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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Transversality of stable and unstable manifolds of equilibria plays an
important role in the qualitative study of dynamical systems. In particular,
it is closely related to structural stability properties. For example, a
gradient flow on a finite dimensional space is known to be structurally
stable (qualitatively intact under small perturbations of the vector field),
provided all its equilibria are hyperbolic and their stable an unstable
manifolds intersect transversally (see [Pali, Pali-S, Pali-M]; see also [Sh]
for more recent results and references). By theorems of Kupka and Smale,
it is known that a generic finite-dimensional vector field enjoys both hyper-
bolicity of all equilibria and transversality of their stable and unstable
manifolds (see [Pali-M, Rob, Ta, Ku-O]).

Structural stability has also been studied for several classes of dissipative
infinite-dimensional dynamical systems. As a rule, one investigates struc-
tural stability of the flow restricted to a compact set, usually the attractor,
rather than the flow in the original state space (an exception can be found
in [Lu2]; see also the related papers [Bat-L, Lu1, Ko]). Here, too, hyper-
bolicity of equilibria and transversality of their stable and unstable mani-
folds guarantee the structural stability of gradient flows (see [Hal-M-O]).
It is natural to ask whether these properties are generic in the considered
class of dynamical systems. To be more specific, consider the Dirichlet
problem for the reaction�diffusion equation,

ut=2u+ f (x, u), t>0, x # 0, (1.1)

u=0, t>0, x # �0. (1.2)

Here 0 is a bounded domain in RN with smooth boundary and f is a
sufficiently regular function on 0� _R. Problem (1.1), (1.2) defines a local
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semiflow on an appropriate Banach space, for example, the Sobolev space
W 1, p

0 (0) with p>N (see [He1, Am, Lun2, Da-K]). This semiflow is
gradient-like: the energy functional

. [ |
0

( 1
2 |{.(x)| 2&F(x, .(x))) dx,

where F(x, u) is the antiderivative of f (x, u) with respect to u, decreases
along nonconstant trajectories.

It is relatively easy to prove that generically in a C r topology (r�1) all
equilibria of (1.1), (1.2) are hyperbolic (see Section 3). As the transversality
of stable and unstable manifolds is concerned, a remarkable property is
found if N=1. In this case, transversality always occurs��for any equation
and any two hyperbolic equilibria (see [He2, An]). This fact is closely
related to the nodal properties of solutions and the Jordan curve theorem
in the x, t plane.

In higher space dimensions, the situation is quite different. Stable and
unstable manifolds of hyperbolic equilibria can intersect nontransversally
(see [Pol2, Pol3]). One of the main objectives of the present paper is to
prove that generically this cannot happen.

To formulate the result precisely, let k be a positive integer and let G
denote the space of all Ck functions f : 0� _R � R endowed with the C k

Whitney topology. This is the topology in which the collection of all the
sets

[ g # G : |Dif (x, u)&Dig(x, u)|<$(u), i=0, ..., k, x # 0� , u # R],

where $ is a positive continuous function on R, forms a neighborhood
basis of an element f. Recall that G is a Baire space: any residual set (a
countable intersection of open and dense sets) is dense in G (see [Go-G]).

Our main result reads as follows.

Theorem 1.1. There is a residual set GMS in G such that for any
f # GMS all equilibria of (1.1), (1.2) are hyperbolic and if .&, .+ are any
two such equilibria then their stable and unstable manifolds intersect
transversally:

Wu(.&) &| Ws(.+).

We remark that the assertion remains valid if instead of the Whitney
(strong) topology one considers the weak Ck topology on G. The same
proof works in this case (the arguments are always independent of the
behaviour of functions f outside a compact set in 0� _R). The proof can
also be easily adapted to other boundary conditions (Neumann, Robin).
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The method of our paper is based on a study of parabolic differential
operators, such as the operator

u [ ut&2u& f (x, u), (1.3)

acting on an appropriate space of functions defined for all t # R. The basic
idea is to formulate the transversality of stable and unstable manifolds in
terms of regular values of this operator and then apply a parametrized
transversality theorem. Much of the underlying technical work will be done
in the context of an abstract parabolic equation with parameter. We derive
sufficient conditions for transversality of the stable and unstable manifolds
of equilibria to be generic with respect to the parameter. We have taken
some care to formulate these results in a way suitable for applications in
other classes of parabolic (or ordinary) differential equations.

With abstract sufficient conditions for transversality at hand, our main
concern becomes their verification for problem (1.1), (1.2), where f is
viewed as a parameter. This is perhaps the most interesting part��the core
of our paper. Nodal properties of solutions of parabolic and elliptic
equations play an important role in these considerations.

The method using differential operators, such as (1.3), has already been
used in various contexts. For example, it has been employed in the study
of global (homoclinic and heteroclinic) bifurcations. In particular, let us
mention the work of Hale and Lin [Hal-L] on delay equations which con-
tains many ideas and refined results in this direction. For other applica-
tions of this method see also [Palm, Pe, Bl, Zh, Sa, Sc] and references
therein. It is also of interest to notice that in the finite-dimensional context
a sufficient condition for generic transversality that is similar to ours (cf.
condition (h5)(c) in Theorem 4.c.1) was developed, from another point of
view in [Rob].

The Morse�Smale property of partial differential equations has been
studied by other authors, but the results obtained up to now (and known
to us) are in some way related to the one-dimensional reaction�diffusion
equations, and to the theorem of Henry and Angenent mentioned above.
For example, the Morse�Smale structure is preserved by some small
singular perturbations of a 1D equation, as are thin domain problems (see
[Hal-R]), 1D hyperbolic equations with large damping [Mo-S], and
various discretizations of the equation (see [Fu-O, Ol-O-S, Ei-P]).
Another result of this sort can be found in [Pol2]. As shown there, under
some positiveness assumptions, one can prove transversality for equations
on a ball using the fact that the solutions asymptotically behave like
solutions of a 1D (radial) problem.

In our approach the nonlinearity plays the role of a parameter with
respect to which we prove the genericity. A natural other parameter that
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could be considered is the domain 0. In [He3], Henry proves that hyper-
bolicity of all equilibria is a generic property of (1.1), (1.2) with respect to
domain perturbation (with the nonlinearity fixed). It is likely that the same
is true of the transversality of stable and unstable manifolds. This ought to
be the subject of a future study. There is certainly good motivation to look
at this problem more closely. In particular, if equations with a special
structure are to be dealt with, the genericity with respect to the non-
linearity many fail (this actually happens if 0 is the ball and f is radial in
x: f = f ( |x| , u), see [Pol2]) and to retain it one has to allow for domain
perturbations.

The paper is organized as follows. In Section 2, we give a version of
abstract transversality theorem that we repeatedly use in the paper.

In Section 3, we study the equilibria of (1.1), (1.2). We prove that generi-
cally all the equilibria are hyperbolic and the linearization at each of them
has only simple eigenvalues.

Section 4 is fully devoted to abstract parabolic equations and generic
(with respect to a parameter) transversality of their stable and unstable
manifolds.

In Section 5 we prove Theorem 1.1.

Frequently Used Notation. If X is a Banach space, we use & }&X to
denote its norm. We omit the subscript if there is no danger of confusion.
For a C 1 map F, DF(z)v denotes the derivative of F at a point z in the
direction v. We use a subscript, for example DzF(z, *)v, to denote the
partial derivative. DkF(z) denotes the k th order derivative of F at z.

If X, Y are Banach spaces, U is an open set in X, and r # N, we denote
by C r

b(U, Y) (Cb(U, Y) if r=0) the space of C r functions of U into Y
whose derivatives up to order r are bounded on U. It is a Banach space
with the norm

& f &C r
b(U, Y)=sup

u # U
max[& f (u)&, D1f (u)&, ..., &Drf (u)&]. (1.3)

By C r
b(U� , Y) we denote the closed subspace of C r

b(U, Y) consisting of func-
tions whose derivatives up to order r have a continuous extension to U� . If
X is finite-dimensional and U is bounded, we suppress the subscript
b: Cr(U� , Y)=C r

b(U� , Y). We write Cr(U� ) for Cr(U� , R).
By Cr, $(U, Y), r # N, $ # (0, 1], we denote the subspace of C r

b(U, Y)
consisting of the functions whose r-order derivative is $-Ho� lder continuous
on U. Its norm is given by

&u( } )&C r,$(U, Y)=&u( } )&Cr
b(U, Y)+ sup

x, y # U, x{ y

&Dru(x)&Dru( y)&Y

&x& y&X
.
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By L(X, Y) we denote the space of all bounded linear maps from X to
Y; L(X)=L(X, X).

Convention 1.2. When taking the intersection of Banach spaces X1 , X2 ,
we always assume that X=X1 & X2 is equipped with the norm

& }&X=& }&X1
+& }&X2

.

2. REGULAR VALUES AND THE TRANSVERSALITY THEOREM

In this section we formulate an abstract transversality theorem that is
applied at several places below.

We first recall a few definitions following [Ab-R]. A bounded linear map
L: X � Z between Banach spaces X, Z is said to be Fredholm if its range
R(L) is closed and both dim ker(L) and codim R(L) are finite; the index of
L is then the integer

ind(L)=dim ker(L)&codim R(L).

Let X, Z be Banach manifolds, and 8: X � Z be a C 1 map. A point z is
a regular value of 8 if for any x # 8&1(z) the derivative D8(x) is surjective
(onto T8(x) Z) and its kernel splits (has a closed complement in TxX). All
other points in Z are critical values of 8. We sometimes write 8 &| [!] to
express that ! is a regular value of 8. A subset in a topological space is
meager if it is contained in a countable intersection of closed nowhere
dense sets. The complement of a meager set is a residual set.

Theorem 2.1. Let X, Y, Z be smooth Banach manifolds, 8: X_Y � Z

a Cr map (r is a positive integer), and ! a point in Z. Assume that the
following hypotheses are satisfied:

(i) For each (x, y) # 8&1(!), Dx8(x, y): TxX � T!Z is a Fredholm
map of index less than r.

(ii) For each (x, y) # 8&1(!), D8(x, y): TxX_TxY � T! Z is
surjective.

(iii) One of the following properties holds

(a) The map (x, y) [ y: 8&1(!) � Y is _-proper, that is, there is a
countable system of subsets Vn/8&1(!) such that �n Vn=8&1(!) and
for each n the map (x, y) [ y: Vn � Y is proper (any sequence (or net)
(x& , y&) # Vn such that y& is convergent in Y, has a convergent subsequence
(subnet) with the limit in Vn .
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(b) X, Y are separable metric spaces.

Then the set of all y # Y such that ! is a regular value of 8( } , y) is residual
(hence dense) in Y.

The proof of this theorem and its stronger versions can be found in
[He3]. See also [Quin, Sa-T] for similar theorems.

In applications below, X and Y are always local manifolds (open sets in
Banach spaces) thus, in order to verify (a), one only needs to deal with
sequences.

Let us add the following simple fact, which will be useful below.

Lemma 2.2. Let X, Y, Z be Banach spaces, X_Y an open set in X_Y,
and (x0 , y0) a point in X_Y. Let 8: X_Y � Z be a C 1 map such that
Dx 8(x0 , y0) is Fredholm. If D8(x, y): X_Y � Z is surjective for (x, y)=
(x0 , y0) then the same is true for all (x, y) sufficiently close to (x0 , y0).

