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Throughout R is a prime ring and is regarded as an algebra over its centroid. 
Let R”(dR) denote the right (left) singular ideal of R. R is called Johnson ring 
if it satisfies any of the two equivalent conditions: (a) RA = 0 = ‘R and R 
possesses uniform right and left ideals, (b) the right (left) quotient ring of R 
(in the sense of Utumi) is Hom~( V, V) where I: is a vector space ox-er a division 
ring D. In addition if D is finite dimensional over its center then R is called 
a special Johnson ring. Denote by C the center of Utumi’s right quotient ring 
of R. The results shown are: (1) R is a special Johnson ring iff there exists 
a nonzero one-sided ideal with polynomial identity (PI), (2) R has generalized 
polynomial identity (GPI) nontrivial over C iff each nonzero right (left) ideal 
of R contains a nonzero right (left) ideal with PI, (3) If R has GPI nontrivial over 
C then R cannot have nonzero nil one-sided ideals, (4) If R is integral domain 
the R has GPI nontrivial over C iff R has PI, (5) There does not exist a simple 
radical ring R satisfying a generalized polynomial identity nontrivial over the 
center of HomR(R, R), (6) R is a special Johnson ring with nonzero socle iff each 
nonnil right (left) contains an idempotent (+O) and there exists a nonzero one- 
sided ideal with PI. 

1. Amitsur showed in [l] that if R is a primitive algebra satisfying a 
generalized polynomial identity over its centroid then R has a minimal left 
ideal Re and eRe is finite dimensional over its center. Martindale proved [6] 
that if R is a prime ring with a generalized polynomial identity (nontrivial) 
over the center C of the Utumi’s right ring of quotients QT of R then S = IPC 
is a primitive ring with minimal left ideal Se and eSe is finite dimensional 
over its center. The object of this paper is first to observe that a certain c&s 
of algebras have a generalized polynomial identity iff there exists a nonzero 
one-sided ideal with a polynomial identity. Among other results it is shown 
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(i) an integral domain R satisfies a generalized polynomial identity nontrivial 
over the center of (Utumi’s) ring of quotients of R iff R satisfies a polynomial 
identity, (ii) there does not exist a simple radical ring R with a generalized 
polynomial identity nontrivial over the center of Horn, (R, R). 

Throughout R is a prime ring and is regarded as an algebra over its centroid. 
Let R”(“R) denote the right (left) singular ideal of R. R is called a Johnson 
ring if it satisfies any of the two equivalent conditions: (a) RLl 0 :-~ “R 
and R possesses uniform right as well as left ideals, (b) the right (or left) 
quotient ring of R (in the sense of Utumi) is Hom,( I’, I’) where k’ is a vector 
space over a division ring I). In addition if I1 is finite dimensional over its 
center then R is called a special Johnson ring. Denote by C the center of the 
Utumi’s right ring of quotients Q, of R. For definitions refer [I], [4], and 

PI. 

2. We first give another version of the Martindalc Theorem. 

THEOREM 2. I . If R satisfies a generalized polynomial identity (nontrivial) 
over C then R is a special johnson ring. 

Proof. Ry Martindale, S = RC is a primitive ring with nonzero socle, 
and eSe is finite dimensional over its center where eS is a minimal right 
ideal. So that S* = 0 =m *S. We assert that if E is a large right ideal of R 
then EC is a large right ideal of S. Let K be a nonzero right ideal of S and 
0 # k E K. Then there exists a dense right ideal D of R such that kD is a 
nonzero right ideal of R. This implies 0 f kD n EC K n EC, and hence 
EC is a large right ideal in S. From this it is immediate that R* mm- 0, and Qr 
is also the Ctumi’s right ring of quotients of S. Since Q,. is the ring of 
quotients of a primitive ring S which has nonzero socle, Q,. = HomPsp (Se, Se) 
where Se is a minimal left ideal of S. Similarly we can show that the left 
quotient ring of S (and also of R) is the full ring of /.t. of a vector space over 
a division ring. Hence R is a special Johnson ring. 

