hence ve view thenotion of community structure of a graph, and the question of roles
of nodes and links in a graph, to be tightly related.

Many other works have addressed the same problem of how to find ‘natural’ communi-
tiesin a directed graplush as the Web. In contrast, Girvan and Newn@mave boked at
this question for undirected graphs. Theisloagpproach is to define communities by first
finding their ‘boundaries’—specifically, by finding links with high ‘betweenness’, which,
when removed, break the graph into subcommunities.

In this paper we will also focus attention on undirected graphs. Our goals are as follows.
We wishto find a‘natural’ means—that is, one based solely on the graph topology—for
decomposing an undirected graph into conmities. We also wish to define a set of roles
for the nodes of the graph, such that each nedessigned one, and only one, role. That
is, unlike Kleinberg, we want our roles to be binary (Yes/No) properties of nhodes—and
exclusive as wll. The roles we will arrive at aréteader’ of a community; member of a
community; and two types of roles for nodes in the ‘border set’, i.e., nodes not belonging
to any community.

Our approach is roughly dual to that of Girvan and Newman. We begin, not with the
‘edges’, but with the ‘centres’ of the communities. From this starting point, we work
‘outwards’ to find the members, and finally the border nodes. We do not claim that this
set of roles is complete, in tisensehat no others could be defined. (For example, it might
be of interest to identify further substruce within each community.) However, our set
of roles is complete and consistent, in the sense that our definitions allow a unique and
unambiguous association of agle role with each node on the graph.

Our work draws inspiration from that of Kleinberg on directed graphs. On undirected
graphs, however, the two role types (Hub and Authority) become the same (a type of
centrality). Also, we seek Yes/No definitions wfles, rather than continuously varying
indices. Yet, as we will see, the centrality index that emerges from applying Hub and
Authority definitions to an undirected graph will provide the starting point from which
we define communities, and thereafter roles.
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1.1. Possible applications

How might these idease useful in analyzing real networks?

The utility for social networksseems clear4]. It is obviously of irterest to identify
communities in a measured social network. The links may be of any type (as long as they
are undirected) for our ideas to apply: friendship, collaboration, etc. The roles of ‘centre
of a community’, ‘member of a community’, and ‘bridge between communities’ are also
intuitively plausible for social networks. An example with a slightly different flavor is the
network of sexual contacts. Here too these ideas may be quite useful, in work addressed at
limiting the spread of sexually transmitted diseases: perhaps one would focus on the two
complementary goals of (i) preventing @tftion of the central nodes of each community,
and (i) preventing the transmission of the disease across the bridging nodes.

We expect that there are useful and inteieg applications of these ideas to
technological or communication networles well. Again, the only prerequisite is that the
links be undirected. An obvious example is the Internet. One difficulty with technological
networks is that the significance of the roles we define is less obvious—that is, what a role
impliesabout a node depends on what kind of question one asks. One type of question for
technological networks is similar to that from the sexual network mentioned above: How
does one prevent the spreading of damage@ in this case the analogy seems useful.
However, there are likely other types of questions about such networks that may be usefully
illuminated by the methods presented here.

Finally, there are of course those networks that are both social and technological.
Examples include the telephony graph; peer-to-peer netwitkeyerlaid on thénternet;
and the combined network of computers, files, and users that is the daily preoccupation of
every system @ministrator. Here, once again, seityiiseems an obvious application for
these ideas: one wishes to identify nodes that should be given highest priority in protecting
against viruses, for example. We note in this context that our method of analysis may be
applied either to physical networks, or to logical networks which exist as overlay networks
on top of the physical network. The important common aspect is the identification of links
(physical or logical), over which information can flow.

Prevous papers3,13] have shown in mie detail how to apply the analysis presented
here to networked computers with many seéflereour main goal is to present in detail
the definitions for the rolesand the logic behind these definitions. In addition, we will
apply this analysis to the several snapshots of the Gnutella peer-to-peer network. Peer-to-
peer networks](] are hybrid social/technological netwa that are self-managing—that
is (excepting Napster, which is defunct), they build and maintain a structure without the
help of any central node. Thus any communities and other types of structure that may be
found in snapshots of the Gnutella network are formed from many local actions of members
who lack any kind of view of the entire netwaorklevertleless, we will see that Gnutella
networks, at least at the times of the snapshots, are extremely well connected.