Proof. If X and Z are finite-dimensional, the result is elementary. One
can reduce the proof of the lemma to this elementary case using the
Lyapunov�Schmidt method (see [Cho-H] or [Sm, p. 175]). (The details
are given in [He3, Proof of Theorem 5.4], although the result is not stated
explicitly there.) K

3. GENERIC PROPERTIES OF EQUILIBRIA

In this section we prove that two properties of (1.1), (1.2), hyperbolicity
of equilibria and simplicity of eigenvalues of the linearization of (1.1), (1.2)
at any of its equilibria, are generic. At several places we use the following
well-known properties of elliptic operators. For any a( } ) # C(0� ) and
q # (1, �), the operator L: v [ 2v+a(x)v : W 2, q & W 1, q

0 (0) � Lq(0) has
finite-dimensional kernel (independent of q) and its range consists of
precisely those functions h that satisfy

|
0

v(x) h(x) dx=0 (3.1)

for any v # ker L. In particular, L is a Fredholm operator of index 0.
Further, any equilibrium (stationary solution) u of (1.1), (1.2) is contained
in C 2(0� ) and is a classical solution of the corresponding elliptic boundary-
value problem.

For brevity, we often omit 0 in the notation of Sobolev spaces. For
example, W 2, p=W 2, p(0).
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3.a. Hyperbolicity

Recall that an equilibrium u of (1.1), (1.2) is hyperbolic if the operator
v [ 2v+ fu(x, u(x))v : W 2, q & W 1, q

0 � Lq is an isomorphism (this property
is independent of q # (1, �)).

Theorem 3.a.1. There exists a residual set GH in G such that for any
f # GH all equilibria of (1.1), (1.2) are hyperbolic.

This theorem in different settings is proved in [Quit, Sa-T, Ry, Bab-V].
As the proof is rather simple, we include it here for completeness. We refer
the reader to [Br-C, He2, Pol1, Roc] for generic hyperbolicity results for
more specific classes of equations in one space dimension.

Proof. For n=1, 2, ... let GH
n denote the set of all functions f # G such

that each equilibrium u of (1.1), (1.2) with &u( } )&L��n is hyperbolic. We
prove that GH

n is open and dense in G. The intersection of these sets yields
a residual set with the required property.

It is obvious that for f to belong to GH
n the values of f (x, u) with |u|>n

are irrelevant. Openness of GH
n therefore follows from the following claim:

(C) If fk # G"GH
n , k=1, 2, ... and the sequences fk and �u fk converge

to f0 , �u f0 respectively, uniformly on 0� _[&n, n], then f0 � GH
n .

We prove (C). By definition of GH
n , there are sequences of C 2 functions

uk , vk such that &uk&L��n, &vk&L2=1,

2uk+ fk(x, uk)=0, x # 0, (3.a.1)

uk=0, x # �0, (3.a.2)

and

2vk+�u fk(x, uk(x))vk=0, x # 0,

vk=0, x # �0.

Let p>N, so that W 1, p
0 (0) /� C(0� ) by the Sobolev imbedding theorem.

By standard a priori estimates, the sequence uk is bounded in W 2, p. There-
fore, passing to a subsequence, we may assume that uk converges in W 1, p

0

to a function u0 which satisfies &u0&L��n. Applying to (3.a.1) the inverse
of the Laplacian (viewed as a bounded operator from L p to W 2, p & W 1, p

0 )
and taking the limits, one next finds that u0 is a solution of

2u0+ f0(x, u0)=0, x # 0,

u0=0, x # �0.
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Using similar arguments and passing to a further subsequence, one obtains
that vk converges in W 1, p

0 to a function v0 that satisfies

2v0+�u f0(x, u0)v0=0, x # 0,

v0=0, x # �0,

and &v0&L2=1. This readily implies f0 � GH
n .

We next prove the density of GH
n . Fix an arbitrary f # G. Choose an

auxiliary smooth function ': R � R with compact support that is identical
to 1 on the interval [&n&1, n+1]. We prove that in Cs(0� ) (for any
integer s�2) there exists a dense set of functions b for which the function
f (x, u)+b(x) '(u) belongs to GH

n . Clearly, this function is arbitrarily close
to f in G if b is close to 0 and the density of GH

n follows.
We are going to apply the transversality theorem to a map 8 defined as

follows. Let

X=[u # W 2, p & W 1, p
0 : &u&L�<n+1]

Y=Cs(0� ),

Z=L p.

(The topology on X is that induced from W 2, p.) For (u, b) # X_Y let

8(u, b)(x)=2u(x)+ f (x, u(x))+b(x) '(u(x))

=2u(x)+ f (x, u(x))+b(x) (x # 0).

Observe that X, Y are separable metric spaces and 8: X_Y � Z is of
class C 1. Moreover, Du8(u, b) coincides with the operator

v [ 2v+ fu(x, u(x))v : W 2, p & W 1, p
0 � L p. (3.a.3)

In particular, it is a Fredholm operator of index 0. It is further seen easily
that f (x, u)+b(x) '(u) belongs to GH

n , provided the operator (3.a.3) is an
isomorphism for any u # X such that 8(u, b)=0 (in other words, if 0 is a
regular value of 8( } , b)). To prove that this is the case for a dense (in fact
residual) set of functions b, we show that Theorem 2.1 applies to 8. As
mentioned above, the hypotheses (i), (iii)(b) of that theorem are satisfied.
We verify (ii). Let (u, b) # 8&1(0) and h # Z be arbitrary. We search for
v # W 2, p & W 1, p

0 , b� # Y such that

Du 8(u, b)v+Db 8(u, b)b� =h,
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that is,

2v+ fu(x, u(x))v+b� (x)=h(x), x # 0. (3.a.4)

This equation can be solved for v, provided b� is chosen such that h&b�
satisfies

|
0

(h(x)&b� (x)) vj (x) dx=0, i=1, ..., m, (3.a.5)

where v1 , ..., vm is a basis of ker(2+ fu(x, u)(x))) (cf. (3.1)). As the vi are
linearly independent, it is easy to see that the finite system of linear equa-
tions (3.a.5) has a solution b� # Y. This completes the proof. K

3.b. Simplicity of the Eigenvalues of Linearization

Given an equilibrium u of (1.1), (1.2), consider the eigenvalue problem

2v+ fu(x, u(x))v++v=0, x # 0, (3.b.1)

v=0, x # �0. (3.b.2)

It is well known (see [Uh], that if fu(x, u(x)) does not happen to fall to
an exceptional (meager) set of potentials in C(0� ) then all eigenvalues + are
simple. Our aim here is to prove that, generically with respect to
f # G, fu(x, u(x)) enjoys the latter property for any equilibrium u of (1.1),
(1.2). Later we prove a useful consequence of this result to the effect that
bounded solutions of (1.1), (1.2) approach their limit equilibria in the
direction of an eigenfunction, provided the nonlinearity is generic.

Recall that the eigenvalues of (3.b.1), (3.b.2) are all real, have finite
multiplicity and form a sequence +1<+2�+3� } } } approaching +�.
Moreover, there is an orthonormal basis of L2(0) consisting of the eigen-
functions of (3.b.1), (3.b.2).

Theorem 3.b.1. There exists a residual set GSE/G such that for any
f # GSE and for any equilibrium u of (1.1), (1.2) all eigenvalues of (3.b.1),
(3.b.2) are simple.

Proof. Let GSE
nm denote the set of all functions f # G such that for any

equilibrium u of (1.1), (1.2) with &u&L��n each eigenvalue of (3.b.1),
(3.b.2) with |+|�m is simple. We prove that GSE

nm is open and dense in G.
Then

GSE := ,
�

n, m=1

GSE
nm

is a residual set with the property as in the theorem.
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To prove the openness of GSE
nm , observe that for f # G one has f � GSE

nm if
and only if there exist u, v1 , v2 # W 2, p & W 1, p

0 and + # R that satisfy

2u+ f (x, u)=0, x # 0,

2vi+ fu(x, u(x))vi++vi=0, x # 0, i=1, 2,

&vi&L2=1, i=1, 2,

|
0

v1v2=0

and

&u&L��n, |+|�m.

One can use these equations and arguments similar to those in the proof
of Theorem 3.a.1 to prove the openness of GSE

nm . We omit the details.
We next prove the density of GSE

nm . Actually, we prove a stronger claim,
namely that

GSE
n = ,

�

m=1

GSE
nm

is dense in G.
Fix any f # G. We have to show that f can be approximated, arbitrarily

closely, by a function in GSE
n . Making an arbitrarily small perturbation of

f, we achieve that f # GH
n+1. Recall that GH

n+1 is the open and dense subset
of G consisting of all f 's such that any equilibrium u of (1.1), (1.2) with
&u&L��n+1 is hyperbolic (see the previous subsection). Making another
small perturbation in the open set GH

n+1 , we may in addition assume that
the restriction of f to the set 0� _[&n&1, n+1] is of class Cs (henceforth
we fix an integer s�3). We choose two auxiliary smooth functions
'1 , '2 : R � R with compact supports such that '1(u)#1 and '2(u)#u on
the interval [&n&1, n+1]. We prove that arbitrarily close to 0 in
Cs(0� )_C s(0� ), there exists a function b=(b1 , b2) for which f (x, u)+
b1(x) '1(u)+b2(x) '2(u) belongs to GSE

n .
Denote

U :=[u # W 2, p & W 1, p
0 : &u&L�<n+1].

This is an open set in W 2, p & W 1, p
0 (we still assume p>N). As proved in

the previous subsection, for f # GH
n+1 the map

u [ 2u+ f (x, u(x)): U � L p

has 0 as a regular value.
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We are going to apply the transversality theorem to a map 8 defined as
follows. Set

X=U_(W 2, p & W 1, p
0 "[0])_R,

Z=L p_L p,

and let Y be the set of all functions b=(b1 , b2) # Cs(0� )_C s(0� ) such that
f (x, u)+b1(x) '1(u)+b2(x) '2(u) belongs to GH

n+1 . It is easy to see that
X is open in W 2, p & W 1, p

0 _W 2, p & W 1, p
0 _R and Y is open in Cs(0� )_

Cs(0� ). Moreover, b=0 belongs to Y (because f belongs to GH
n+1). Both X

and Y are separable metric spaces (with the induced topologies). For
(u, v, +, b) # X_Y let 8(u, v, +, b) be the element of Z given by

8(u, v, +, b)(x)=\2u(x)+ f (x, u(x))+b1(x)+b2(x) u(x)
2v(x)+( fu(x, u(x))+b2(x)++) v(x) + .

It is easy to check that 8: X_Y � Z is of class C 2. We further claim that
8 has the following properties:

(a) If b is such that 8( } , b) &| [0] then the function f (x, u)+
b1(x) '1(u)+b2(x) '2(u) belongs to GSE

n .

(b) D(u, v, +)8(u, v, +, b) is a Fredholm of index 1 for any (u, v, +, b) #
8&1(0).

(c) D8(u, v, +, b) is surjective for any (u, v, +, b) # 8&1(0).

Observe that these properties imply the density of GSE
n . Indeed, (b) and (c)

justify an application of Theorem 3.a.1, which yields a residual set in U
consisting of functions b with the transversality property as in (a), thus
belonging to GSE

n . As 0 # U, this residual set contains an element arbitrarily
close to 0, thus f can be approximated by elements of GSE

n .
We prove the claim beginning with (b). Let (u, v, +, b) # 8&1(0); hence

2u+ f (x, u)+b1(x)+b2(x)u=0 (3.b.3)

2v+( fu(x, u(x))+b2(x)++)v=0. (3.b.4)

The kernel of the operator

L :=D(u, v, +)8(u, v, +, b) (3.b.5)

consists of those (u� , v� , +� ) # W 2, p & W 1, p
0 _W 2, p & W 1, p

0 _R that satisfy

2u� +( fu+b2(x))u� =0,

2v� +( fu+b2(x)++)v� + fuu vu� ++� v=0

139GENERIC MORSE�SMALE STRUCTURE



File: 505J 323412 . By:DS . Date:20:03:97 . Time:15:03 LOP8M. V8.0. Page 01:01
Codes: 2427 Signs: 1306 . Length: 45 pic 0 pts, 190 mm

(we have omitted the argument (x, u(x)) of f and its derivatives). By defini-
tion of Y, u is a hyperbolic solution of (3.b.3). Therefore u� =0 and

2v� +( fu+b2(x)++)v� =&+� v.