3. Let A be a nonzero one-sided ideal, say, for definiteness a right 
ideal which satisfies a polynomial identity over the centroid of R. Denote by 
[(A) the left annihilator of A in A. Clearly G(A) f A. Suppose xizy C/(A). 
Then xAyA = 0 and hence XA mm_ 0 or y-4 == 0 since R is prime. This 
shows that A/I’(A) is a prime ring and being a homomorphic image of .;I, 
has a polynomial identity. Since A/G(A) is prime, A//(A) satisfies some 

standard identity S,(x) = Z* xisi, ... xi -= 0. This implies d satisfies 
[S,(X)]” = 0 proving that AC also’satis&s [S,,(X)]~ =: 0. Hence S == RC 
satisfies a generalized polynomial identity. Conversely let S satisfy a 
generalised polynomial identity nontrivial over C. If eS is a minimal right 
ideal of S, then eS satisfies some polynomial identity since eSe is a finite 
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dimensional division algebra (and hence satisfies a standard identity). Let 
f@ be a minimal right ideal of QY. Then,fQ f Y is isomorphic to eSe, and thus 
f@ also satisfies a polynomial identity. This implies that any minimal closed 
right ideal R of R satisfies a polynomial identity since it is wellknown tlhat 
B = fQr n R, where fQr is a minimal right ideal of QY. Kext, let i3 be an 
arbitrary nonzero right ideal of R and .4s be its unique maximal essential 
extension in R. By the lattice isomorphism between the closed right ideals 
of R and of Q)Y, A” contains a minimal closed right ideal B which satisfies a 
polynomial identity by the previous remark. Also, A43” being essential extension 
of -4, I3 n -4 2~ 0. Hence we have shown the following: 

THEOREMS 3.1. Let R be a prime ring. Then R has generalized polynomial 
identity nontril;ial over C ;sf each nonxero right ideal qf R contains a nonzero 
r@ht ideal of R satisfying a polynomial identity. 

Remark. Theorems 2.1 and 3.1 show that the Utumi’s ring of quotients 
of R is Hom,( V, I’) where D is finite-dimensional over its center if R has a 
nonzero one-sided ideal with a polynomial identity. It is interesting to 
compare this result with the Posner’s Theorem that the classical quotient 
ring of R is Hom,( I:, I) where I’ is a finite-dimensional vector space over 
D and D is finite-dimensional over its center if R satisfies a polynomial 
identity. We add that the classical quotient ring of R in the Posner’s Theorem 
coincides with the Utumi’s ring of quotients of R. 

Theorem 3.1 along with a result of Belluce and Jain ([3, Theorem 11) 
yield. 

THEOREM 3.2. If R is an integral domain then R has generalized polynomial 
identity over C zjjf R has a polynomial identity. 

Another proof of Theorem 3.2 can be given if we first prove a lemma. 
Let Q denote the right quotient ring of R. The lemma proved below shows 
that Q is simple if R is an integral domain. Similar arguments will show that 
the left quotient ring is also simple. 

LIXMA. Tf R is an integral domain then Q is simple. 

Proof. Since RA = 0, Q is known to be Von Neumann regular. Let rl 
be a nonzero ideal in Q. Then A n R :f 0. Let 0 # a E A n R. There 
exists .2* E Q such that a = axa. But then 1 - xa E r(a), where r(a) is the 
right annihilator of a in Q. If r(a) f 0, then r(a) n R # 0. But R being 
integral domain, we must say r(a) = 0. Then 1 - xa = 0 and hence A = Q, 
showing that Q is simple. 
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.--ltzother p~,oof of the Theorem 3.2. Hy- the lemma, Q ~~ Hom,( I, f .) is 
simple. So Q is simple Artinian. Also /) is finite dimensional over its center 
(and so has polynomial identity). Hence Q satisfies a polynomial identitv 
and so does R. 

Remui-k. The condition that a generalized polynomial identity is non- 
trivial over a certain field is important. There exists an integral domain 
with a generalized polynomial identity which does not satisfy any polynomial 
identity as the following example shows. 

EXAMPLE. Let F be a field, .P, ~1 he two indeterminates and 0 be any 
automorphism of F different from the identitv. Let .TU ~~ a”,r, vtr u”y 

where a is any element of F and a0 denotes the image of ~1 by the mapping 0. 
Then R == F[x, JJ] satisfies generalized poly-nomial identity .\‘I,1 ~~ yrx, _I 

I’ E R. Hut R cannot satisfy any polynomial identity since R is not an Ore- 
domain. It can be shown that there exists X in the center C of the quotient 
ring of R such that .Y X3: and thus SYJJ JWX is trivial over C. 

