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Abstract

In this paper we offer a topology-driven (‘natural’) definition of subclusters of an undirected
graph or network. In addition we find rules for assigning unique roles (from a small set of possible
roles) to each node in the network. Our approach is based on the use of a ‘smooth’ index for well-
connectedness (eigenvector centrality) whichis computed for each node. This index, viewed as a
height function, then guides the decomposition of the graph into regions (associated with local peaks
of the index), and borders (valleys) between regions. We propose and compare two rules for assigning
nodes to regions. We illustrate our approach withsimple test graphs, andalso by applying it to
snapshots of the Gnutella peer-to-peer network from late 2001. This latter analysis suggests that our
method implies novel ways of interpreting the notion of well-connectedness for a graph, as these
snapshots represent very well connected networks. We argue that our approach is well suited for
analyzing computer networks, towards the goal of enhancing their security.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Networks (graphs) are interesting objects. Theyhave a great deal of structure, and yet
at the same time are simple: they consist (in simplest form) only of nodes, connected
by links. The abstract idea of a network (or graph—we use the terms interchangeably)
is also highly useful in modeling structures observed in the world. Examples include:
social networks, communications networks, the World Wide Web, metabolic and genetic
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networks in biological systems, foodwebs, . . . . In short, anetworkis a simple, nontrivial
abstract structure, fascinating in its own right, and also highly relevant for many branches
of science and technology.

System administration invariably involves managing a network, which is composed
of multiple types of links. Examples include: the physical links between the machines,
the logical links between users and files, and the social links between users. An
important aspect of system administration is to ensure the free flow of needed information
over the network, while at the same time inhibiting the flow of harmful or damaging
information over this same network. Thestructure of the networkplays a crucial role
in the implementing of these two important (and partly conflicting) goals of system
administration. Both goals involve the spreading of information over links of the network;
hence both problems are strongly sensitiveto the network structure. Because of this
dependence, we feel that the understanding of network structure can be a valuable
component of effective system administration.

For these reasons, networks merit serious study. A network is one of the simplest
abstractions of structure that we can study; yet, understanding the structure of a network
is a nontrivial undertaking. This question has received a great deal of attention in the
last decade or so. Most of the measures of network structure that have been studied to
date [8] take the form of ‘whole-graph’ properties—that is, scalar measures or distributions
which apply to the graph as a whole, and are calculated using averaging. Examples of such
whole-graph properties include the node degree distribution, the diameter or average path
length, clustering coefficients, and the notion of ‘small worlds’ (which is based on the
previous two).

Whole-graph properties are important and useful; however, they cannot be the complete
answer to the question: How can we understand the structure of a network? Suppose,
for example, we look at a small neighborhood, or even a single node, and wish to say
something meaningful about the role that subgraph or node plays in the overall structure
of the network. We can of course say where the single node lies on the node degree
distribution. Similarly, we can compare the clustering coefficient of a neighborhood with
that for the whole graph. What else canwe say about small pieces of the whole?

The work of Kleinberg [7] gives a partial answer. Kleinberg considered a directed graph,
defined two distinct types of roles for the nodes on the graph, and gave a way to calculate
indices which quantify the degree to which each node plays the two types of role. That
is, each node in a directed graph may be assigned an Authority score and a Hub score. It
is important to note that these scores can be based solely on thetopologyof the graph—
independent of any questions of content or meaning, or of any ‘properties’ of the nodes.

The names of these two role types convey their meaning. Nodes with high Authority
are nodes which are important because they arepointed to by important nodes—in fact, by
nodes with high Hub scores. And the latter obtain their high Hub scores by pointing to good
Authority nodes. In short: Hubs point, and Authorities are pointed to. These ideas can be
highly useful in analyzing the structure ofthe WWW: Authorities are likely good endpoints
of an information search, while Hubs are useful in leading the search to the Authorities. It
seems clear that similar roles arise in social networks:sometimes,one knows who has the
needed information (the Authority); at other times, one needs to ask a good Hub.
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Kleinberg’s work gives usindicesfor each node in the network. These indices tell us
useful information abut the role(s) the node plays in the network. Such information is quite
distinct from whole-graph information; and yet it is still derived (at least as originally
presented) purely from the topological structure of the graph.

Another aspect of a graph, which is again distinct from whole-graph properties, is the
community structure of the graph. In the same paper, Kleinberg suggested a way to find
such communities in graphs such as the Web graph. The mathematical tools used are
basically the same as those used to find Hub/Authority scores—which means, among other
things, that the decomposition of the graph into communities was also based purely on
the structure of the graph, without invoking any knowledge or properties of the nodes
or links. Furthermore, we note that decomposing a graph into subcommunities provides
new information about the roles played by nodes: they may be members of community
X; they may happen to lie inno community; they may be ‘leaders’ in some sense of their
community, or they may lie on the ‘edge’; and they may play an important role in linking
multiple communities.

Hence we view thenotion of community structure of a graph, and the question of roles
of nodes and links in a graph, to be tightly related.