As v is an eigenfunction corresponding to + (see (3.b.4) and recall that
v{0 by the definition of X), by (3.1), this forces +� =0 and v� must be an
eigenfunction corresponding to + as well. On the other hand, if v� is such
an eigenfunction then (0, v� , 0) obviously belongs to ker L. Thus

dim ker L=m,

where m is the multiplicity of the eigenvalue +.
Next we find the range of L. Consider the following subspaces of Z:

Z1=[( g, h) # Z : h=0], Z2=[( g, h) # Z: g=0].

As 2+ fu+b2(x) is surjective (u is hyperbolic), we have

Z1/R(L).

Now R(L) & Z2 consists of exactly those (0, h) # Z for which there are v�
and +� such that

2v� +( fu+b2(x)++)v� =&+� v+h.

A necessary and sufficient condition for h is that it be L2-orthogonal to all
solutions of

2w+( fu+b2(x)++)w=0, x # 0,

w=0, x # �0, (3.b.6)

|
0

wv=0.

Thus

R(L)=Z1� (R(L) & Z2)

={( g, h) # Z : |
0

hwi=0, i=1, ..., m&1= ,

where w1 , ..., wm&1 is a basis of the space of solutions of (3.b.6). We see
that R(L) is closed and has codimension m&1. Summarizing, L is
Fredholm and ind L=m&(m&1)=1.

Now we prove (a). First observe, that the map 8 is defined in such a
way that 8(u, v, +, b)=0 if and only if u is an equilibrium of (1.1), (1.2)
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with f (x, u) is replaced by f (x, u)+b1(x) '1(u)+b2(x) '2(u)), &u&L�<
n+1, and + is an eigenvalue of the corresponding linearized problem
(3.b.1), (3.b.2) with the eigenfunction v.

Assume that 8( } , b) &| 0. This means that for any (u, v, +, b) # 8&1(0) the
map L defined in (3.b.5) is surjective. As we have proved above, codim
R(L)=m&1, where m is the multiplicity of the eigenvalue +. Therefore we
must have m=1, that is, + is simple. This implies that the function
f (x, u)+b1(x) '1(u)+b2(x) '2(u) belongs to GSE

n as claimed.
Finally we prove (c). Fix any (u, v, +, b) # 8&1(0). We have to prove that

given (h, g) # Z, there are u� , v� # W 2, p & W 1, p
0 , +� # R and b� =(b� 1 , b� 2) #

Cs(0� )_C s(0� ) such that

2u� +( fu+b2(x))u� +b� 1(x)+b� 2u(x)= g,
(3.b.7)

2v� +( fu+b2(x)++)v� + fuuvu� ++� v+b� 2v(x)=h.

Set +� =0 and b� (x)=(b� 1 , b� 2)=(&a(x) u(x), a(x)), where a(x) is a function
in C s(0� ) to be determined later. (Note that u # C s(0� ), by elliptic regularity,
since u is an equilibrium of an equation with a Cs nonlinearity.) Equations
(3.b.7) now reduce to

2u� +( fu+b2(x))u� = g, (3.b.8)

2v� +( fu+b2(x)++)v� =&fuuvu� &av+h. (3.b.9)

Let u� be the unique solution of (3.b.8) (remember that the equilibrium u is
hyperbolic). We need to make a choice of a(x) such that (3.b.9) has a solu-
tion v� # W 2, p & W 1, p

0 . Equivalently, a(x) should be chosen in such a way
that

|
0

wiva+|
0

wi ( fuuvu� &h)=0, i=1, ..., m, (3.b.10)

where w1 , ..., w& is a basis of ker(2+ fu+b2(x)++). Observe that the func-
tions vw1 , ..., vw& are linearly independent because w1 , ..., w& is basis and
v�0 on any open set. The latter follows from the unique continuation for
elliptic equations (see [Mi]), as v{0. It is therefore easy to see that the
finite system of linear equations (3.b.10) has a solution a # Cs(0� ) (for
example, choose a as an appropriate linear combination of the Cs functions
vwi). This completes the proof of (c) and thereby the proof of the
theorem. K

It will be useful to remember the specific way in which we perturbed the
nonlinearity in the above proof:
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Lemma 3.b.2. Given any f # GH
n+1 , there exists (b1 , b2) # Cs(0� )_Cs(0� ),

arbitrarily close to 0, such that the function f (x, u)+b1(x)+b2(x)u belongs
to GSE

n .

Note that f (x, u)+b1(x)+b2(x)u has the same restriction to 0� _[&n, n]
as (and therefore belongs to GSE

n together with) the function f (x, u)+
b1(x) '1(u)+b2(x) '2(u) in the above proof.

4. TRANSVERSALITY OF INVARIANT MANIFOLDS
FOR ABSTRACT EQUATIONS

In this section we consider abstract parabolic equations involving a
parameter and discuss transversality of stable and unstable manifolds of
their equilibria. We derive sufficient conditions under which transversality
is a generic property with respect to the parameter. On the way towards
this goal, we first collect a few results on the properties of linear parabolic
operators acting on spaces of functions on unbounded intervals (Subsec-
tion 4.a). Then we consider an abstract nonlinear parabolic equation
(without parameter) and characterize the transversality of its stable and
unstable manifolds in terms of the corresponding parabolic operator and
its regular values (Subsection 4.b). Finally, in Subsection 4.c, we apply the
transversality theorem to an operator associated with a nonlinear parabolic
equation with parameter.

Throughout the section we assume the following hypothesis.

(A) A is a sectorial operator on a (real) Banach space X such that
Re *>0 for any * # _(A).

See [Am, Da-K, He1, Lun2, Paz] for a general background on sectorial
operators and the corresponding analytic semigroups e&At.

For :�0 we denote by X: the domain of the fractional power A:

equipped with the norm

&x&X :=&A:x&X .

Recall that each X: is a Banach space, X 0=X, X 1=D(A), and X ; is
continuously and densely imbedded in X: if ;>:, the imbedding being
compact if A&1 is compact.

By X* we denote the dual space of X and by A* the adjoint operator of
A. We use ( } , } ) to denote the duality pairing between X* and X:

(v, �)=�(v) (� # X*, v # X).
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Equations we consider in this section are all of the form

ut+Au= f (t, u), (4.1)

where f is a function from an open set R_G in R_X: into X, such
that both f and fu are continuous (actually, we only consider functions
linear in u or independent of t). By a mild solution of (4.1) on an interval
[t0 , t1) we mean a function u # C([t0 , t1), X) & C((t0 , t1), X:) such that
u(t) # G (t # [t0 , t1)), t [ f (t, u(t)) is in L1((t0 , t1), X) and

u(t)=e&Atu(t0)+|
t

t0

e&A(t&s)f (s, u(s)) ds (t # [t0 , t1)).

It can be proved (see the above references) that for any u0 # G there is a
unique mild solution u(t, t0 , u0) on an interval [t0 , t1) with u(t0)=u0 and
this solution is in C([t0 , t1), X:).

If f is linear in u and G=X: then u(t, t0 , u0) is defined for all t�t0 and
it is linear in u0 . Moreover, for t>t0 , u0 [ u(t, t0 , u0) extends to a
bounded linear operator from X to X:. This gives a unique mild solution
even for any u0 # X. (See [Lun2, Theorem 7.1.5] for a more general discus-
sion of such existence results.)

If f is locally Ho� lder continuous in t (in particular, if it is independent
of t) then the mild solution u is classical: u # C 1((t0 , t1), X) & C((t0 , t1), X 1)
and (4.1) is satisfied for any t # (t0 , t1). If u(t0)=u0 # X 1, then
u # C 1([t0 , t1), X) & C([t0 , t1), X 1) and the equation is satisfied at t0 as
well.

Below, a solution always refers to a classical solution; we stress if only
mild solutions are to be considered.

A solution (mild solution) on an unbounded interval J is a continuous
function that is a solution (mild solution) on each bounded subinterval.

4.a. Fredholm Parabolic Operators and Exponential Dichotomy

Consider a linear equation

vt+C(t)v=0, (4.a.1)

where C(t)=A+B(t) and B(t) satisfies the following hypothesis:

(BC) B(t) # L(X:, X) (t # R) and the map t [ B(t) belongs to
Cb(R, L(X:, X)).

Often we shall need the following stronger hypothesis:

(BH) The map t [ B(t) belongs to C 0, $(R, L(X:, X)) for some
$ # (0, 1].
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Our motivation to study (4.a.1) comes from nonlinear autonomous
equations; (4.a.1) is obtained by linearization along a heteroclinic solution.
Such a linear variational equation has the additional property that C(t) has
limits as t � \�. If the limits are hyperbolic operators, this reflects in the
fact that (4.a.1) has exponential dichotomies on each of the intervals
(&�, 0] [0, �) (cf. Lemma 4.a.12 below). In this subsection, we collect
some consequences of the presence of dichotomies that will be useful in the
sequel. Most of these consequences are analogs or modifications of results
existing in the literature (we give references below) and, except for some
technicalities and rearrangements, we hardly make any contribution to
them.

Let T(t, s) # L(X), t�s, denote the evolution operator of (4.a.2), that is,
for any v0 # X, v(t)=T(t, s)v0 is the mild solution of (4.a.2) on (s, �)
satisfying the initial condition v(0)=v0 . One has

T(t, {) T({, s)=T(t, s), T(t, t)=I (t�{�s), (4.a.2)

where I is the identity on X (below we also use I to denote the identity
on X*).

Definition 4.a.1. We say that T(t, s), t�s, admits exponential dicho-
tomy on an interval J with exponent #>0 and constant M>0 if there is a
family P(t), t # J, of continuous projections on X such that the following
properties hold for any t, s # J:

(i) T(t, s) P(s)=P(t) T(t, s) (t�s).

(ii) T(t, s)|R(P(s)) is an isomorphism of R(P(s)) onto R(P(t)) (t�s).

(iii)

(iv)

&T(t, s)(I&P(s))&L(X)�Me&#(t&s) (t�s).

&T(t, s) P(s)&L(X)�Me&#(s&t) (t<s).

Here T(t, s): R(P(s)) � R(P(t)) (t<s) stands for the inverse of the
isomorphism T(s, t)|R(P(t)) .

Now consider the adjoint equation of (4.a.2),

ws&C(s)* w=0. (4.a.3)

Here C(s)*=A*+B(s)* is the adjoint of C(s).
For �0 # X* define the function �: (&�, t] � X* by

�(s)=T(t, s)* �0 . (4.a.4)
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We call the function �(s) defined by (4.a.4) the weak* solution of (4.a.3)
satisfying the initial condition �(t)=�0 . By a weak* solution of (4.a.3) on
R we mean a function �� (s) that satisfies

�� (s)=T(t, s)* �� (t) (t, s # R, t�s).