2. Rolesin networks—thelogic

The idea we wish to pursue is that ‘well-connectedness’ may be viewechaght
functionover the discrete space (the graph). If our height function is smooth enough, then
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we can employ ideas appropriate for smoaiHaces over a continuous space. That is, we
want touse aopographicapicture to define regions in a network. Regions will correspond
to ‘mountains’, with the centre of eachgien being the corgoonding mountain top.
Boundaries between regions will then be defiras those points failing to be uniquely
associated with one mountain region.

2.1. The mathematics

We focus on ‘smooth’ functions over a disteespace. Again we draw as much insight
as possible from the continuous case.

2.1.1. Harmonic functions and smoothness
Suppose the domain space is continuous. Then harmonic functions are the most smooth
functions available. These functioase solutions to Laplace’s equation,

V2¢p = 0. (2.1)

For a given space, one obtainsffdirent solutions to2.1) from differing boundary
conditions ong.

We immediately identify some problems with the continuum picture. One problem is
that there are no maxima (or minima) away from the boundary. Hence our topographic
picture cannot work with such smooth functions: we will find no mountain tops not lying
on the boundary. Furthermore, we are seekingatural way of defning regions. Here
‘natural’ means guided as much as possible by the topology of the graph. Hence it is
undesirable to have to assign values for our height fungtiahthe boundary—we would
prefer that the topology solve that problem for us.

We can of course solve this last problem by settihg= constant (for example, zero)
at the boundary. That is, we just give the boundary some nominal reference value. This is
‘natural’ enough; however, we then get tifat= constant over thentire space, due to the
averaging property of Laplace’s equation.

The discrete version of Laplace’s equation is

Lg =0, (2.2)

whereL = K — A is the Laplacian matrixK = Diag(ki, ko, . ..) is a dagonal matrix
whosei th entry is the node degréeg, andA is the adjacency matrix, witijj = 1 if there
is a link fromi to j, ard O otherwise.

It is easy to see that the averaging property holds here also: solutidh@toljey

¢w=i > e (2.3)

ki j=nnof i

Here nn’ means ‘near neighbor’. The discrete Laplace equation thus offers ‘most smooth’
functions for the discrete case; but it has all the problems seen for continuous harmonic
functions, plus one more. The additional problem stems from the crucial fact that the
specification of the boundary of a discrete space is not unique—in fact, there is no
natural way to define such a boundary. We can of course take the (perhaps least arbitrary)
assumption that none of the points are boundary points—all are to have their height
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determined by the graph structure—but then we get back the constant saputien
constant.

2.1.2. Eigenvector centrality

A small change in the above picture solves all of its problems at once. The small change
is as follows: we ask for a hgit function which obeys, instead of the averaging property
(2.3, the fdlowing:

1
¢i=x Z ®j. (2.4)

j=nnofi

That is, instead of taking the strict average over all neighbors, we divide the neighbor
sum by a onstantk, which is the same for all nodes. This equation can be written as

Ad = Arg, (2.5)

where A is again the adjacency matrix. Now weave an eigenvalue equation, and
our height functiong is an eigenvector of the adjacency matrix. We want in fact the
eigenvector which is the stable iterative solution2 ), because we want height to signify
‘well-connectedness’. That is2 @) encodes the idea that nod& well-connecedness

is determined, to within a scale constantby that d all of i’'s neighbors. Iterating this
requirement, from any starting point, will\gi the principal eigenvector of the adjacency
matrix. This eigenvector gives ttetable, self-consistent solution df.4); it also has the
property that it is positive semidefinite, sindds.

Thus we have a simple mathematical defimitad well-connectedness on an undirected
graph. It is a definition known from sociology: it is due to Bonaci2h gnd is termed
‘eigenvector centrality’ or EVC. We do not offer a rigorous definition of smoothness
for this function. It is plausible that positive definite solutions o4 are reasonably
smooth: they are ‘almost’ averaging. Also, we find from experience (see below) that EVC is
‘smooth enough’ to give sensible results, when applied for the purpose of defining regions
in a graph.

With this one modification, the problesmwe saw above with Laplace’s equation
(discrete or otherwise) are no longer present. EVC can have local maxima away from
the boundary. In fact, since it measures well-connectedness, local maxima of EVC tend
to lie well away from any nodes that one might be tempted to call ‘boundary nodes’'.
Furthermore, there is no need to define a boundary for the discrete case: all nodes may
have EVC values determined by E8.4), with no values input as ‘boundary conditions’.