Many other works have addressed the same problem of how to find ‘natural’ communi-
ties in a directed graph such as the Web. In contrast, Girvan and Newman [5] have looked at
this question for undirected graphs. Their basic approach is to define communities by first
finding their ‘boundaries’—specifically, by finding links with high ‘betweenness’, which,
when removed, break the graph into subcommunities.

In this paper we will also focus attention on undirected graphs. Our goals are as follows.
We wish to find a ‘natural’ means—that is, one based solely on the graph topology—for
decomposing an undirected graph into communities. We also wish to define a set of roles
for the nodes of the graph, such that each nodeis assigned one, and only one, role. That
is, unlike Kleinberg, we want our roles to be binary (Yes/No) properties of nodes—and
exclusive as well. The roles we will arrive at are:‘leader’ of a community; member of a
community; and two types of roles for nodes in the ‘border set’, i.e., nodes not belonging
to any community.

Our approach is roughly dual to that of Girvan and Newman. We begin, not with the
‘edges’, but with the ‘centres’ of the communities. From this starting point, we work
‘outwards’ to find the members, and finally the border nodes. We do not claim that this
set of roles is complete, in thesense that no others could be defined. (For example, it might
be of interest to identify further substructure within each community.) However, our set
of roles is complete and consistent, in the sense that our definitions allow a unique and
unambiguous association of a single role with each node on the graph.

Our work draws inspiration from that of Kleinberg on directed graphs. On undirected
graphs, however, the two role types (Hub and Authority) become the same (a type of
centrality). Also, we seek Yes/No definitions ofroles, rather than continuously varying
indices. Yet, as we will see, the centrality index that emerges from applying Hub and
Authority definitions to an undirected graph will provide the starting point from which
we define communities, and thereafter roles.
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1.1. Possible applications

How might these ideasbe useful in analyzing real networks?
The utility for social networksseems clear [4]. It is obviously of interest to identify

communities in a measured social network. The links may be of any type (as long as they
are undirected) for our ideas to apply: friendship, collaboration, etc. The roles of ‘centre
of a community’, ‘member of a community’, and ‘bridge between communities’ are also
intuitively plausible for social networks. An example with a slightly different flavor is the
network of sexual contacts. Here too these ideas may be quite useful, in work addressed at
limiting the spread of sexually transmitted diseases: perhaps one would focus on the two
complementary goals of (i) preventing infection of the central nodes of each community,
and (ii) preventing the transmission of the disease across the bridging nodes.

We expect that there are useful and interesting applications of these ideas to
technological or communication networksas well. Again, the only prerequisite is that the
links be undirected. An obvious example is the Internet. One difficulty with technological
networks is that the significance of the roles we define is less obvious—that is, what a role
impliesabout a node depends on what kind of question one asks. One type of question for
technological networks is similar to that from the sexual network mentioned above: How
does one prevent the spreading of damage?And in this case the analogy seems useful.
However, there are likely other types of questions about such networks that may be usefully
illuminated by the methods presented here.

Finally, there are of course those networks that are both social and technological.
Examples include the telephony graph; peer-to-peer networks [10] overlaid on theInternet;
and the combined network of computers, files, and users that is the daily preoccupation of
every system administrator. Here, once again, security seems an obvious application for
these ideas: one wishes to identify nodes that should be given highest priority in protecting
against viruses, for example. We note in this context that our method of analysis may be
applied either to physical networks, or to logical networks which exist as overlay networks
on top of the physical network. The important common aspect is the identification of links
(physical or logical), over which information can flow.

Previous papers [3,13] have shown in more detail how to apply the analysis presented
here to networked computers with many users. Hereour main goal is to present in detail
the definitions for the roles,and the logic behind these definitions. In addition, we will
apply this analysis to the several snapshots of the Gnutella peer-to-peer network. Peer-to-
peer networks [10] are hybrid social/technological networks that are self-managing—that
is (excepting Napster, which is defunct), they build and maintain a structure without the
help of any central node. Thus any communities and other types of structure that may be
found in snapshots of the Gnutella network are formed from many local actions of members
who lack any kind of view of the entire network. Nevertheless, we will see that Gnutella
networks, at least at the times of the snapshots, are extremely well connected.

2. Roles in networks—the logic

The idea we wish to pursue is that ‘well-connectedness’ may be viewed as aheight
functionover the discrete space (the graph). If our height function is smooth enough, then
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we can employ ideas appropriate for smooth surfaces over a continuous space. That is, we
want touse atopographicalpicture to define regions in a network. Regions will correspond
to ‘mountains’, with the centre of each region being the corresponding mountain top.
Boundaries between regions will then be defined as those points failing to be uniquely
associated with one mountain region.

2.1. The mathematics

We focus on ‘smooth’ functions over a discrete space. Again we draw as much insight
as possible from the continuous case.

2.1.1. Harmonic functions and smoothness
Suppose the domain space is continuous. Then harmonic functions are the most smooth

functions available. These functionsare solutions to Laplace’s equation,

∇2φ = 0. (2.1)

For a given space, one obtains different solutions to (2.1) from differing boundary
conditions onφ.