These are the only solutions of (4.a.3) that we consider in this paper. Just
for completeness we add the following remarks on weak* solutions (these
remarks will not be needed below): If (BH) holds with $>: then �(s)
is a classical solution of (4.a.3) on (&�, t); that is, �(s) # D(C(s)*)
(s # (&�, t)), �: (&�, t) � X* is of class C 1 and (4.a.3) is satisfied for
s<t (see [He1, Theorem 7.3.1]). In general, one has

�(s) � �0 , as s � t&, (4.a.5)

in the weak* topology only. However, if D(A*) is dense in X* (which is
the case if X* is reflexive) then �(s) � �0 , as s � t& in the norm of X*.
This follows from the fact that if A* has dense domain then it is sectorial
(see [He1, Paz]); hence the existence�uniqueness theory (of [Paz], e.g.)
can be applied to (4.a.3). Finally, we note that even if A* is not dense one
can prove that � defined by (4.a.4) is the unique classical solution of (4.a.3)
on (&�, t) satisfying (4.a.5) in the weak* topology.

Denote

T� (s, t)=T(t, s)* (t�s).

Definition 4.a.2. We say that the family T� (s, t), t�s, admits reverse
exponential dichotomy on an interval J with exponent # and constant M if
there is a family P� (s), s # J, of continuous projections on X* such that the
following properties hold for any t, s # J:

(i) T� (s, t) P� (t)=P� (s) T� (s, t) (t�s).

(ii) T� (s, t)|R(P� (t)) is an isomorphism of R(P� (t)) onto R(P� (s)) (t�s).

(iii)

(iv)

&T� (s, t)(I&P� (t))&L(X*)�Me&#(t&s) (t�s).

&T� (s, t) P� (t)&L(X*)�Me&#(s&t) (t<s).

Here T� (s, t): R(P� (t)) � R(P� (s)) (t<s) stands for the inverse of the
isomorphism T� (t, s)|R(P� (s)) .

Lemma 4.a.3. If T(t, s) admits exponential dichotomy on an interval J
with projections P(t), exponent # and constant M, then T� (s, t)=T(t, s)*
admits reverse exponential dichotomy on J with the same exponent and
constant and with the projections P� (t)=P(t)*.
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Proof. Clearly, P(s)* is a continuous projection on X*.
We only prove that the property (ii) in Definition 4.a.2 is satisfied; (i),

(iii), and (iv) are straightforward to verify using standard properties of
adjoint operators.

First recall that for any Q # L(X) one has

ker Q*=R(Q)=

(4.a.6)
ker Q= =R(Q*),

where

X =
0 =[� # X* : (x, �) =0 for each x # X0] (X0/X),

=Y0=[x # X : (x, �)=0 for each � # Y0] (Y0/X*)

(see, e. g., [Ka, Sect. III.5.4.]). If Q is a projection then one has in addition

R(I&Q*)=ker Q*=R(Q)=

(4.a.7)
R(I&Q)=ker Q= =R(Q*).

By (4.a.6), (4.a.7), and property (ii) in Definition 4.a.1,

ker(T(t, s)* P(t)*)=R(P(t) T(t, s))==R(P(t))==R(I&P(t)*).

Hence T(t, s)* is 1�1 on R(P(t)*) (t�s).
Now fix any t�s and

� # R(P(s)*)=ker(I&P(s)*)==R(I&P(s)).

Set

!=(T(s, t) P(t))* �,

where T(s, t): R(P(t)) � R(P(s)) (s�t) is as in Definition 4.a.1(iv). Then
for any x # R(I&P(t))

(x, !)=(T(s, t) P(t) x, �) =0;

hence

! # R(I&P(t))==ker(I&P(t)*)=R(P(t)*).

Furthermore, for any x # X

(x, T(t, s)* !)=(T(s, t) P(t) T(t, s)x, �)

=(P(s)x, �) =(x, �)
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(the last equality holds because � # =R(I&P(s))). It follows that

�=T(t, s)* !.

This proves that T(t, s)* maps R(P(t)*) onto R(P(s)*); hence it is an
isomorphism, as claimed. K

We are now going to examine a parabolic differential operator asso-
ciated with Eq. (4.a.1). We choose appropriate Banach spaces to accom-
modate this operator. Recall Convention 1.2 according to which we take
the norm of the intersection of Banach spaces.

Let

E=C 1, $(R, X) & C 0, $(R, X 1),

Z=C 0, $(R, X).

Consider the linear operator L defined for u # E by

L(u( } ))(t)=ut(t)+C(t) u(t), t # R. (4.a.8)

If (BH) holds then obviously L # L(E, Z). In the next theorem, we show
that, under additional conditions, L is a Fredholm operator. Similar
theorems for ordinary and functional differential equations can be found in
[Palm, Li1, Hal-L] and references therein. For parabolic PDEs, Peterhof
[Pe] has proved a theorem that is essentially the same as ours except that
the assumptions in [Pe] are slightly more restrictive. We remark that, as
noted in [Pe], it is erroneous to take E� =Cb(R, X 1) & C 1

b(R, X), Z� =
Cb(R, X) for the domain and the target space of L as one could be tempted
(cf. [Bl, Zh]). Indeed, h # Z� does not guarantee that a mild solution of
vt+C(t)v=h(t) is in E� , unless X, A enjoy the property of maximal
regularity [Lun 1].

Theorem 4.a.4. Let (BH) be satisfied. Assume that T(t, s), t�s admits
exponential dichotomies on each of the intervals (&�, 0], [0, �) and
let P&(t), P+(t) and #&, #+ denote the corresponding projections and
exponents, respectively. Assume that the ranges R(P&(0)), R(P+(0)) are
finite-dimensional.

Then (4.a.8) defines a Fredholm operator L: E � Z with index

dim(R(P&(0))&dim(R(P+(0)).

A function h # Z belongs to R(L) if and only if

|
+�

&�
(h(s), �(s)) ds=0 (4.a.9)
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for any weak* solution �(s), s # R, of the adjoint equation (4.a.3) such that
&�(s)&X* , s # R, is bounded.

Remark 4.a.5. If R(P&(0)) is finite dimensional then so is any
R(P&(t)) as these spaces are isomorphic by the definition of exponential
dichotomy. Similarly, R(P+(t)) is finite-dimensional if R(P+(0)) is. These
properties are automatically satisfied in A has compact resolvent. This
follows from property (ii) in the definition of exponential dichotomy and
the fact that for t>s, T(t, s) is a compact operator on X (it is bounded
from X to X:).

We prepare the proof of Theorem 4.a.4 by several lemmas. For future
purposes, some of them are stated in a more general form than needed for
the proof.

We start with a basic time regularity.

Lemma 4.a.6. Let h: R � X be continuous and let v be a mild solution of

vt+Av=h(t), t # R. (4.a.10)

(i) If h # C 0, �(R, X) for a � # (0, 1) and v # Cb(R, X) then
v # C 1, �(R, X) & C 0, �(R, X 1) and there is a constant c=c(A, �) such that

&v&C1, �(R, X) & C0, �(R, X1)�c(&v&Cb(R, X)+&h&C0, �(R, X)).

(ii) If h, v # Cb(R, X) then v # C 0,1&�(R, X �) for � # (0, 1) and there is
a constant c=c(A, �) such that

&v&C 0, 1w�(R, X�)�c(&v&Cb(R, X)+&h&Cb(R, X)).

Proof. (i) By Lemma IX.1.28 of [Ka] (see also [Lun2, Section 4.3.1]),
the function t [ Av(t) : R � X is locally �-Ho� lder continuous. Furthermore,
the proof of this lemma in [Ka] and standard semigroup estimates (cf. [Ka,
Remark IX.1.20]) yield

&Av( } )&C 0, �([{, �), X)�c(&v({&1)&X+&h&C 0, �(R, X)) ({ # R).

In view of the boundedness of &v(s)&X , as assumed in the lemma, we thus
obtain that

&v&C 0, �(R, X1)=&Av&C0, �(R, X)�c(&v&Cb(R,X)+&h&C0, �(R, X)).

Using this and Eq. (4.a.10), we further obtain that v # C 1, �(R, X) and the
estimate in (i) holds.
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(ii) Due to (A), there are constants C, |>0 such that

&e&Atx&X ��ce&|tt&� &x&.

One obtains (ii) from this estimate and the variation of constants formula
as in [Lun2, proof of Proposition 4.2.1] (see also [Lun2, Theorem
4.4.7]). K

Lemma 4.a.7. Let (BC) be satisfied. Assume that T(t, s), t�s admits
exponential dichotomies on each of the intervals (&�, 0], [0, �) and let
P&(t), P+(t) and #&, #+ denote the corresponding projections and expo-
nents, respectively. Let h: R � X be a continuous function such that for some
numbers %\ with |%\|<#\ the values lim supt � \� e%\ |t| &h(t)&X are both
finite. Then the following properties hold.

(i) A continuous function v: (&�, 0] � X is a mild solution of

vt+C(t)v=h(t), t<0 (4.a.11)

satisfying et#& &v(t)&X � 0 as t � &� if and only if

v(t)=T(t, 0)v&+|
t

0
T(t, s) P&(s) h(s) ds

+|
t

&�
T(t, s)(I&P&(s)) h(s) ds, for t�0, (4.a.12)

where v&=P&(0) v(0). Such a v satisfies

sup
t<0

e%& |t| &v(t)&X:�c1(&v&&X+sup
t<0

e%& |t| &h(t)&X), (4.a.13)

where c1 is a constant independent of h and v&.

(ii) A continuous function v: [0, �) � X is a mild solution of

vt+C(t)v=h(t), t>0 (4.a.14)

satisfying e&t#+ &v(t)&X � 0 as t � � if and only if

v(t)=T(t, 0)v++|
t

0
T(t, s)(I&P+(s)) h(s) ds

&|
�

t
T(t, s)(P+(s)) h(s) ds, for t�0, (4.a.15)
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where v+=(I&P+(0)) v(0). Such a v satisfies

sup
t>0

e%+t &v(t)&X:�c2(&v+&X:+sup
t>0

e%+t &h(t)&X), (4.a.16)

where c2 is a constant independent of h and v+.

Proof. An analogous statement for solutions on the whole real line
(rather than a halfline) is proved in [He1, Theorem 7.6.3]. One easily
modifies the arguments in [He1] to prove the above statements (i), (ii) (cf.
[He1, Exercises 7, 8, Sect. 7.6]). We note that in the proof of Theorem 7.6.3,
Henry actually works with mild solutions which happen to be classical due
to his regularity assumptions. K

A result similar to Lemma 4.a.7 for spaces with maximal regularity can
also be found in [Li2].

Lemma 4.a.8. Let the hypotheses of Lemma 4.a.7 be satisfied. If v is a
mild solution of

vt+C(t)v=h(t), t # R, (4.a.17)

such that e&|t| #\ &v(t)& � 0 as t � \� then for v&=P&(0) v(0), v+=
(I&P+(0)) v(0) (4.a.12), (4.a.15) are satisfied and

v+&v&=|
0

&�
T(0, s)(I&P&(s)) h(s) ds+|

�

0
T(0, s) P+(s) h(s) ds.

(4.a.18)

Conversely, if v is defined by (4.a.12), (4.a.15) with v& # R(P&(0)),
v+ # R(I&P+(0)) satisfying (4.a.18) then v is a mild solution of (4.a.17) and

sup
t<0

e%& |t| &v(t)&X :�c(&v(0)&X+sup
t<0

e%& |t| &h&X (4.a.19)

sup
t>0

e%+t &v(t)&X :�c(&v(0)&X :+sup
t>0

e%+t &h&X), (4.a.20)

where c is independent of h, v(0). Moreover, if (BH) is satisfied and h # Z

then v # E and it is a classical solution of (4.a.17).