Finally we recall our main goal: to assign a natural and unique role to each node in
the network, based solely on the topology of the graph. As noted above, Kleinberg found
two such roles for directed graphs: Hubsd Authorities. Hubs are naturally good at
pointing to good Authorities; and AuthoriSesre naturally good at being pointed to by
good Hubs. We see already from these simple grammatical statements that the distinction
between Hubs and Authorities vanishes whemarcs of the graph become undirected (so
that ‘pointing to’ = ‘being pointed at’). The mathemasigives the ame result: for the
undirected case, the adjacency matrix is symmefyie; AT, and so the maices defining
Hubs and Authorities become the same.
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In short, for undirected graphs, the two types of roles collapse to one. That one role
(more precisely, an index quantifying the degree to which the node plays the role) is
eigenvector centrality. The Hub operatdA™ and the Authority operatohTA become
simply A2, whose principal eigenvector is the same as thaffor

Hence ve find thattwo of the roles identified in Klgiberg’s work with directed graphs
become a single (type of) role for an undirected graph. This role type we call well-
connectedness, or eigenvector centrality. We seek, however, further distinctions among
the nodes of an undirected gfa—in other words, multiple diinct roles, to which any
given node may be assigned. These roles will be defined in the next section. Eigenvector
centrality (EVC) will be our height function, and hence our starting point.

2.2. Definitions of the roles

Let us first make precise the differenceween ‘role type’ and ‘role’. We can associate
real-valued indices or ‘scores’ with each no#eib and Authority scores for the directed
case, and EVC score for the undirected case. These are role types; in fact it is fair to
say that all three scores represent some type of centrality. All nodes have some degree
of centrality; and ‘being central’ is certainlytgpeof role. By role, however we mean a
binary (Yes/No) distinction applied to each node, so that each node receives a single Yes
and hence is assigned a unique and unambigraesCentrality (a role type) will give us
a anooth height function over the graph, allowing us to use topographic criteria to assign
a role to each node.

2.2.1. Centres

We hold onto the picture of mountains, valleys, saddles, etc for our height function.
Each mountain may be defined by its peak. The peak is a local maximum of the height
function. Our first role is then the mountain peak.

Centre: Any node which is a local maximum oétdgenvector centrality is a Centre.

2.2.2. Regions

Each mountain top defines a mountain. Hence the number of Regions in the graph is
equal to the number of centres. (Henceforth, except when roles are defined, we drop the
capital letters; the meaning should be clear from context.) Regions are usually composed
of more than one node; hence the role for a node cannot be a region, but rather a Region
Member.

Region Member: Each node that may be uniquely associated with a single Centre,
according to an unambiguous rule, is a member of that Centre’s Region, and hence a
Region Member.

It remains to specify the ‘unambiguonsde’. We suggestwo possibilities.

Rulel (Distance).A node is associated with Centre C if it is closer (in number of hops)
to C than toany other Centre C

Rule2 (Steepest Ascent)or each node i, a steepest-ascent path starting at i will
terminate at one (or more) Centres. If it terminates at a single Centre, then node i is
associated with that Centre.
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Fig. 2.1. Bridge Node (left) andriglge Node and Danglers (right).

These rules are simply the discrete-domain version of the process of associating a part
of the domain (base space) with each maimtop—hence defing each mountain. We
are careful here to break our definition of region into two parts: the definition itself, which
refers to a rule but does not specify it; and the rule. We do this because we feel that more
than one rule is possible for the discrete case; and so we state the region definition in a way
that captures the ‘mountain’ idea, but leaves the rule unspecified.

Both rules stated above satisfy the intuitively reasonable criterion that a centre’s near
neighbors should (in general) belong to msgion. (It is, after all, the number and
connectedness of a centre’s neighbors that gives that centre its high EVC.) Both rules are
also easy to implement in a simple iterative fashion—starting with the centres, and working
outwards from them, ‘colonig’ nodes according to the regions (centres) they belong to.
The steepest-ascent rule is, however, the rule which is the most faithful to our topographic
picture.

2.2.3. Borders—between regions

Ona oontinuous topographic surface there are points whichdireermountains, and
belong to no unique mountain. It may happhattanalogous points exist for the discrete
case as well. Nodes which cannot be associated with any one mountain are assigned to the
Border set.

Border Nodes: Any node for which the unambiguous rule for Region membership gives
more han one answer is a Border Node.

Intuitively, we think of border nodes as ‘connecting regions’. And yet, a bit more
thought reveals that not all border nodes agia@a in this regard. Some border nodes do
indeed play an importd role in connecting two or more regions: they lie on paths which
connect the respective centres (hence regions). See the left pdfigl BfL Other nodes
may be removed, without any loss in the degree of connection between the regions. See
the rightpanel ofFig. 2.1 Herce we are motivated to define two distinct roles to the set of
border nodes.