We immediately identify some problems with the continuum picture. One problem is
that there are no maxima (or minima) away from the boundary. Hence our topographic
picture cannot work with such smooth functions: we will find no mountain tops not lying
on the boundary. Furthermore, we are seeking anatural way of defining regions. Here
‘natural’ means guided as much as possible by the topology of the graph. Hence it is
undesirable to have to assign values for our height functionφ at the boundary—we would
prefer that the topology solve that problem for us.

We can of course solve this last problem by settingφ = constant (for example, zero)
at the boundary. That is, we just give the boundary some nominal reference value. This is
‘natural’ enough; however, we then get thatφ = constant over theentirespace, due to the
averaging property of Laplace’s equation.

The discrete version of Laplace’s equation is

Lφ = 0, (2.2)

whereL = K − A is the Laplacian matrix,K = Diag(k1, k2, . . .) is a diagonal matrix
whosei th entry is the node degreeki , andA is the adjacency matrix, withAi j = 1 if there
is a link fromi to j , and 0 otherwise.

It is easy to see that the averaging property holds here also: solutions to (2.2) obey

φi = 1

ki

∑

j =nn of i

φ j . (2.3)

Here ‘nn’ means ‘near neighbor’. The discrete Laplace equation thus offers ‘most smooth’
functions for the discrete case; but it has all the problems seen for continuous harmonic
functions, plus one more. The additional problem stems from the crucial fact that the
specification of the boundary of a discrete space is not unique—in fact, there is no
natural way to define such a boundary. We can of course take the (perhaps least arbitrary)
assumption that none of the points are boundary points—all are to have their height
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determined by the graph structure—but then we get back the constant solutionφi =
constant.

2.1.2. Eigenvector centrality
A small change in the above picture solves all of its problems at once. The small change

is as follows: we ask for a height function which obeys, instead of the averaging property
(2.3), the following:

φi = 1

λ

∑

j =nn of i

φ j . (2.4)

That is, instead of taking the strict average over all neighbors, we divide the neighbor
sum by a constantλ, which is the same for all nodes. This equation can be written as

Aφ = λφ, (2.5)

where A is again the adjacency matrix. Now wehave an eigenvalue equation, and
our height functionφ is an eigenvector of the adjacency matrix. We want in fact the
eigenvector which is the stable iterative solution of (2.4), because we want height to signify
‘well-connectedness’. That is, (2.4) encodes the idea that nodei ’s well-connectedness
is determined, to within a scale constantλ, by that of all of i ’s neighbors. Iterating this
requirement, from any starting point, will give the principal eigenvector of the adjacency
matrix. This eigenvector gives thestable, self-consistent solution of (2.4); it also has the
property that it is positive semidefinite, sinceA is.

Thus we have a simple mathematical definition of well-connectedness on an undirected
graph. It is a definition known from sociology: it is due to Bonacich [2], and is termed
‘eigenvector centrality’ or EVC. We do not offer a rigorous definition of smoothness
for this function. It is plausible that positive definite solutions to (2.4) are reasonably
smooth: they are ‘almost’ averaging. Also, we find from experience (see below) that EVC is
‘smooth enough’ to give sensible results, when applied for the purpose of defining regions
in a graph.

With this one modification, the problems we saw above with Laplace’s equation
(discrete or otherwise) are no longer present. EVC can have local maxima away from
the boundary. In fact, since it measures well-connectedness, local maxima of EVC tend
to lie well away from any nodes that one might be tempted to call ‘boundary nodes’.
Furthermore, there is no need to define a boundary for the discrete case: all nodes may
have EVC values determined by Eq. (2.4), with no values input as ‘boundary conditions’.

Finally we recall our main goal: to assign a natural and unique role to each node in
the network, based solely on the topology of the graph. As noted above, Kleinberg found
two such roles for directed graphs: Hubsand Authorities. Hubs are naturally good at
pointing to good Authorities; and Authorities are naturally good at being pointed to by
good Hubs. We see already from these simple grammatical statements that the distinction
between Hubs and Authorities vanishes when the arcs of the graph become undirected (so
that ‘pointing to’ = ‘being pointed at’). The mathematics gives the same result: for the
undirected case, the adjacency matrix is symmetric,A = AT, and so the matrices defining
Hubs and Authorities become the same.
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In short, for undirected graphs, the two types of roles collapse to one. That one role
(more precisely, an index quantifying the degree to which the node plays the role) is
eigenvector centrality. The Hub operatorAAT and the Authority operatorATA become
simplyA2, whose principal eigenvector is the same as that forA.

Hence we find thattwo of the roles identified in Kleinberg’s work with directed graphs
become a single (type of) role for an undirected graph. This role type we call well-
connectedness, or eigenvector centrality. We seek, however, further distinctions among
the nodes of an undirected graph—in other words, multiple distinct roles, to which any
given node may be assigned. These roles will be defined in the next section. Eigenvector
centrality (EVC) will be our height function, and hence our starting point.