Proof. The first implication follows directly from Lemma 4.a.7 ((4.a.18)
follows from the continuity of v at t=0).
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We prove the second implication. Assume that (4.a.12), (4.a.15), (4.a.18)
are satisfied. Observe that these formulas imply that

lim
t � 0&

v(t)= lim
t � 0+

v(t),

hence v: R � X is continuous. By Lemma 4.a.7, v is a mild solution of
(4.a.11) and (4.a.14). By the variation of constants for these equations, we
have

v(t)=T(t, 0) v(0)+|
t

0
T(t, s) h(s), t�0,

v(0)= lim
t � 0

v(t)=T(0, {) v({)+|
0

{
T(0, s) h(s), {<0.

These formulas combined give

v(t)=T(t, {) v({)+|
t

r
T(t, s) h(s), t�0>{;

hence v is a mild solution of (4.a.17). By (4.a.12), (4.a.15), v&=P&(0) v(0),
v+=(I&P+(0)) v(0). Using this and (4.a.13), (4.a.16), we obtain (4.a.19),
(4.a.20).

We prove the last statement. Assume (BH) holds and h # Z. Then v is a
classical solution of (4.a.17) and, by (4.a.19), (4.a.20),

v # Cb(R, X:).

We next show that v # C 0, $(R, X:). Fix any s # R. The function v� (t) :=
v(t+s)&v(t) is a solution of

v� t+C(t)v� =(B(t+s)&B(t)) v(t)+h(t+s)&h(t) (4.a.21)

and &v� (t)&X: is bounded. The right-hand side of (4.a.21) is locally Ho� lder
continuous and contained in Cb(R, X). Applying the above results (specifi-
cally, we use (4.a.19), (4.a.20) with %+=%&=0), we obtain

&v� (t)&X :�c4(&B( } )&C 0,$(R, L(X:, X)) &v&Cb(R, X:)+&h&C 0,$(R, X)) |s|$+c4 &v� (0)&X

=c5 |s|$+c4 &v(s)&v(0)&X: ,

where the constants ci are independent of s. Now, as v: R � X: is bounded
and locally Ho� lder continuous (actually, it is of class C 1),

&v(s)&v(0)&X :�c6 |s|$,

with c6 independent of s. These estimates imply that v # C 0, $(R, X:).
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Using the latter property and (BH), we further see that the right-hand
side of

vt+Av=&B(t)v+h(t)

belongs to C 0, $(R, X). Therefore, by Lemma 4.a.6(i), v # E.
The proof is complete. K

Corollary 4.a.9. Assume that the hypotheses on T(t, s) of Lemma 4.a.7
and (BH) are satisfied. Let L # L(E, Z) be defined by (4.a.8). Then the map
v( } ) [ v(0) is an isomorphism of ker L onto R(P&(0)) & R(I&P+(0)). In
particular, ker L is finite-dimensional and

dim ker L=dim(R(P&(0)) & R(I&P+(0))). (4.a.22)

Proof. If v # ker L then, applying Lemma 4.a.8 with h=0, we obtain

v(0)=v&=v+,

hence v(0) # R(P&(0)) & R(I&P+(0)).
Formulas (4.a.12), (4.a.15) with h#0 imply that v#0 if v(0)=0, thus

v [ v(0) : ker L � R(P&(0)) & R(I&P+(0))

is 1�1. The second part of Lemma 4.a.8 implies that this map is surjective,
hence it is an isomorphism, as claimed. K

Lemma 4.a.10. Let the hypotheses of Lemma 4.a.7 on T(t, s) and (BC)
be satisfied. Then for each �0 # R(I&P&(0)*) & R(P+(0)*) there exists a
unique weak* solution �(s), s # R, of the adjoint equation (4.a.3) satisfying
�(0)=�0 , namely

�(s)=T� (s, 0)�0=T(0, s)* �0 (s�0), (4.a.23)

�(s)=T� (s, 0)�0 (s>0), (4.a.24)

where T� (s, 0) (s>0) is the inverse of T� (0, s)| R(P+(s)*)=T(s, 0)*| R(P+(s)*) (see
(ii) in Definition 4.a.2 and recall Lemma 4.a.3). This solution satisfies

&�(s)&X*�ce#&s &�0&X* (s�0),
(4.a.25)

&�(s)&X*�ce&#+s &�0&X* (s�0)

for some constant c independent of �0 and s. Furthermore, if �(s), s # R is
any solution of (4.a.3) such that &�(s)&X* is bounded then necessarily
�0=�(0) # R(I&P&(0)*) & R(P+(0)*) (hence (4.a.25) holds).
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Proof. Using T(t, s)*=T({, s)* T(t, {)* (t�{�s) it is easily seen that
the � defined by (4.a.23), (4.a.24) satisfies

�(s)=T(t, s)* �(t) (t�s), (4.a.26)

hence it is a weak* solution of (4.a.3). Lemma 4.a.3 and properties (iii),
(iv) in Definition 4.a.2 imply (4.a.25).

We next show that the weak* solution with �(0)=�0 # R(I&P&(0)*) &
R(P+(0)*) is unique. Due to linearity, we may assume �(0)=�0=0.
Then, by (4.a.26),

�(s)=0 (s�0).

From (4.a.6) and the definition of the reverse dichotomy it follows that for
s<t, �(s) # R(P(s)*) is possible only if �(t) # R(P(t)*). Taking s=0<t we
thus have

0=T(0, t)* �(t) and �(t) # R(P(t)*).

By property (ii) of the reverse dichotomy, this implies

�(t)=0.

The last statement of the lemma follows from the properties of the reverse
dichotomy. K

Proof of Theorem 4.a.4. Let L be defined by (4.a.8). By Corollary 4.a.9,
L has kernel of finite dimension given by (4.a.22). We now prove that
h # R(L) if and only if the following property holds:

(NS) K := ��
&� (h(s), �(s)) ds = 0 for any weak*

solution �(s), s # R, of (4.a.3) such that &�(s)&X* is
bounded.

By Lemma 4.a.10, any such � is given by (4.a.23), (4.a.24) with �0=�(0) #
R(I&P&(0)*) & R(P+(0)*) and satisfies (4.a.25). In particular the integral
is finite. Observe that

�(s) # R(I&P&(s)*)=R(P&(s))= (s�0)

�(s) # R(P+(s)*)=R(I&P+(s))= (s�0)

(cf. (4.a.7)). Thus

K=|
0

&�
( (I&P&(s)) h(s), �(s)) ds+|

�

0
(P+(s) h(s), �(s)) ds.
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Substituting (4.a.23), (4.a.24), we further obtain

K=|
0

&�
(T(0, s)(I&P&(s)) h(s), �0) ds

+|
�

0
(T(0, s)(P+(s)) h(s), �0) ds

=�|
0

&�
T(0, s)(I&P&(s)) h(s) ds+|

�

0
T(0, s) P+(s) h(s) ds, �0� .

(We have used (T(0, s) P+(s))*=T� (s, 0) P+(0)* (s>0) which can be
proved by arguments as in the proof of Lemma 4.a.3.) It follows that (NS)
holds if and only if

|
0

&�
T(0, s)(I&P&(s)) h(s) ds

+|
�

0
T(0, s)(P+(s)) h(s) ds # =(R(I&P&(0)*) & R(P+(0)*).

Now

=(R(I&P&(0)*) & R(P+(0)*))=R(P&(0))+R(I&P+(0)) (4.a.28)

(see [Ka, Theorem IV.4.8] and note that the sum in (4.a.28) is closed
because R(P&(0)) is finite-dimensional). It follows that (NS) holds if and
only if

|
0

&�
T(0, s)(I&P&(s)) h(s) ds+|

�

0
T(0, s)(P+(s)) h(s) ds=v+&v&

for some v& # R(P&(0)), v+ # R(I&P+(0)). Applying Lemma 4.a.8 we
conclude that (NS) is equivalent to h # R(L).

The following standard arguments now complete the proof. For
�0 # R(I&P&(0)*) & R(P+(0)*) let 9(s, �0) denote the unique weak*
solution � of (4.a.3) with �(0)=�0 . Define a functional l�0

on Z by

l�0
(h( } ))=|

�

&�
(h(s), 9(s, �0)) ds.

Then l�0
# Z*, �0 [ l�0

is linear and l�0
=0 if and only if �0=0. As we

have proved,

R(L)=[h # Z : l�0
(h)=0 for any �0 # R(I&P&(0)*) & R(P+(0)*)].
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It follows that R(L) is closed and

codim R(L)=dim(R(I&P&(0)*) & R(P+(0)*))

=codim(R(P&(0))+R(I&P+(0)))

(cf. (4.a.28)). We conclude that L is Fredholm of index

index L=dim ker L&codim R(L)

=dim(R(P&(0)) & R(I&P+(0)))

&codim(R(P&(0))+R(I&P+(0)))

=dim R(P&(0))&codim R(I&P+(0))

=dim R(P&(0))&dim R(P+(0)). K

To conclude the subsection, we recall two lemmas on roughness of
exponential dichotomies.

Lemma 4.a.11. Assume (BC) holds. Let J be an interval of the form
(&�, t0] or [t0 , �) and assume that the evolution operator of (4.a.1)
admits exponential dichotomy on J with projection P(t) and exponent #.
Then, given any =>0, there is a \=\(=, B( } )) such that for any B� #
Cb(J, L(X:, X) with &B� &B&Cb(J, L(X :, X)<\ the evolution operator of the
equation

ut+Au&B� (t)u=0

admits exponential dichotomy on J with projection P� (t) and exponent #~
satisfying

sup
t # J

&P� (t)&P(t)&L(X)<=

#&=<#~ .

We remark that the projection P� (t) is not unique, only its range (in case
J=(&�, t0]) or kernel (in case J=[t0 , �)) are uniquely determined.
This, of course, is a general property of dichotomies on halflines; one has
some freedom in choosing the projection.

Proof of Lemma 4.a.11. Lemma 4.a.11 is a standard result in the theory
of exponential dichotomy (see [Co, Palm, He1, Li1, Li2]) although in
parabolic equations it is usually formulated for classical solutions rather
than mild solutions. Dealing with mild solutions, one can easily adopt the
arguments of [Cho-L], which are used to prove existence of invariant
manifolds for nonautonomous equations. For linear equations the
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invariant manifolds are subspaces, X� u(t), t # (&�, t0]. The projection P� (t)
of X onto X� u(t) with kernel equal to ker P(t) has the properties in the
assertion for (&�, t0]). Arguments for [t0 , �) are analogous. We omit all
further details. K

For the next lemma, we need the following preparation. A sectorial
operator C on X is said to be hyperbolic if its spectrum _(C) does not inter-
sect the imaginary axis. In this case, _(C)=_1 _ _2 , where _1 , _2 are closed
subsets of the left and right open halfplanes in C, respectively, and _1 is
bounded. Let P # L(X) be the spectral projection of L associated with this
decomposition of the spectrum, that is, a projection commuting with C
such that _(C|R(P))=_1 and _(C| R(I&P))=_2 (cf. [Ka]).

By standard semigroup estimates, the evolution operator e&C(t&s), t�s,
admits exponential dichotomy on R with projections P(t)#P (cf. [He1,
Example 1, Section 7.6]).

Lemma 4.a.12. Assume (BC) holds. Further, assume that the limit

B(�)= lim
t � �

B(t) in L(X :, X)

exists and C(�)=A+B(�) is a hyperbolic operator. Let P(�) be the
corresponding spectral projection, as introduced above, and assume that
dim R(P(�))<�. Finally assume that for t>s the evolution operator
T(t, s) is injective and its range is dense in X. Then the evolution operator
(T(t, s) of (4.a.1) admits exponential dichotomy on [0, �) with a family of
projections P(t), t�0, satisfying

dim R(P(t))=dim R(P(�)). (4.a.29)

The same statement holds with � replaced by &� (and [0, �) replaced by
(&�, 0]).