Bridge Node: A Border Node which lies on at least one non-self-retracing path
connecting two Centres is a Bridge Node.

Dangler: Any Border Node which is not a Bridge Node is a Dangler.

Danglers of course magjectnew information into the network; but they do not play a
significant role in thdransportof information between regions.

Finally, we wish to engle out a class dinkswhich play an important role in connecting
regions. Our reason for doing so here is that the border set for the steepest-ascent rule is in
gened very small or zero. In this case we still wish to highlight those network elements
which connect the regions. Hence we define:

Bridge Links: Any link whose endpoints lie in two distinct Regions is a Bridge Link.

Bridge links will occur for either region rule above.
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Fig. 3.1. A simple graph with two regions, as definedfyle 1(distance test).

One can imagine rules for dafhg regions which give ‘fat’ borders. For example, one
could associate nodes with centres according to:

Rulel’ (Distance with Cutoff). A node is associated with Centre C if it is closer (in
number of hops) to C than to any other Centre &hdif its distance fran C isnot greater
than h hops.

‘Fat’ borders arise for such a rule since there could be many nodes which are farther
thanh hops from any centre. In general, ‘fat’ boundaries arise if we choose a rule designed
to avoid he ‘growing together’ of regions from their respective centres. The distance to
which growth is allowed could then be measured in hops (Rufe ), or in decrements
in EVC.

Boundaries according t®Rule 1 are ‘thin’: essentially one node wide. Boundaries
according toRule 2 are even thinner: in general, they are 0 nodes wide, since it is
rare that a node will have two or more steepest-ascent paths, leading to different local
maxima.

3. Examples

We illustrate our method, and compare the two rules for defining regions, using some
simple examples.

Fig. 3.1 shows asimple graph with two centres. The Border consists of three nodes.
One (node 11) is a bridge node which clearly plays an essential role in connecting the two
regions. The other two are danglers.

ApplyingRule 2to the same graph gives &&y. 3.2 Here we see tht the entire border
has been ‘swallowed’ by the dominant centre (node 9). The rather peripheral role of nodes
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Fig. 3.2. The same graph ashig. 3.1 butdefining the regions usingule 2 EVC values for the nodes are also
shown.

Fig. 3.3. A graph with three regionRule 1

10 and 12—formerly classified as danglers—is now reflected in their distance (2 hops)
from their centre (and ofaurse intheir low EVC).

Comparing these two figures thus confirms our expectations about the differences
between the two rules: a border set, with or without danglers, is typically present with
Rule 1, but absat with Rule 2 We see the same pige for a graph with three regions in
Figs. 3.3and3.4.
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Fig. 3.4. The same graph ashig. 3.3 butdefining the regions usingule 2

We note here that locahinimaof the EVC play, in generalather uninteresting roles
in the network. For example, iiRigs. 3.1and3.2, the two dangler nodes, and all the nodes
around the central light grey (yellow in the web version) node, are local minima of the
EVC. They are, loosely speaking, nodes on the’ edge’ of the network. A local minimum of
the EVC must be poorly connected in general. That is, one must abandon the picture of a
local minimum as a low-lying node surrounded ‘in all directions’ by neighboring, higher-
lying nodes—because there are likely very fawh directions (ngjhbors) for nodes which
are local minima of the EVC. Hence it is logicaldefinethe ‘edge of the network’ as being
precisely this set of nodes (local minima).

Bridge nodes, on the other hand, correspond to the topographic notion of ‘saddles’. That
is, they lie ‘between’ peaks; and there are usually lower-lying nodes (danglers), linked to
the saddles, but in another ‘direction’—so that, at a bridge node, as with a true saddle, one
goes only uphill along a certain ‘axis’ or direction, and only downhill along another.

The bridges irFig. 3.4 are local minima—but only because they have no links in any
other ‘direction’ than that (uphill) joining the centres. That is, the saddles have no width,
and hence lie on the edge of the network. The other local minima (nodes 2, 10, 15,
and 16) are farthest from the ‘action’ (high connectivity) in the graph—they lie on its
edge.