2.2. Definitions of the roles

Let us first make precise the difference between ‘role type’ and ‘role’. We can associate
real-valued indices or ‘scores’ with each node: Hub and Authority scores for the directed
case, and EVC score for the undirected case. These are role types; in fact it is fair to
say that all three scores represent some type of centrality. All nodes have some degree
of centrality; and ‘being central’ is certainly atypeof role. By role, however, we mean a
binary (Yes/No) distinction applied to each node, so that each node receives a single Yes
and hence is assigned a unique and unambiguousrole. Centrality (a role type) will give us
a smooth height function over the graph, allowing us to use topographic criteria to assign
a role to each node.

2.2.1. Centres
We hold onto the picture of mountains, valleys, saddles, etc for our height function.

Each mountain may be defined by its peak. The peak is a local maximum of the height
function. Our first role is then the mountain peak.

Centre: Any node which is a local maximum of the eigenvector centrality is a Centre.

2.2.2. Regions
Each mountain top defines a mountain. Hence the number of Regions in the graph is

equal to the number of centres. (Henceforth, except when roles are defined, we drop the
capital letters; the meaning should be clear from context.) Regions are usually composed
of more than one node; hence the role for a node cannot be a region, but rather a Region
Member.

Region Member: Each node that may be uniquely associated with a single Centre,
according to an unambiguous rule, is a member of that Centre’s Region, and hence a
Region Member.

It remains to specify the ‘unambiguousrule’. We suggesttwo possibilities.

Rule 1 (Distance).A node is associated with Centre C if it is closer (in number of hops)
to C than toany other Centre C′.

Rule 2 (Steepest Ascent).For each node i , a steepest-ascent path starting at i will
terminate at one (or more) Centres. If it terminates at a single Centre, then node i is
associated with that Centre.
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Fig. 2.1. Bridge Node (left) and Bridge Node and Danglers (right).

These rules are simply the discrete-domain version of the process of associating a part
of the domain (base space) with each mountain top—hence defining each mountain. We
are careful here to break our definition of region into two parts: the definition itself, which
refers to a rule but does not specify it; and the rule. We do this because we feel that more
than one rule is possible for the discrete case; and so we state the region definition in a way
that captures the ‘mountain’ idea, but leaves the rule unspecified.

Both rules stated above satisfy the intuitively reasonable criterion that a centre’s near
neighbors should (in general) belong to itsregion. (It is, after all, the number and
connectedness of a centre’s neighbors that gives that centre its high EVC.) Both rules are
also easy to implement in a simple iterative fashion—starting with the centres, and working
outwards from them, ‘coloring’ nodes according to the regions (centres) they belong to.
The steepest-ascent rule is, however, the rule which is the most faithful to our topographic
picture.

2.2.3. Borders—between regions
Ona continuous topographic surface there are points which liebetweenmountains, and

belong to no unique mountain. It may happen that analogous points exist for the discrete
case as well. Nodes which cannot be associated with any one mountain are assigned to the
Border set.

Border Nodes: Any node for which the unambiguous rule for Region membership gives
more than one answer is a Border Node.

Intuitively, we think of border nodes as ‘connecting regions’. And yet, a bit more
thought reveals that not all border nodes are equal in this regard. Some border nodes do
indeed play an important role in connecting two or more regions: they lie on paths which
connect the respective centres (hence regions). See the left panel ofFig. 2.1. Other nodes
may be removed, without any loss in the degree of connection between the regions. See
the rightpanel ofFig. 2.1. Hence we are motivated to define two distinct roles to the set of
border nodes.

Bridge Node: A Border Node which lies on at least one non-self-retracing path
connecting two Centres is a Bridge Node.

Dangler: Any Border Node which is not a Bridge Node is a Dangler.
Danglers of course mayinject new information into the network; but they do not play a

significant role in thetransportof information between regions.
Finally, we wish to single out a class oflinkswhich play an important role in connecting

regions. Our reason for doing so here is that the border set for the steepest-ascent rule is in
general very small or zero. In this case we still wish to highlight those network elements
which connect the regions. Hence we define:

Bridge Links: Any link whose endpoints lie in two distinct Regions is a Bridge Link.
Bridge links will occur for either region rule above.
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Fig. 3.1. A simple graph with two regions, as defined byRule 1(distance test).

One can imagine rules for defining regions which give ‘fat’ borders. For example, one
could associate nodes with centres according to:

Rule 1′ (Distance with Cutoff). A node is associated with Centre C if it is closer (in
number of hops) to C than to any other Centre C′, andif its distance from C isnot greater
than h hops.

‘Fat’ borders arise for such a rule since there could be many nodes which are farther
thanh hops from any centre. In general, ‘fat’ boundaries arise if we choose a rule designed
to avoid the ‘growing together’ of regions from their respective centres. The distance to
which growth is allowed could then be measured in hops (as inRule 1′), or in decrements
in EVC.

Boundaries according toRule 1 are ‘thin’: essentially one node wide. Boundaries
according toRule 2 are even thinner: in general, they are 0 nodes wide, since it is
rare that a node will have two or more steepest-ascent paths, leading to different local
maxima.

3. Examples

We illustrate our method, and compare the two rules for defining regions, using some
simple examples.

Fig. 3.1 shows asimple graph with two centres. The Border consists of three nodes.
One (node 11) is a bridge node which clearly plays an essential role in connecting the two
regions. The other two are danglers.