Proof. Using the previous lemma, one obtains that T(t, s) has exponen-
tial dichotomy on some interval [t0 , �) with projection satisfying (4.a.29).
This dichotomy can now be extended to [0, �) as in [Li1, Lemma 2.3].
Similar arguments work for (&�, 0] with [Li1, Lemma 2.3] replaced by
[Li1, Lemma 2.4]. Note that the hypothesis of this lemma is satisfied due
to T(t, s) having dense range. K

4.b. Characterization of the Transversality of Invariant Manifolds

Consider the nonlinear equation

ut+Au= f (u), (4.b.1)

156 BRUNOVSKY� AND POLA� C8 IK



File: 505J 323429 . By:DS . Date:20:03:97 . Time:15:03 LOP8M. V8.0. Page 01:01
Codes: 2944 Signs: 2168 . Length: 45 pic 0 pts, 190 mm

where A is as in (A) and the nonlinearity satisfies

(F) f # C r
b(G, X), where G is an open convex set in X:, for some

: # [0, 1), and r�1.

In the whole subsection we assume that A has compact resolvent.
Recall a few definitions. An equilibrium e (stationary solution) of (4.b.1)

is said to be hyperbolic if the linearized operator A& f $(e) is hyperbolic.
For such an equilibrium, the unstable manifold of e, Wu(e), is the set all
u0 # G with the property that there exists a solution u(t) of (4.b.1) defined
for all t # (&�, 0] such that u(0)=u0 and u(t) � e as t � &�. The stable
manifold, Ws(e), is defined analogously with solutions on [0, �) con-
sidered instead. Both Ws(e) and Ws(e) are immersed C r submanifolds of
G/X:, provided the following condition is satisfied.

(IS) For any solution u(t) of (4.b.1) on an interval (t1 , t2), the evolu-
tion operator T(t, s) # L(X) of the linear variational equation

vt+Av& f $(u(t))v=0 (4.b.2)

is injective and its range is dense in X for any t1<s�t<t2 .

We remark that the injectivity of T(t, s) is equivalent to the backward
uniqueness for (4.b.2), while the condition on the range of T(t, s) is equiv-
alent to the injectivity of T(t, s)*, hence to the uniqueness for the adjoint
equation to (4.b.2),

&vt+(A& f $(u(t)))* v=0. (4.b.3)

There are classes of equations (in particular Eqs. (1.1), (1.2)) where both
these properties are known to be satisfied for any solution u(t). See [He1]
for a more detailed discussion and the proof of the fact that Wu(e) and
Ws(e) are Cr manifolds.

Hypothesis (IS) is assumed, together with (A), (F), and compactness of
A&1, throughout the subsection.

By m(e) we denote the Morse index of e:

m(e)=dim Wu(e).

It coincides with the dimension of the subspace in the spectral decom-
position for the operator A& f $(e) corresponding to the spectral set
[+ # _(A& f $(e)) : Re +<0]. Note that m(e)<� because A has compact
resolvent.

A heteroclinic solution of (4.b.1) is a solution u(t) defined for t # R that
converges, as t � \�, to equilibria e\. We also say that u(t) is a
hereoclinic solution from e& to e+, or that u(t) connects e& and e+.
Clearly, if e& and e+ are hyperbolic, then u(t) is a heteroclinic solution
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from e& to e+ if and only if u(t) # Wu(e&) & W s(e+) (t # R). We say that
u is a transverse heteroclinic solution if

Wu(e&) &| u(0) Ws(e+).

which means that Tu(0)Wu(e&) contains a closed complement of Tu(0)Ws(e+)
in X:. It is not difficult to see that this and condition (IS) imply

Wu(e&) &| u(t) Ws(e+) (t # R).

(It follows, for example, from Corollary 4.b.4.)
Note that we do not insist on e&{e+; homoclinic solutions are treated

simultaneously. In particular, if one proves that an (autonomous) equation
has all hereoclinic solutions transverse then there cannot be any homoclinic
solution.

We now prove several useful results leading to a sufficient condition for
the transversality of stable and unstable manifolds formulated in terms of
regular values for a parabolic operator. We start by a characterization of
the tangent spaces of the stable and unstable manifolds.

Lemma 4.b.1. Let e be a hyperbolic equilibrium of (4.b.1) and let #>0 be
such that

|Re +|>#, for each + # _(A& f $(e)). (4.b.4)

Let u(t) be a solution of (4.b.1) on (&�, t0] such that u(t0) # Wu(e). Then
a vector v0 # X : belongs to Tu(t0)W u(e) if and only if there is a mild solution
v(t) of (4.b.2) on (&�, t0] such that v(t0)=v0 and

&v(t)&X : e&#t � 0, as t � &�. (4.b.5)

Let u(t) be a solution of (4.b.1) on [t0 , �) such that u(t0) # Ws(e). Then
a vector v0 # X: belongs to Tu(t0)Ws(e) if and only if the mild solution v(t)
of (4.b.2) with v(t0)=v0 satisfies

&v(t)&X: e#t � 0, as t � �. (4.b.6)

See [Che-C-H, Appendix C] for the proof. Although dynamical systems
with discrete time are considered there, the present case is easily deduced
from the results of [Che-C-H].

Lemma 4.b.2. Let u be a solution of (4.b.1) such that u # Cb(R, X:) (in
particular this applies to heteroclinic solutions). Then

u # C 1, $(R, X) & C 0, $(R, X 1)

for any $ # [0, 1&:).
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Proof. By (F) and the assumption on u we have f (u( } )) # Cb(R, X).
Lemma 4.a.6(ii) applied to (4.b.1) gives u # C 0, $(R, X :) for $<1&:. It
follows that f (u( } )) # C 0, $(R, X) and therefore, by Lemma 4.a.6(i),
u( } ) # C 1, $(R, X) & C 0, $(R, X 1). (We remark, that one can now use boots-
trapping arguments to show that the conclusion holds for any $ # (0, 1) but
this is not needed below.) K

Lemma 4.b.3. Let u be a heteroclinic solution of (4.b.1) with limt � \�=e\,
where e&, e+ are hyperbolic equilibria. Then the evolution operator for the
linear variational equation (4.b.2) admits exponential dichotomies on each of
the intervals (&�, 0], [0, �). The projections P&(t), t�0, and P+(t),
t�0, of these dichotomies satisfy

R(P&(t))=Tu(t) W u(e&), R(I&(P+(t)) & X:=Tu(t)Ws(e+). (4.b.7)

Proof. We have f $(u( } )) # Cb(R, L(X :, X) and f $(u(t)) � f $(e\) as
t � \�. Thus, by Lemma 4.a.12, (4.b.1) admits exponential dichotomies
on each of the intervals (&�, 0], [0, �). Equalities (4.b.7) now follow
easily from properties of the dichotomies (see Definition 4.a.1) and
Lemma 4.b.1. K

Corollary 4.b.4. Let u be as in Lemma 4.b.3. Then u is transverse if
and only if the adjoint Eq. (4.b.3) has no nontrivial weak* solution defined
and bounded (in the norm of X*) on R.

Proof. By Lemma 4.b.3, the heteroclinic solution u(t) is transverse if
and only if R(P&(0))+R(I&P+(0)) & X:=X: which holds if and only if
R(P&(0))+R(I&P+(0))=X. As this sum is closed, it equals X if and
only if

(R(P&(0))+R(I&P+(0)))==[0].

By (4.a.28), this is the same as

R(I&P&(0)*) & R(P+(0)*)=[0],

and, by Lemma 4.a.10, this is equivalent to (4.b.3) not having any bounded
nontrivial weak* solution. K

For the remaining part of this subsection we fix a $ # (0, 1&:). As
above, we denote

E=C 1, $(R, X) & C 0, $(R, X 1),

Z=C 0, $(R, X).
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Lemma 4.b.5. Let u be as in Lemma 4.b.3 and let the integer r in (F) be
greater than 1. Let L be the operator defined on E by

L(v( } ))(t)=vt(t)+Av(t)& f $(u(t)) v(t). (4.b.8)

Then L # L(E, Z) and it is a Fredholm operator of index m(e&)&m(e+).
Moreover, the hereroclinic solution u is transverse if and only if L is surjective.

Proof. By Lemma 4.b.3, the evolution operator of (4.b.2) has exponen-
tial dichotomies on the intervals (&�, 0], [0, �) whose projections satisfy

dim R(P&(t))=m(e&), codim R(I&(P+(t))=m(e+).

The assumption on f implies that f $(u( } )) # C 0, $(R, L(X:, X)). The fact
that L is a Fredholm operator with the given index now follows directly
from Theorem 4.a.4. The last statement follows from the same theorem
combined with Corollary 4.b.4. K

Corollary 4.b.6. Assume that the integer r in (F) is greater than 1.
Further assume that all equilibria of (4.b.1) are hyperbolic. Let U be an open
set in E such that u(t) # G (t # R) for any u # U. Define a map 8 on U by

8(u( } ))(t)=ut(t)+Au(t)& f (u(t)).

Then 8: U � Z is of class C 1 and if 8 &| 0 then all heteroclinic solutions
u(t) of (4.b.1) such that u( } ) # U are transverse.

Proof. The fact that 8 is of class C 1 follows from a more general result
that we prove in the next subsection (see Lemma 4.c.4). There we also
show that D8(u( } )) coincides with the operator L defined by 4.b.8. The
conclusion now follows directly from Lemma 4.b.5. K

4.c. Generic Transversality of Invariant Manifolds

In this subsection we consider nonlinear equations with a parameter *,

ut+Au= f (u, *). (4.c.1)

We assume the following hypotheses.

(FP) f : G_( � X is of class C 1, where G is an open convex set in
X:, for some : # [0, 1), and ( is open in a Banach space 4.

(ISP) If * # ( and u(t) is a solution of (4.c.1) on an interval (t1 , t2)
then the evolution operator T(t, s) # L(X) of the linear variational equation

vt&Av& fu(u(t), *)v=0 (4.c.2)

is injective and its range is dense in X for any t1<s�t<t2 .
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The following theorem is the main result of Section 4.

Theorem 4.c.1. Assume that (A), (FP), and (ISP), together with the
following additional hypotheses, are satisfied.

(h1) The Banach space 4 is separable.

(h2) A has compact resolvent.

(h3) For any bounded set (0/( one has

f | G_(0
# C 1

b(G_(0 , X).

(h4) For any * # ( all equilibria of (4.c.1) are hyperbolic.

(h5) Given any *0 # ( and any neighborhood V of *0 in (, there exist
*� # V and a Banach space 4� with the following properties:

(a) *� # 4� and 4� is continuously imbedded in 4.

(b) *� has an open neighborhood V� in 4� such that V� /V and

f | G_V� # C r
b(G_V� , X), (4.c.3)

where r>m(e)+1 for any equilibrium e of (4.c.1) with *=*� .

(c) If u is a heteroclinic solution of (4.c.1) with *=*� and �(t)
(t # R) is a nontrivial bounded weak* solution of

&wt+(A& fu(u(t), *� ))* w=0 (4.c.4)

then there exists a * # 4� such that

|
+�

&�
(D* f (u(t), *� ) *, �(t)){0.

Under these assumptions, there is a residual subset 1/( such that for any
* # 1 any heteroclinic solution u of (4.c.1) is transverse.

We prepare the proof of this theorem by the following lemmas.
Throughout the subsection, we assume the hypotheses of the theorem to be
satisfied.