To illustrate the application of these ideas, we suppose that the noéégsin3.land
3.2 are users in a computer network, while the links are effective connections between
users which allow information flow. Here we say ‘effective’ connections, because the links
may not be direct: they may be mediated by files to which both users have read and write
access 3. We conclude immediately from the analysis that the user system is naturally
composed of two main groups (light grey (yellow in the web version) and medium grey
(blue in the web version)). Furthermore, node 9 is most central to the light grey (yellow
in the web version) group, while node 13 is most central for the medium grey (blue in
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Fig. 3.5. A graph with three réons, and parallel bridge nodeRule 1

the web version) group. Finally, node 11 is a bridge node which is crucial for the flow of
information between the two groups.

Suppose further that we are concerned with security for this small system. Then we
can immediately identify nodes 9, 13, and 11 as most urgently needing protection from
whatever threats the system faces. Nodes@ 13 are to be protected because they are
centres of their regions: if they are infected, then there is a high probability that their
entire region will also be infected. Furthermore, we can give node 9 a higher priority for
protection than node 13, since its region is larger. Finally, node 11 merits extra protection,
since if itcan be rendered immune to the threats, then these threats have no ready channel
for spreading from one region to another.

Note that the use dRule 2does not single out any border nodes for special protection—
even though node 11 clearly plays an important role in connecting the two regions.
However,Rule 2will identify the link between 11 and 13 as a bridge link. The obvious
consequence of this is ththe nodes on each end of each bridge link deserve special
protective measures.

We can turn this problem on its head, by giving the administrator the problem of
spreading desired informatiover this same small network. Our analysis then suggests
an efficient strategy for doing so: one starts with the centres (nodes 9 and 13), and arranges
for the desired information to be broadcast from there.

Finally, we illustrate another possible difference between the two rulEg 3.5and
3.6. Here the point is that the border (froRule I not only vanishes when we apply
Rule 2—it also moves: that is, node 12 belongs to the ‘medium grey (blue in the web
version)’ region according t&kule 1, but tothe ‘darkgrey (orange in the web version)’
region byRule 2

It is of course to be expectatiat the distance rule and the steepest-ascent rule will
give conflicting results for some nodes. An important point to be gleaned Fign8.1
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Fig. 3.6. The same graph askig. 3.5 butdefining the regions usingule 2

through3.6is that the general qualitative picture is rather insensitive to the choice of rule
for defining regions. We expect this to be the case for most graphs. The choice of centres
is independent of which rule is used; and thesstres in turn existnecisely because they

lie in a regon of the graph that has some ‘weight'—that is, some number of nodes which
are better connected to one another than to their ‘surroundings’. In short, we believe that
the distinct rules, which ostensibly defingyirens, actually differ principally according to
where they place thboundariesbetween regions—while the regions are in themselves
rather stable objects.

4. Example—the Gnutella networ k

We have aplied our method of analysis to a set of snapshots of the Gnutella peer-to-
peer network. These snapshdis yere taken in November and December of 2001, and
consist of about 1000 nodes in one connected piece (ignoring very small disconnected
pieces).

Peer-to-peenetworks [L(] are logical overlay networks based upon the Internet; they
are largely or entirely self-organized. At tlime these snapshots vegialen, the Gnutella
network used protocols calling for some, high-bandwidth, nodes to be ‘supernodes’. These
nodes take responsibility fandexing and query handling orebalf of a set of ‘ordinary’
nodes associated with them. The ordinary nodes are encouraged to maintain a neighbor
se of at least three or four neighbors. The supernodes may be expected to handle a higher
number of neighbors, depending on their capacity.

From this simple picture one might expect a two-humped node degree distribution.
Instead, we find that the node degree distribution is, to a good approximation, a power-
law distribution (seé-ig. 4.1 for an example). Power-law distributions are not uncommon
when the network is self-organized as i tase here. Such graphs are extremely well
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108 Gnutella Node Degree Distribution, Nov. 13 2001.

|

109 10! 102

Fig. 4.1. Node degree distribution for the Gnutella network, November 13, 2001.

connected—for instance, they are highdgitient to random node deletion. In the context
of this work, the term ‘well connected’ may la¢so taken to imply ‘few centres, with many
links between the centres’. That is—in topographic language—Iocal peaks are separated
from one another by regions of low connectivity. A graph with few such regions will not
support the existence of many local peaks of the centrality. This then is our expectation for
the Gnutella nevorks that we analyzed.

We have aplied both rules to seven Gnutella snapshots. The results are summarized in
Table 4.1

The most prominent qualitative result that we see is just that expected: there are very
few regions in these well connected graphs. Five of the graphs have two regions, and the
other two are composed of a single region. We view this in itself as a strong result: the
ratio of regions to nodes is extremely small here, indicating that these graphs are very well
connected.