ApplyingRule 2to the same graph gives usFig. 3.2. Here we see that the entire border
has been ‘swallowed’ by the dominant centre (node 9). The rather peripheral role of nodes
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Fig. 3.2. The same graph as inFig. 3.1, butdefining the regions usingRule 2. EVC values for the nodes are also
shown.

Fig. 3.3. A graph with three regions;Rule 1.

10 and 12—formerly classified as danglers—is now reflected in their distance (2 hops)
from their centre (and of course intheir low EVC).

Comparing these two figures thus confirms our expectations about the differences
between the two rules: a border set, with or without danglers, is typically present with
Rule 1, but absent with Rule 2. We see the same picture for a graph with three regions in
Figs. 3.3and3.4.
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Fig. 3.4. The same graph as inFig. 3.3, butdefining the regions usingRule 2.

We note here that localminimaof the EVC play, in general, rather uninteresting roles
in the network. For example, inFigs. 3.1and3.2, the two dangler nodes, and all the nodes
around the central light grey (yellow in the web version) node, are local minima of the
EVC. They are, loosely speaking, nodes on the’ edge’ of the network. A local minimum of
the EVC must be poorly connected in general. That is, one must abandon the picture of a
local minimum as a low-lying node surrounded ‘in all directions’ by neighboring, higher-
lying nodes—because there are likely very fewsuch directions (neighbors) for nodes which
are local minima of the EVC. Hence it is logical todefinethe ‘edge of the network’ as being
precisely this set of nodes (local minima).

Bridge nodes, on the other hand, correspond to the topographic notion of ‘saddles’. That
is, they lie ‘between’ peaks; and there are usually lower-lying nodes (danglers), linked to
the saddles, but in another ‘direction’—so that, at a bridge node, as with a true saddle, one
goes only uphill along a certain ‘axis’ or direction, and only downhill along another.

The bridges inFig. 3.4 are local minima—but only because they have no links in any
other ‘direction’ than that (uphill) joining the centres. That is, the saddles have no width,
and hence lie on the edge of the network. The other local minima (nodes 2, 10, 15,
and 16) are farthest from the ‘action’ (high connectivity) in the graph—they lie on its
edge.

To illustrate the application of these ideas, we suppose that the nodes inFigs. 3.1and
3.2 are users in a computer network, while the links are effective connections between
users which allow information flow. Here we say ‘effective’ connections, because the links
may not be direct: they may be mediated by files to which both users have read and write
access [3]. We conclude immediately from the analysis that the user system is naturally
composed of two main groups (light grey (yellow in the web version) and medium grey
(blue in the web version)). Furthermore, node 9 is most central to the light grey (yellow
in the web version) group, while node 13 is most central for the medium grey (blue in
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Fig. 3.5. A graph with three regions, and parallel bridge nodes;Rule 1.

the web version) group. Finally, node 11 is a bridge node which is crucial for the flow of
information between the two groups.

Suppose further that we are concerned with security for this small system. Then we
can immediately identify nodes 9, 13, and 11 as most urgently needing protection from
whatever threats the system faces. Nodes 9and 13 are to be protected because they are
centres of their regions: if they are infected, then there is a high probability that their
entire region will also be infected. Furthermore, we can give node 9 a higher priority for
protection than node 13, since its region is larger. Finally, node 11 merits extra protection,
since if it can be rendered immune to the threats, then these threats have no ready channel
for spreading from one region to another.

Note that the use ofRule 2does not single out any border nodes for special protection—
even though node 11 clearly plays an important role in connecting the two regions.
However,Rule 2will identify the link between 11 and 13 as a bridge link. The obvious
consequence of this is that the nodes on each end of each bridge link deserve special
protective measures.

We can turn this problem on its head, by giving the administrator the problem of
spreading desired informationover this same small network. Our analysis then suggests
an efficient strategy for doing so: one starts with the centres (nodes 9 and 13), and arranges
for the desired information to be broadcast from there.

Finally, we illustrate another possible difference between the two rules inFigs. 3.5and
3.6. Here the point is that the border (fromRule 1) not only vanishes when we apply
Rule 2—it also moves: that is, node 12 belongs to the ‘medium grey (blue in the web
version)’ region according toRule 1, but to the ‘darkgrey (orange in the web version)’
region byRule 2.

It is of course to be expectedthat the distance rule and the steepest-ascent rule will
give conflicting results for some nodes. An important point to be gleaned fromFig. 3.1
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Fig. 3.6. The same graph as inFig. 3.5, butdefining the regions usingRule 2.

through3.6 is that the general qualitative picture is rather insensitive to the choice of rule
for defining regions. We expect this to be the case for most graphs. The choice of centres
is independent of which rule is used; and thesecentres in turn exist precisely because they
lie in a region of the graph that has some ‘weight’—that is, some number of nodes which
are better connected to one another than to their ‘surroundings’. In short, we believe that
the distinct rules, which ostensibly define regions, actually differ principally according to
where they place theboundariesbetween regions—while the regions are in themselves
rather stable objects.