Lemma 4.c.2 (A Uniform Saddle-Point Neighborhood). For a *0 # (
let e # G be an equilibrium of (4.c.1) with *=*0 . There exist open bounded
neighborhoods U0/G and V/( of e and *0 , respectively, such that the
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following properties are satisfied. For each * # V there is a unique equi-
librium e(*) of (4.c.1) in U0 . This equilibrium has the same Morse index as
e, * [ e(*) is of class C 1 (in the norm of X :) and if u(t) is a solution of
(4.c.1) such that u(t) # U0 for all sufficiently large negative (respectively,
large positive) t, then u(t) � e(*), in X:, as t � &� (respectively,
t � �). Moreover, there is a constant c with the following property. If
*1 , *2 # V, u1 , u2 are solutions of (4.c.1) with *=*1 , *=*2 , respectively,
and u1(t), u2(t) # U0 for all t # J, where J=(&�, t0] or J=[t0 , �) for
some t0 # R, then

sup
t # J

&u1(t)&u2(t)&X :�c(&*1&*2&4+&u1(t0)&u2(t0)&X:). (4.c.5)

Proof. The existence of the equilibrium e(*) for * near *0 and smooth-
ness of the function * [ e(*) follow immediately from the implicit function
theorem. Continuity properties of the spectrum of A& f $(e(*)) (cf. [Ka,
Theorems IX.2.4, IV.3.1, IV.3.18]) imply that e(*) is hyperbolic and has
the same Morse index as e. Due to the saddle-point property of hyperbolic
equilibria (see [He1, Theorem 5.2.1]), e(*) has a neighborhood U0 such for
any solution u(t) of (4.c.1) on (&�, t0) one has u(t) # U0 (t # (&�, t0])
if and only if u(t) is contained in the local unstable manifold of
e(*): u(t) # W u

loc(e(*) (t�t0). The fact that U0 can be chosen independently
of *, for * near *0 , follows from the construction of the local unstable
manifold (see the proof of Theorem 5.2.1 in [He1]). Indeed, any u0=
u(t0) # W u

loc(e(*)) is found as the fixed point of a certain integral operator.
The integral operator is a contraction of a neighborhood of the constant
function u#e # Cb((&�, t0), X:), uniformly with respect to *, u0 from suf-
ficiently small neighborhoods &, U0 of *0 and e, respectively. This yields the
*-independent neighborhood U0 as needed. Moreover, the integral operator
is Lipschitz continuous in * and u0 . By the uniform contraction principle
(see [He1, Sect. 1.2.6]), the fixed point u( } ) depends continuously on *, u0

which gives (4.c.5). Similar arguments apply to [t0 , �) with W s
loc e(*)), the

local stable manifold, replacing W u
loc(e(*)). K

In the next lemma we consider the following situation. For a *0 # ( we
are given two equilibria e1 , e2 of (4.c.1) with *=*0 . We choose saddle
point neighborhoods U1 , U2 of e1 , e2 as in Lemma 4.c.2 and let V1 , V2 be
the corresponding neighborhoods of *0 . Replacing the Vi by V1 & V2 we
may assume, without loss of generality, that V1=V2 .

Lemma 4.c.3. Let e1 , e2 , U1 , U2 , V1 be as above and let B, D1 , D2 be
any bounded sets in X : such that B� /G, D� i/Ui , i=1, 2. Let *& # V1 be a
convergent sequence with *�=lim *& # V1 . Assume that for &=1, 2, .., u& is
a heteroclinic solution of (4.c.1) with *=*& such that
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u&(t) # B� (t # R),

u&(t) # D� 1 (t # (&�, &m]), (4.c.6)

u&(t) # D� 2 (t # [m, �)),

for some fixed m�0.
Then u& has a subsequence that converges in Cb(R, X :) to a heteroclinic

solution u of (4.c.1) with *=*�. Moreover, if f is of class C 2 and D2f (u, *)
is bounded uniformly for (u, *) # G_V1 then this subsequence converges to u
in C 1, $(R, X) & C 0, $(R, X 1) for any $ # [0, 1&:).

Proof. We are going to prove that a subsequence of u& is convergent
uniformly on [&m, m] and then combine this with the properties of the
saddle-point neighborhoods U1 , U2 to obtain the uniform convergence on
R. Below c1 , c2 , etc. denote positive constants independent of &.

As B� is bounded in X:, we have

&u&( } )&Cb(R, X:)�c1 .

By (h3),

& f (u&( } ), *&)&Cb(R, X)�c2 . (4.c.7)

We can thus apply Lemma 4.a.6(ii) to the equation

u&
t +Au&= f (u&(t), *&), (4.c.8)

to obtain

&u&( } )&C 0, �(R, X:)�c3

for a �>0. From (h3) it now follows that the right-hand side of (4.c.8) is
uniformly bounded in C 0, �(R, X). Therefore, by Lemma 4.a.6(i),

&u( } )&C1, �(R,X) & C0, �(R, X1)�c4 .

Now, as X 1 is compactly imbedded in X:, the last estimate and the Arzela�
Ascoli theorem imply that u& has a subsequence (denoted again by u&) such
that u&| [&m, m] is convergent in C([&m, m], X :). Using this and the
properties of U1 , U2 (cf. 4.c.5), we see that

u&| [m, �) , u&| [&�, m] ,
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form Cauchy sequences in Cb([m, �), X:), Cb((&�, m], X:), respectively.
Combining these properties, we obtain that the subsequence u& is con-
vergent in Cb(R, X:). Let u denote the limit function:

u= lim
& � �

u&.

One clearly has

u(t) # B� (t # R),

u(t) # D� 1/U1 (t�&m), (4.c.9)

u(t) # D� 2/U2 (t�m)

and

f (u&( } ), *&) � f (u( } ), *�) in Cb(R, X).

Taking the limits in the variation of constants formula,

u&(t)=e&A(t&{)u&({)+|
t

{
e&A(t&s)f (u&(s), *&) ds,

we obtain that u is a solution of (4.c.1) with *=*�. By (4.c.9), and the
properties of U1 , U2 (cf. Lemma 4.c.2), we obtain that u is a heteroclinic
solution.

Now assume that D2f is bounded on G_V1 . The function

w&=u&&u

satisfies

w&
t +Aw&= f (u&, *&)& f (u, *�). (4.c.10)

For & � �, both w& and the right-hand side of (4.c.10) converge to 0 in
Cb(R, X). Lemma 4.a.6(ii) therefore implies that for $ # (0, 1&:)

w& � 0 in C 0, $(R, X:).

In view of the boundedness of D2f, we now see that the right-hand side of
(4.c.10) converges to 0 in C 0, $ (R, X). Therefore, by Lemma 4.a.6(i),

w& � 0 in C 1, $(R, X) & C 0, $(R, X 1).

This completes the proof of the lemma. K
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Proof of Theorem 4.c.1. We choose a sequence of open bounded sets B@ ,
@=1, 2, ... such that

B� @/G, inf
x # B� @

dist(x, �G)>0,

and

.
@

B@=G.

For example, take

B@=[x # G : &x&X:<@ and dist(x, �G)>@&1].

Recall that for E/X:

dist(x, E)= inf
y # E

&x& y&: .

The theorem will be proved, provided we show that for each @ there is a
residual set in ( consisting of elements * such that any heteroclinic solution
u of (4.c.1) satisfying u(t) # B� @ (t # R) is transverse. Indeed, the intersection
of these residual sets then gives 1 as needed in the conclusion of the
theorem. In fact, it is sufficient to prove a yet simpler property, as stated
in the following claim.

Claim. Let B be any bounded set in X: such that

B� /G, inf
x # B�

dist(x, �G)>0. (4.c.11)

Given any *0 # (, there are a neighborhood V0 of *0 in ( and a residual set
10 in V0 such that for any * # 10 any heteroclinic solution u of (4.c.1) with
u(t) # B� is transverse.

Suppose for a while that this claim holds true. Take a countable cover
V1 , V2 , ... of ( by such neighborhoods (which exists as ( is separable,
hence Lindelo� f, see [En]) and let 11/V1 , 12/V2 , ... be the corresponding
residual sets. Set

1=(" .
�

i=1

(Vi"1i).

As each Vi "1i is meager in (, 1 is residual in (. Obviously, 1/� i 1i .
Hence, for each * # 1, any heteroclinic solution u of (4.c.1) with u(t) # B� is
transverse. Applying this to each of the above sets B@ , we obtain the desired
property that implies the conclusion of the theorem.
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We now prove the claim. Fix an arbitrary *0 # (. Since the equilibria of
(4.c.1) satisfy

u=A&1f (u, *),

hypotheses (h2), (h3) imply that the set of all equilibria in B� is compact in
X:. Since all the equilibria are hyperbolic, thus isolated, for each * there
are only finitely many of them. Let ei , i=1, ..., l be all the equilibria of
(4.c.1) with *=*0 in B� . For each of these equilibria, we choose a saddle-
point neighborhood Ui as in Lemma 4.c.2 and let V0 be a corresponding
neighborhood of *0 (which can be assumed independent of i=1, ..., l,
otherwise we take the intersection). Thus, for every * # V0 there is a unique
equilibrium ei (*) of (4.c.1) in Ui and this equilibrium depends continuously
on *. Due to (h2), (h3), we may assume, making V0 smaller if necessary,
that for * # V0 there is no other equilibrium of (4.c.1) in B� . Making V0 yet
smaller, we may further assume that for i=1, ..., l, all the equilibria ei (*),
* # V0 , are contained in an open set Di satisfying

D� i/Ui , inf
x # D� i

dist(x, �Ui)>0. (4.c.12)

Set

D := .
l

i=1

Di .

Denote by 1 m the set of all * # V0 that have the following property: any
heteroclinic solution u of (4.c.1) satisfying

u(t) # B� (t # R),
(4.c.13)

u(t) # D� (t # (&�, &m] _ [m, �))

is transverse. Note that due to the choice of V0 the set

10 :=,
m

1 m

satisfies the transversality condition as in the claim. It is therefore sufficient
to prove that each 1 m is open and dense in V0 .

Proof of Openness. Assume we are given a sequence *& # V0"1 m such
that *& � *� # V0 . We need to show that *� � 1 m.

By definition of 1 m, for each & there is a heteroclinic solution u& of (4.c.1)
with *=*& that satisfies (4.c.13) and that is not transverse. As there
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are only finitely many sets Di , passing to a subsequence we may assume
that

u&(t) # D� i (t # (&�, &m],

u&(t) # D� j (t # [m, �)),

for some fixed indices i, j. By Lemma 4.c.3, replacing u& by a further sub-
sequence, we obtain that

u& � u in Cb(R, X:),

where u is a heteroclinic solution of (4.c.1) with *=*�. Of course, u also
satisfies (4.c.13). We prove that u is not transverse, hence *� � 1 m.

As the closure of [u(t): t # R] is compact in G, it follows from (h3) that

fu(u&( } ), *&) � fu(u( } ), *�) in Cb(R, X). (4.c.14)

Now, by Lemma 4.b.3, the variational equations

vt+(A& fu(u&(t), *&))v=0

and

vt+(A& fu(u(t), *�))v=0

have exponential dichotomies on each of the intervals (&�, 0], [0, �).
Moreover, if P&&(t), P&+(t) and P&(t), P+(t) are the projections of these
dichotomies then

R(P&&(0))=Tu&(0) Wu(e&&), R(I&P&+(0)) & X:=Tu&(0) Ws(e&+),

R(P&(0))=Tu(0) Wu(e&), R(I&P+(0)) & X:=Tu(0) Ws(e+),

where e&\ and e\ are the limits, as t � \�, of the heteroclinic solutions
u& and u, respectively. By (4.c.14) and Lemma 4.a.11, the projections P&&(t)
and P&+(t) can be chosen in such a way that, as & � �,

P&&(0) � P&(0), P&+(0) � P+(0) in L(X). (4.c.15)

Now suppose that u is transverse, that is,

R(P&(0))+(R(I&P+(0)) & X:)=X :.