Next we compare the twrules for éfining region membership. Not surprisingRule 1
(based on distance) is more ‘democratic’ tiule 2(based on height). That is, it will not
be uncommon that nodes are closer (in hops) to a ‘weak’ (low EVC) centre than they are to
adominant centre; yet at the same time such nodes can be topographically part of the local
peak associated with the more distant, but higher, centre. We see extreme cases of this in
the last two snapshots. In each case there are on the order of 100 nodes which move from
the weak region to the domamt one, on shifting froniRule 1to Rule 2 The dominant
region also acquires essentially all of the border set whige 2is applied.

In short, in four out of five of the cases with two regions, the disparity in size between
the two regions is ioreased by applyinBule 2instead ofRule 1 (The exception is found
in the second row of the table; here the siaéia of the two regions is 1.7 and 1.4, for
Rules land?2 respectively.)
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Table 4.1

Results for a series of snapshots of the Gnutella pepeer network from late 2001. Node numbers (which are
arbitrary) are given in parenthesd he last three columns simply give the number of nodes in the corresponding
sets

Date #nodes Topdegree Centres Regiéhddl) Border Rule) Regbns Rule 2
13.11.01 992 (24):83 (24) 211 570 772
(335):84 (335) 211 220
16.11.01 1008 (13):53 (13) 192 488 425
(54):55 (54) 328 583
20.12.01 (1) 904 (105):77 (105) 904 0 904
20.12.01(2) 1077 (56):125 (56) 1077 0 1077
(259):125
27.12.01(1) 1095 (18):136 18) 244 447 318
(87):142 (87) 394 777
27.12.01(2) 1026 (13):118 13) 498 394 996
(42):109 (97) 134 30
28.12.01 1050 (194):126 (194) 521 378 972
(410):109  (518) 151 78

For thecase ofRule 1, we see tht the border set is very large—on the order of half of
the nodes. We regard this as another sign ofwhali- connectedness of the graphs: those
few distinct regions which are found are well connected to one another. For the case of
Rule 2 this shows up in the large number of bordiks connecting the regions.

We have alsccreated visualizations of the Gnutella graphs studied here, using the
Archipelago visualization toollf3]. We show here the results for both rules, applied to
one of the more extreme cases—that is, t® #hcond graph for December 27 (sixth in
Table 4.). Archipelago, in its current versiopjaces each centre at the geometric centre
of aring, and all member nodes for a region on the edge of the corresponding ring. Border
nodes are placed in a smaller ring betweenaegi Border links are colored grey (red in
the web version); other links are black.

Visualization of large graphs is a difficult problerf]| Our method of analysis gives
suggestions for visualization, but is far from solving the problem completely. We feel
that the main points to be taken frofigs. 4.2and4.3 are the same as those taken from
Table 4.1 (The graph is wi connected, with manyorder elements; andule 2yields a
much more skewed partitioning tiie nodes into regions than ddeale 1) That is, these
figures do not give new insight; but they do capture the insights gained from our analysis,
and render them visually.

The Gnutella network is a logical network, overlaid on the Internet. There is thus no
single system administrator responsible for this network. Furthermore, current peer-to-peer
networks are quite large. Considering finally the fact that peer-to-peer networks have little
or no central authority, we find that such networks are both largely unmanaged and difficult
to manae.

Yet there is somelegree of management, at least in the form of protocol distribution.
Ouwr analysis here implies that there can be ‘smart’ strategies for protocol update
distribution—f one can map out the network topology, so that our analysis can be
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Fig. 4.2. Visualization of the December 27th Gnutella graph (sixffaloie 4.), using the Archiplago software.
Rule 1

Fig. 4.3. Visualization of the December 27th Gnutella graph (sixffeinle 4.3, using the Archiplago software.
Rule 2

performed. That is, our method singles out ttehnodes as the best starting places for
distribution.

Our analysis also gives a new interpretation of the term ‘well-connectedness’ for a
network. That is, we find that these thousand-node networks are composed of one, or at
most two, regions, with many bridges between the two regions for the latter case. The
implication of this result is clear: it is very difficult toreventthe spreading of information
over such anetwork. One can try to focus on the centres; but they are imbedded in a sea
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of other highly central nodes. And the bridges are too numerous to allow for the guarding
of all of them. This conclusion is thus a negative one: we suggest that there is no readily
practical way to protect such networks against undesired or harmful information. This
conclusion is consistent with that dfZ].