M’e proceed to give another case where generalized polynomial identity 
implies polynomial identity. Recall that a right ideal of ,-1 of a ring R is 
called closed if d as a right R-module has no essential extension in R, 
excepting --IR itself. It is well-known that if R” 0 then the lattices of closed 
right ideals of R is isomorphic to the lattice of closed right ideals of Q and 
these lattices arc complemented modular. An example of closed right ideal 
of a ring R with R” ~ 0 is any annihilator right ideal. Of course, any closed 
right ideal is not necessarily annihilator right ideal. One necessary and 
sufficient condition for the set of closed right ideals to coincide with the set 
of annihilator right ideals is that R is prime Coldie ring. \Ve now prove 

TIIEOREM 3.3. If the lattice of dosed right (or fc$t) ideals of H has either 

chaiu rendition then R has generalized polynomial identity oz’ep C ~3 R has a 
polynomial identity. 

Proof. Assume that R has a generalized polynomial identity over C. 
Since e@, ei2 = ej are obviously closed right ideals of Q,, we get by our 
hypothesis that Q = Hom,( c’, I;-) can have at most a finite set of orthogonal 
idempotents and hence Q is simple Artinian. But we also know that I) is 
finite-dimensional over its center (and hence has polynomial identity). So 0 
satisfies a polynomial identity. This proves the theorem. 

4. if7e now show that a prime ring with a generalized polynomial 
identity does not possess nil one-sided ideals. It is appropriate to mention 
here, however, that there may exist nil subrings which are not even locally 
nilpotent as against the result for prime rings with polynomial identities 
that nil subrings are nilpotent. 
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THEOREM 4.1. If R has a generalized polynomial identity ocer C therl R 
has no nonzero nil one-sided ideals. 

Proof. Let A be a nil right ideal in R. If A f 0, d contains a uniform 
right ideal U, since R is a Johnson ring. It is well known that 
K = Hom,(U, U) is an integral domain. Furthermore the mapping 
o : 1: ---• K in which u ---f /;, where tU is a left multiplication by u is a ring 
homomorphism. Since oU is a nil left ideal in the integral domain K, oL; p: 0. 
But then C” =: 0, a contradiction. Hence iz -= 0, proving the theorem. 

COROLLARY 4.2. There does not exist a simple nil Gig R(R’ # 0) satisfyiq 
a ,generalized polynomial identity oz’er the center qf Horn,(R) R). 

lifter having known Corollary 4.2, a natural question is: Does there exist a 
nontrivial simple radical ring R satisfying a generalized polynomial identity 
(nontrivial) over the center of Hom,(R, R)? The answer is in the negative 
as the following argument shows. If R2 #- 0, R is a prime ring and Martindale 
theorem gives RC has nonzero socle, where C is the center of Hom,(R, R). 
But RC is clearly a nonzero ideal of R and hence RC -7: R. Hcncc R cannot 
he a radical ring. ‘IVe may restate this in 

THEOREM 4.3. There does flat exist a nontkial simple radical ring R 
safis~j@ a generalized polynomial identity ovey the center of Hom,(R, R). 

5. It is known [2] that a primitive ring has a nonzero socle if there 
exists a nonzero one-sided ideal with j-pivotal monomial, in particular, a 
polynomial identity in which case this result is also a consequence of a more 
general theorem of Amitsur [l] for primitive algebras with a generali,zed 
polynomial identity. In this section we prove a similar result for prime rings. 

THEOREM 5.1. R is a special Johnson ring with a norlzero socle ;ff eaclz 
nonnil right (OY left) ideal contains a nonzeyo idempotent and there exists a 
nonzero one-sided ideal with a polynomial identity. 

Proof. Let A be a nonzero right ideal of R with a polynomial identity 
and ((A) be the left annihilator of iz in d. Then /I//(A) is a prime ring 
with a polynomial identity. This shows that A cannot be nil. Otherwise 
-4 = /(A) and hence A2 = 0, a contradiction. The argument, in fact, proves 
that if B is any right ideal contained in il then B cannot be nil. Then by 
hypothesis we can construct a descending chain of annihilator right ideals 
of R contained in A, namely, 

e,R 3 e,R 3 e,R II ... 3 ... . 

This chain of right ideals modulo G(A) should terminate since a/e(J) 
is a prime ring with a polynomial identity. But then there exists idempotents 
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ej, efrl . such that e,R 3 e, ,R and (e, e, , J% 0. ‘l’his yields e, = e,-,e, . 
Hence e,R e (, leiR C eiilR, giving that e,R = e, ,IR. This proves that A 
contains a minimal right ideal of R, completing the proof of sufficiency. 
The necessitv follows from Theorems 2.1 and 3.1 and the fact that in a 
prime ring with nonzero sock each nonzero right ideal contains a nonzcro 
idempotent. 
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