4. Example—the Gnutella network

We have applied our method of analysis to a set of snapshots of the Gnutella peer-to-
peer network. These snapshots [6] were taken in November and December of 2001, and
consist of about 1000 nodes in one connected piece (ignoring very small disconnected
pieces).

Peer-to-peernetworks [10] are logical overlay networks based upon the Internet; they
are largely or entirely self-organized. At thetime these snapshots were taken, the Gnutella
network used protocols calling for some, high-bandwidth, nodes to be ‘supernodes’. These
nodes take responsibility for indexing and query handling on behalf of a set of ‘ordinary’
nodes associated with them. The ordinary nodes are encouraged to maintain a neighbor
set of at least three or four neighbors. The supernodes may be expected to handle a higher
number of neighbors, depending on their capacity.

From this simple picture one might expect a two-humped node degree distribution.
Instead, we find that the node degree distribution is, to a good approximation, a power-
law distribution (seeFig. 4.1 for an example). Power-law distributions are not uncommon
when the network is self-organized as is the case here. Such graphs are extremely well
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Fig. 4.1. Node degree distribution for the Gnutella network, November 13, 2001.

connected—for instance, they are highly resilient to random node deletion. In the context
of this work, the term ‘well connected’ may bealso taken to imply ‘few centres, with many
links between the centres’. That is—in topographic language—local peaks are separated
from one another by regions of low connectivity. A graph with few such regions will not
support the existence of many local peaks of the centrality. This then is our expectation for
the Gnutella networks that we analyzed.

We have applied both rules to seven Gnutella snapshots. The results are summarized in
Table 4.1.

The most prominent qualitative result that we see is just that expected: there are very
few regions in these well connected graphs. Five of the graphs have two regions, and the
other two are composed of a single region. We view this in itself as a strong result: the
ratio of regions to nodes is extremely small here, indicating that these graphs are very well
connected.

Next we compare the two rules for defining region membership. Not surprisingly,Rule 1
(based on distance) is more ‘democratic’ thanRule 2(based on height). That is, it will not
be uncommon that nodes are closer (in hops) to a ‘weak’ (low EVC) centre than they are to
adominant centre; yet at the same time such nodes can be topographically part of the local
peak associated with the more distant, but higher, centre. We see extreme cases of this in
the last two snapshots. In each case there are on the order of 100 nodes which move from
the weak region to the dominant one, on shifting fromRule 1 to Rule 2. The dominant
region also acquires essentially all of the border set whenRule 2is applied.

In short, in four out of five of the cases with two regions, the disparity in size between
the two regions is increased by applyingRule 2instead ofRule 1. (The exception is found
in the second row of the table; here the size ratio of the two regions is 1.7 and 1.4, for
Rules 1and2 respectively.)
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Table 4.1
Results for a series of snapshots of the Gnutella peer-to-peer network from late 2001. Node numbers (which are
arbitrary) are given in parentheses. The last three columns simply give the number of nodes in the corresponding
sets

Date # nodes Top degree Centres Regions (Rule 1) Border (Rule 1) Regions (Rule 2)

13.11.01 992 (24):83 (24) 211 570 772
(335):84 (335) 211 220

16.11.01 1008 (13):53 (13) 192 488 425
(54):55 (54) 328 583

20.12.01 (1) 904 (105):77 (105) 904 0 904
20.12.01 (2) 1077 (56):125 (56) 1077 0 1077

(259):125
27.12.01 (1) 1095 (18):136 (18) 244 447 318

(87):142 (87) 394 777
27.12.01 (2) 1026 (13):118 (13) 498 394 996

(42):109 (97) 134 30
28.12.01 1050 (194):126 (194) 521 378 972

(410):109 (518) 151 78

For thecase ofRule 1, we see that the border set is very large—on the order of half of
the nodes. We regard this as another sign of thewell-connectedness of the graphs: those
few distinct regions which are found are well connected to one another. For the case of
Rule 2, this shows up in the large number of borderlinksconnecting the regions.

We have alsocreated visualizations of the Gnutella graphs studied here, using the
Archipelago visualization tool [13]. We show here the results for both rules, applied to
one of the more extreme cases—that is, to the second graph for December 27 (sixth in
Table 4.1). Archipelago, in its current version,places each centre at the geometric centre
of a ring, and all member nodes for a region on the edge of the corresponding ring. Border
nodes are placed in a smaller ring between regions. Border links are colored grey (red in
the web version); other links are black.

Visualization of large graphs is a difficult problem [1]. Our method of analysis gives
suggestions for visualization, but is far from solving the problem completely. We feel
that the main points to be taken fromFigs. 4.2and4.3 are the same as those taken from
Table 4.1. (The graph is well connected, with manyborder elements; andRule 2yields a
much more skewed partitioning ofthe nodes into regions than doesRule 1.) That is, these
figures do not give new insight; but they do capture the insights gained from our analysis,
and render them visually.

The Gnutella network is a logical network, overlaid on the Internet. There is thus no
single system administrator responsible for this network. Furthermore, current peer-to-peer
networks are quite large. Considering finally the fact that peer-to-peer networks have little
or no central authority, we find that such networks are both largely unmanaged and difficult
to manage.