5. Summary, discussion, and future work

Our goal in this work has been to give some meaning, beyond whole-graph properties,
to the term ‘structure of a gpdn’. Our approach has been to seek a ‘natural’ (i.e., purely
topology-driven) definition of the structure, iarms of regions (natural clusters), centres
of these regions, and nodes (and links) in a border set lying between regions. Our basic
criterion for defining a region (and its ceejrhas been well-connectedness, as measured
by the ‘smooth’ graph function, eigenvector centrality or EVC. In addition to defining
natural clusters of a graph, our approach also assigns a unique role to each node in the
graph.

Our two rules for defining regions give qualitatively similar pictures for the graph
structure as a whole, but rather different pictures in terms of which roles for nodes are
present in the analysis. That Rule }—assaiating nodes with regions based purely on
their distance, in hops, from centres—plaeesgnificant number of nodes in the border
sd. These nodes in turn can be placed in two distinct roles: bridge nodes, and danglers (see
Fig. 3.1). Rule 2holds more closely to the ‘topographic’ spirit of our approach, associating
nodes with centres to which they are linked by a steepest-path ascent. This rule normally (in
the absence of special symmetry) plasesodes in the border set—such that, wiale 2
the two roles in the border set (bridge nodes and danglers) are essentially excluded, and all
nodes are either centres of a region, or members of a region.

One can imagine other rules for defininggions. We feel that the principal aspect
of our approach is to identify centres first, and then let regions ‘grow’ outwards from
these centres. Both of our rules fit this fpie; butother rules do as well, and could be
investigated. One might argue that the topographic ritelé 2 is most onsigent with
the girit of our approach, relying as it does on a topographic picture of a graph, based
on EVC. However, different rules may be better suited to different purposes for doing the
structual analysis.

Our gproach is dual to that of Girvan and Newma [n the sense that their approach
defines regions by finding their boundaries, while ours finds first their centres. It would of
course be very interesting to compare results for these two approaches; we plan to do so in
future work. The Girvan/Newman approach also allows for a hierarchical decomposition
of a gaph, by breaking clusters into subclusters, etc. A similar hierarchical decomposition
could also be done in our case, by eliminating border nodes and links, and applying our
analysis to the resulting isolated regions.

We do not regard the set of roles that we have found as exhaustive. Since regions are
defined by ‘growing outwards’ from centres, one can certainly quantify ‘closeness’ to the
centre, for each region—in terms of distance (in the spiriRafe 1), or ‘height’ (EVC)

(in the sprit of Rule 9. As a very simple example, one can assign the role of ‘Edge of the
region’ to those nodes which are connected to border elements (nodes or links). A different
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type of Edge role may be assigned to those nodes which are ‘farthest’ from the centre, but
not linked to any border elements. For example, referrirgdo3.3, the first (inking) type

of edge role may be assigned to nodes 11 and 7 (medium grey (blue in the web version)),
6 and 1 Ight grey (yellow in the web version), and 17 and 13 (dark grey (orange in the
web version))All of the other nodes, except centre node 5, also lie on the edge of their
respective regions, by this definition. Of course, these regions are ‘all edge’ (and two of
three centres lie on the edge) becausertigions themselves are so small.

So far, we have only defined our approach, and given illustrative examples. An
important task for @iture work is to test the sensitivity of our approach to small changes
in graph topology. For example, Kleinberg's HITS algorithm has been shown to be, in
same cases, highly sensitive to small topology chan@gsThe sensitivity occurs when
the eigenvalue gap is small—so that small perturbations can lead to large mixing in of
subdominant eigenvectors.

While reserving this question for future work, we offer a speculative comment here.
A small eigenvalue gap is associated with poor mixing—i.e., slow convergence to the
asymptotic distribution for a random walk. In very loose terms, such graphs are poorly
connected. We feel then that, in such casessitieity of the analyzed graph structure to
small topology changes is reasonable, and not ‘undesirable’. That is, the cluster structure
of poorly connected graphs may be expected to be sensitive to small topology changes.
This idea, of course, must be tested in future work. Also, our loose interpretation of the
term ‘well connected’ needs to be sharpened.

In real networks, one is always subjected to the problem of incomplete information:
it is often not possible to measure completely the topology of the network. Incomplete
information means missing nodes or links—which may be regarded as a type of topology
change, in the direction (usually) of making the network less well connected. The above
discussion applies also to this kind of topology change: the analysis will be only weakly
sensitive to this kind of error, when the network is well connected. In fact, there is
almost certainly such error present in the Gatlatmeasurements whiare amalyzed here.
However, even in the presence of such ema find an extremely wkconnectechetwork.