Yet there is somedegree of management, at least in the form of protocol distribution.
Our analysis here implies that there can be ‘smart’ strategies for protocol update
distribution—if one can map out the network topology, so that our analysis can be
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Fig. 4.2. Visualization of the December 27th Gnutella graph (sixth inTable 4.1), using the Archipelago software.
Rule 1.

Fig. 4.3. Visualization of the December 27th Gnutella graph (sixth inTable 4.1), using the Archipelago software.
Rule 2.

performed. That is, our method singles out central nodes as the best starting places for
distribution.

Our analysis also gives a new interpretation of the term ‘well-connectedness’ for a
network. That is, we find that these thousand-node networks are composed of one, or at
most two, regions, with many bridges between the two regions for the latter case. The
implication of this result is clear: it is very difficult topreventthe spreading of information
over such anetwork. One can try to focus on the centres; but they are imbedded in a sea
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of other highly central nodes. And the bridges are too numerous to allow for the guarding
of all of them. This conclusion is thus a negative one: we suggest that there is no readily
practical way to protect such networks against undesired or harmful information. This
conclusion is consistent with that of [12].

5. Summary, discussion, and future work

Our goal in this work has been to give some meaning, beyond whole-graph properties,
to the term ‘structure of a graph’. Our approach has been to seek a ‘natural’ (i.e., purely
topology-driven) definition of the structure, interms of regions (natural clusters), centres
of these regions, and nodes (and links) in a border set lying between regions. Our basic
criterion for defining a region (and its centre) has been well-connectedness, as measured
by the ‘smooth’ graph function, eigenvector centrality or EVC. In addition to defining
natural clusters of a graph, our approach also assigns a unique role to each node in the
graph.

Our two rules for defining regions give qualitatively similar pictures for the graph
structure as a whole, but rather different pictures in terms of which roles for nodes are
present in the analysis. That is,Rule 1—associating nodes with regions based purely on
their distance, in hops, from centres—placesa significant number of nodes in the border
set. These nodes in turn can be placed in two distinct roles: bridge nodes, and danglers (see
Fig. 3.1). Rule 2holds more closely to the ‘topographic’ spirit of our approach, associating
nodes with centres to which they are linked by a steepest-path ascent. This rule normally (in
the absence of special symmetry) placesnonodes in the border set—such that, withRule 2,
the two roles in the border set (bridge nodes and danglers) are essentially excluded, and all
nodes are either centres of a region, or members of a region.

One can imagine other rules for defining regions. We feel that the principal aspect
of our approach is to identify centres first, and then let regions ‘grow’ outwards from
these centres. Both of our rules fit this picture; butother rules do as well, and could be
investigated. One might argue that the topographic rule (Rule 2) is most consistent with
the spirit of our approach, relying as it does on a topographic picture of a graph, based
on EVC. However, different rules may be better suited to different purposes for doing the
structural analysis.

Our approach is dual to that of Girvan and Newman [5], in the sense that their approach
defines regions by finding their boundaries, while ours finds first their centres. It would of
course be very interesting to compare results for these two approaches; we plan to do so in
future work. The Girvan/Newman approach also allows for a hierarchical decomposition
of a graph,by breaking clusters into subclusters, etc. A similar hierarchical decomposition
could also be done in our case, by eliminating border nodes and links, and applying our
analysis to the resulting isolated regions.

We do not regard the set of roles that we have found as exhaustive. Since regions are
defined by ‘growing outwards’ from centres, one can certainly quantify ‘closeness’ to the
centre, for each region—in terms of distance (in the spirit ofRule 1), or ‘height’ (EVC)
(in the spirit of Rule 2). As a very simple example, one can assign the role of ‘Edge of the
region’ to those nodes which are connected to border elements (nodes or links). A different
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type of Edge role may be assigned to those nodes which are ‘farthest’ from the centre, but
not linked to any border elements. For example, referring toFig. 3.3, the first (linking) type
of edge role may be assigned to nodes 11 and 7 (medium grey (blue in the web version)),
6 and 1 light grey (yellow in the web version), and 17 and 13 (dark grey (orange in the
web version)).All of the other nodes, except centre node 5, also lie on the edge of their
respective regions, by this definition. Of course, these regions are ‘all edge’ (and two of
three centres lie on the edge) because the regions themselves are so small.

So far, we have only defined our approach, and given illustrative examples. An
important task for future work is to test the sensitivity of our approach to small changes
in graph topology. For example, Kleinberg’s HITS algorithm has been shown to be, in
some cases, highly sensitive to small topology changes [9]. The sensitivity occurs when
the eigenvalue gap is small—so that small perturbations can lead to large mixing in of
subdominant eigenvectors.

While reserving this question for future work, we offer a speculative comment here.
A small eigenvalue gap is associated with poor mixing—i.e., slow convergence to the
asymptotic distribution for a random walk. In very loose terms, such graphs are poorly
connected. We feel then that, in such cases, sensitivity of the analyzed graph structure to
small topology changes is reasonable, and not ‘undesirable’. That is, the cluster structure
of poorly connected graphs may be expected to be sensitive to small topology changes.
This idea, of course, must be tested in future work. Also, our loose interpretation of the
term ‘well connected’ needs to be sharpened.

In real networks, one is always subjected to the problem of incomplete information:
it is often not possible to measure completely the topology of the network. Incomplete
information means missing nodes or links—which may be regarded as a type of topology
change, in the direction (usually) of making the network less well connected. The above
discussion applies also to this kind of topology change: the analysis will be only weakly
sensitive to this kind of error, when the network is well connected. In fact, there is
almost certainly such error present in the Gnutella measurements which are analyzed here.
However, even in the presence of such error,we find an extremely well connectednetwork.
Hence our qualitative conclusions should not be affected by this source of error.

For a poorly connected network, missing links can strongly affect the analysis. One
example of this is the user/file system reported in [13]. This system was analyzed twice:
first, ignoring links connecting students and faculty; and then including such links. In
each case, the system was found to consist of a set of disconnected clusters. However,
the nature and number of these clusters changed considerably with the inclusion of the
student–faculty links. This is an extreme case—since the network is so poorly connected
that it is disconnected—but it illustrates our point. In fact, the ‘true’ network is likely
very poorly connected. However, there are also (likely) undetected links which render it
connected, and hence, susceptible—albeit weakly—to system-wide infection.

A clear conclusion from the above discussion is that measurement errors (missing links
and/or nodes) have much more effect in distorting the analysis when the network is poorly
connected. Hence, in such cases, extra effort may be merited to try to detect all relevant
elements (links and nodes).

We mention yet another direction for future work, namely directed graphs. Here we
suggest one possible approach, which we plan to explore further. Kleinberg’s approach
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givestwoscalar height functions over adirected graph. That is, each node gets a Hub score
and an Authority score. Hence one obvious generalization of our approach is to apply it
twicefor a directed graph—once for each score. This gives of course two distinct structural
analyses for one graph—a feature which may or may not be desirable.

We note that the notion of ‘neighbor’ must be clarified before this suggestion may be
implemented. That is, if we look at nodei ’s Hub score, andseek to relate that score toi ’s
neighbors, which nodes should we look at? Those pointing toi , those pointed to byi ,
or both? We suggest that neither set is appropriate: the Hub/Authority calculation
propagates the two scores via iterations of atwo-hop operator (ATA and AAT,
respectively). Hence (for example) the neighbors of a nodei , viewed as a Hub, are those
nodes which are linked to the nodei by one application ofAAT. In other words, these two
compound operators (which are each symmetric) define two different undirected graphs:
the Hub graph and the Authority graph. Our suggestion is then to apply our approach to
each of these undirected graphs.

An interesting unanswered question is then howone can define a single, unique
decomposition of a directed graph. It is not clear to us how to do so. Furthermore, it is
not clear whether such a goal is more or less advantageous than the two-decomposition
approach sketched here for directed graphs. One possible approach is to use the PageRank
algorithm [11], which gives a single, authority-like score for each node on a directed graph,
without resorting to compound operators. However, one then still needs a good definition
of a node’s neighbors.

Finally we come to applications of our method. We have displayed one application here,
in our analysis of the Gnutella network of late 2001. We believe that our picture of this
peer-to-peer network offers valuable insight, which is not available from other approaches
such as the node degree distribution. The principal insight is that the network—or at least
the subgraph found in the snapshots—is so well connected that it is ‘barely’ decomposable
into regions at all: some snapshots consist of a single region, while others consist of two
regions which are well connected to one another. It would be highly interesting to study
more recent, and possibly more complete, snapshots of peer-to-peer networks, in order to
test if this picture still holds. Peer-to-peer networks are but one example of many self-
organized social/technological networks, which manage without central guidance to build
up highly robust and well connected structures.

Our approach has also been implemented, in an earlier and limited form, in the
Archipelago [13] software for analyzing the bipartite graphs composed of users and files
on a computer network. Here the analysis promises to be useful for the purpose of security
management. Clearly, both highly central nodes, and bridges (links or nodes) can be singled
out as deserving extra attention and care in the preventing of the spread of damage. The
highly central nodes are most likely to infect their regions; and the bridges in turn must
be guarded so that the infection does not spread from one region to others. There is, for
example, only a small number of bridging elements inFig. 3.5, orFig. 3.6. Hence it would
be practical to immunize these elements, and so ensure that any infection is isolated to a
single region. For larger regions, it would also be practical to immunize the most central
nodes in each region—prioritizing of course those regions with the greatest number of
nodes. The Gnutella examples, on the other hand, are hard to protect, because they aretoo
well connected. In our language, this means that there are many nodes in each region with



214 G. Canright, K. Engø-Monsen / Science of Computer Programming 53 (2004) 195–214

roughly the same centrality; and that there are many bridges between regions (for those
cases where there is more than one region).

Our method is applicable tomany other types of graphs—in principle, to any graph
which is undirected. The method is easily modified also to allow weights (other than 0
or 1) for the links between nodes. We believe that our method will prove to be useful in the
analysis ofsocialnetworks—which may (again) have a (positive) strength associated with
each link.
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