Hence our qualitative conclusions should not be affected by this source of error.

For a poorly connected network, missing links can strongly affect the analysis. One
example of his is the user/file system reported i]. This system was analyzed twice:
first, ignoring links connecting students and faculty; and then including such links. In
each case, the system was found to consist of a set of disconnected clusters. However,
the nature ad number of these clusters changed considerably with the inclusion of the
student—faculty links. This is an extreme case—since the network is so poorly connected
that it is disconnected—nbut it illustrates our point. In fact, the ‘true’ network is likely
very poorly connected. However, there are also (likely) undetected links which render it
connected, and hence, susceptible—edllyeakly—to system-wide infection.

A clear conclusion from the above discussion is that measurement errors (missing links
and/or nodes) have much more effect in distorting the analysis when the network is poorly
connected. Hence, in such cases, extra effort may be merited to try to detect all relevant
elements (links and nodes).

We mertion yet another direction for future wio, namely directed graphs. Here we
suggest one possible approach, which we plan to explore further. Kleinberg’s approach
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givestwo scalar height functions overdirected graph. That is, each node gets a Hub score
and an Authority score. Hence one obvious gahization of our approach is to apply it
twicefor a directed graph—once for each score. This gives of course two distinct structural
analyses for one graph—a feature which may or may not be desirable.

We note that the notion of ‘neighbor’ must be clarified before this suggestion may be
implemented. That is, if we look at nods Hub score, andeek to relate that scoreits
neighbors, which nodes should we look at? Those pointinig those pointed to by,
or both? We suggest that neither set is appropriate: the Hub/Authority calculation
propagates the two scores via iterations oftveo-hop operator ATA and AAT,
respectively). Hence (for example) the neighbors of a riod&ewed & a Hiub, are those
nodes which are linked to the notlby one application oAAT. In other word, these two
compound operators (which are each symmgttéfine two different undirected graphs:
the Hub graph and the Authority graph. Our suggestion is then to apply our approach to
each of these undirected graphs.

An interesting unanswered questidgs then howone can define a single, unique
decomposition of a directed graph. It is not clear to us how to do so. Furthermore, it is
not clear whether such a goal is more or less advantageous than the two-decomposition
approach sketched here for directed graphs. One possible approach is to use the PageRank
algorithm [L1], which gives a single, authority-like score for each node on a directed graph,
without resorting to compound operators. Hever, one then still needs a good definition
of a node’s neighbors.

Finally we come to applications of our method. We have displayed one application here,
in our analysis of the Gnutella network of late 2001. We believe that our picture of this
peer-to-peer network offers valuable insight, which is not available from other approaches
swch as the node degree distribution. The principal insight is that the network—or at least
the aubgraph found in the snapshots—is so well connected that it is ‘barely’ decomposable
into regions at all: some sngots consist of a single region, while others consist of two
regions which are well connected to one another. It would be highly interesting to study
more recent, and possibly more complete, shats of peer-to-peer networks, in order to
test if this picture still holds. Peer-to-peer networks are but one example of many self-
organized social/technological networks, which manage without central guidance to build
up highly robust and well connected structures.

Our approach has also been implemented, in an earlier and limited form, in the
Archipelago [L3] software for analyzing the bipartite graphs composed of users and files
on a computer network. Here the analysis promises to be useful for the purpose of security
management. Clearly, both highly central nodes, and bridges (links or nodes) can be singled
out as deserving extra attention and care in the preventing of the spread of damage. The
highly central nodes are most likely to infect their regions; and the bridges in turn must
be guarded so that the infection does not spread from one region to others. There is, for
exampe, only a small number of bridging elementdig. 3.5, or Fig. 3.6. Herce it would
be practical to immunize these elements, aneéssire that any infetion is isolated to a
single region. For larger regions, it would also be practical to immunize the most central
nodes in each region—prioritizing of courdeose regions with the greatest number of
nodes. The Gnutella examples, on the othardy are hard to protect, because theytapoe
well connected. In our language, this medmet there are many nodes in each region with
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roughly the same centrality; and that there enany bridges betaen regions (for those
cases where there is more than one region).

Our method is applicable tmany other types of graphs—in principle, to any graph
which is undirected. The method is easily modified also to allow weights (other than 0
or 1) for the links between nodes. We believe that our method will prove to be useful in the
analysis ofocialnetworks—which may (again) have a (positive) strength associated with
each link.
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