As R(P&(0)) is finite-dimensional, one checks easily, using (4.c.15), that
this equality remains valid if P&, P+ are replaced by P&&, P&+ with suf-
ficiently large &. But this means that u& is transverse, in contradiction to
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our assumption. We see that u cannot be transverse, hence *� � 1 m. This
completes the proof of the openness of 1 m.

Proof of Density. Fix any *0 # V0 and any neighborhood V of *0 . We
have to show that V contains an element of 1 m.

Let *� , 4� and V� /V be as in (h5). We are going to apply the transver-
sality Theorem 2.1 to a map 8 defined as follows. Fix a $ # (0, 1&:) and
let

E=C 1, $(R, X) & C 0, $(R, X 1),

Z=C 0, $(R, X).

Choose open bounded sets B*, Di* such that

B� /B*/B*/G,
(4.c.16)

D� i/Di*/Di*/Ui , i=1, ..., l.

(This choice is possible due to (4.c.11), (4.c.12)). Let

X=[u # E : clX :[u(t) : t # R]/B* and

clX :[u(t) : t # (&�, &m] _ [m, �)]/D*],

where

D*= .
l

i=1

Di*.

Note that X is open in E. Indeed, as X 1 is compactly imbedded in X:, for
any u # X, the set clX :[u(t): t # R] is a compact subset of B* and therefore
the distances of its points to �B* are uniformly bounded away from zero.
Similar arguments can be used for D*, which gives that a neighborhood of
u in E is contained in X.

By Lemma 4.b.2 and (4.c.16), X contains all heteroclinic solutions of
(4.c.1) (for any * # V0) satisfying (4.c.13). For u # X and * # V� let 8(u, *)
be the element of Z defined by

8(u, *)(t)=ut(t)+Au(t)& f (u(t), *) (t # R). (4.c.17)

It follows from the properties of saddle-point neighborhoods that for
(u, *) # X_V� one has 8(u, *)=0 if and only if u is a heteroclinic solution
of (4.c.1). We prove in a moment (see Lemma 4.c.4 below) that
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8: X_V� � Z is of class Cr&1 (with r as in (h5)). It follows from Corol-
lary 4.b.6 that 1 m certainly contains all * # V� for which 8( } , *) &| [0]. We
next show, applying Theorem 2.1, that the set of such *'s is residual in V� .
This way we prove that V� /V contains an element of 1 m, as desired.

Making the neighborhood V� of *� smaller, if necessary, we may assume
that it is convex. In the following four steps we verify that 8 satisfies the
hypotheses of Theorem 2.1 (in the last step, V� may have to be made yet
smaller).

Step 1. 8: X_V� � Z is of class Cr&1, with r as in (h5).

This is a consequence of the following more general statement.

Lemma 4.c.4. Let U be any open set in E such that clX:[u(t): t # R]/G
for any u # U. Then the map 8: U_V� � Z defined by (4.c.17) is of class
Cr&1 and its derivatives are given by

[D8(u, *)(u� , *� )](t)=u� t(t)+Au� (t)&Df (u(t), *)(u� (t), *� ), (4.c.18)

[D j8(u, *)(u� , *� ) j](t)=D jf (u(t), *)(u� (t), *� ) j, j=1, ..., r&1, (4.c.19)

for any (u, *) # U_V� , (u� , *� ) # E_4� .

Proof. First observe that 8 is continuous on U_V� . Further, for any
fixed (u, *) # U_V� , the right-hand sides of (4.c.18), (4.c.19) define con-
tinuous homogeneous polynomials from E_4� into Z, and these polyno-
mials depend continuously (in the standard norms on the spaces of
homogeneous polynomials) on (u, *) # E_V� . The proof of this involves
estimates of the supremum and Ho� lder norms. The estimates are somewhat
tedious but straightforward and are left to the reader. It may be useful to
note, however, that in these estimates all the relevant functions u( } ) are
contained in a bounded set in E and therefore, by (h2), their orbits
[u(t): t # R] are all contained in a compact subset of G. Thus Drf ( } , *) is
uniformly continuous there.

Now for a, b # G, *, + # 4� denote

H(a, *; b, +)=|
1

0
[Dr&1f (sa+(1&s)b, s*+(1&s)+)&Dr&1f (a, *)] ds.

For any u, v # U, *, + # V� , the map

(u� , *� ) [ H� (u, *; v, +)(u� , *� )r&1 : E_4� � E,

where

H� (u, *; v, s)(u� , *� )r&1(t)=H(u(t), *; v(t), +)(u� (t), *� )r&1 (t # R),
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is also a homogeneous polynomial (of degree r&1) and it depends con-
tinuously on (u, *; v, +) # U_V� _U_V� . Obviously, H� (u, *; u, *)=0.
Using the Taylor formula for f and then the converse Taylor theorem
([Ab-M-R, Ab-R]), we obtain that 8 is of class Cr&1. K

Step 2. The map 6: (u, *) [ *: 8&1(0) � V� is _-proper.

To see this, choose closed sets B� n*/B*, D� *in/Di*, i=1, ..., l, n=1, 2, ...
such that

.
n

B� n*=B* and .
n

D� *in=Di*.

Let Vn be the set of all (u, *) # 8&1(0) satisfying

u(t) # B� n* (t # R),
(4.c.20)

u(t) # .
l

i=1

D� *in (t # (&�, &m] _ [m, �)).

Clearly

.
n

Vn=8&1(0).

We next show that for each n 6 |Vn is proper. Let (u&, *&) be sequence in
Vn such that *& � *� # Vn . Using Lemma 4.c.3, similarly as in the proof of
the openness of 1 m, one shows that a subsequence of u& converges in E to
a heteroclinic solution u of (4.c.1) with *=*�. This solution u satisfies
(4.c.20) and 8(u, *�)=0, hence (u, *�) # Vn . This proves that 6 | Vn is
proper and completes step 2.

Step 3. Du8(u, *) is a Fredholm operator of index less than r&1 for
any (u, *) # 8&1(0).

This follows directly from (4.c.18), Lemma 4.b.5 and property (h5)(b).
We only need to note that for any * # V� /V0 the unique equilibrium of
(4.c.1) in Ui has the same Morse index as ei (the equilibrium for *=*0).

Step 4. Making the neighborhood V� of *� smaller, if necessary, one
achieves that for any (u, *) # 8&1(0) the operator D8(u, *) # L(E_4� , Z)
is surjective.

If this is not true then there is a sequence (u&, *&) # 8&1(0) such that
*& � *� and D8(u&, *&) is not surjective. By Lemma 4.c.3, we may assume
that u& converges in E to a heteroclinic solution u of (4.c.1) with *=*� .

As clX :[u(t): t # R] is a compact subset of G, there is neighborhood U of
u in E such that [ y(t): t/R]/G for any y # U. By Lemma 4.c.4, (4.c.17)
defines a C 1 map on U_V� . By Lemma 4.b.5, Du8(u, *� ) is a Fredholm
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operator. If we prove that D8(u, *� ) is surjective then we have a contradic-
tion because, by Lemma 2.1, for & large enough D8(u&, *&) would have to
be surjective, as well. To complete Step 4, it is therefore sufficient to prove
that D8(u, *� ) is surjective.

Using the formulas from Lemma 4.c.4, we see that the surjectivity is
equivalent to the following property: given any h # Z there are v # E and
*� # 4� such that

vt+Av& fu(u(t), *� )v=h+ f*(u(t), *� )*� .

By Theorem 4.a.4 (which is applicable because of Lemma 4.b.3), this equa-
tion can be solved for v # E if *� is chosen such that

|
+�

&�
(D* f (u(t), *� )*, �(t)) dt=&|

+�

&�
(h(t), �(t)) dt (4.c.21)

for any bounded weak* solution of the homogeneous adjoint equation
(4.c.4). Such a choice of *� is readily possible if for a basis �1(t), ..., �q(t) of
the (finite-dimensional) space of bounded weak* solutions of (4.c.4) the
linear map

*� [ \|
+�

&�
(D* f (u(t), *� )*, �l (t)) dt+

q

l=1

: 4� � Rq (4.c.22)

is surjective. We prove the surjectivity by contradiction. Suppose the range
of (4.c.22) is not the whole Rq, so that there is a nonzero vector orthogonal
to the range. But this means that there is a nontrivial linear combination
� of the �l such that

|
+�

&�
(D* f (u(t), *� )*� , �(t)) dt=0

for any *� # 4� , contradicting (h5)(c). This contradiction proves the surjec-
tivity of (4.c.22) and completes Step 4.

We have now verified that Theorem 2.1 indeed applies to the map 8.
As demonstrated above, this implies the density of 1 m. The proof of
Theorem 4.c.1 is now complete. K

5. THE MORSE�SMALE PROPERTY FOR
REACTION�DIFFUSION EQUATIONS

In this section we prove Theorem 1.1. Recall that G is the set of all Ck

functions f : 0� _R � R equipped with the Ck Whitney topology (k�1 is a
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fixed integer) and GH
n is the set of those f # G for which any equilibrium

u of (1.1), (1.2) with &u&L��n is hyperbolic.
Let GMS

n be the set of all f # GH
n such that any heteroclinic solution

u(x, t) of (1.1), (1.2) with supt # R &u( } , t)&L�<n is transverse. We prove
that GMS

n is residual in G. Once we have done this, Theorem 1.1 is proved
since

GMS= ,
�

n=1

GMS
n

is a residual set such that for any f # GMS all heteroclinic solutions of (1.1),
(1.2) are transverse. From Section 2 we recall that GH

n is open and dense
in G. It is therefore sufficient to prove the following.

Lemma 5.1. GMS
n is residual in GH

n .

The remaining part of this section is devoted to the proof of this lemma.
To this aim we want to apply Theorem 4.c.1. In order to bring (1.1), (1.2)
into the context of abstract equations considered in Section 4, we choose
a p>N and define an operator A on X=L p=L p(0) by

D(A)=W 2, p & W 1, p
0 ,

Au= &2u, u # D(A).

Note that this operator satisfies hypotheses (A) of Section 4 and it has
compact resolvent. The fractional power space X 1�2 is continuously
imbedded in C(0� ) and therefore

G=[u # X 1�2 : &u&L�<n].

is an open set in X 1�2.
Denote

4r=C r(0� _[&n, n]), r=1, 2, ... .

Let R: G � 4k be the restriction operator

Rf = f |0� _[&n, n] .

Then R is a continuous, open, and surjective linear map. We set

(=RGH
n /4k,

which is an open set in 4k, and assume the induced topology on (.
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Problem (1.1), (1.2) can now be recast in the form of an abstract equa-
tion as studied in subsection 4.c,

ut+Au=F(u, f ),

where

F : (u, f ) [ F(u, f )= f ( } , u( } )): G_( � X

and f # ( plays the role of the parameter. Note that F is of class Ck and
is linear in f.

We show that the hypotheses of Theorem 4.c.1 are satisfied for this equa-
tion. This will complete the proof of Theorem 1.1, for taking the residual
set 1 as in Theorem 4.c.1, one checks easily that R&11 is a residual set in
GH

n and it is contained in GMS
n . Therefore GMS

n is also residual.
By definition of A and F, hypotheses (A), (h2), and (FP) are satisfied.

(ISP) holds by backward uniqueness for linear second order parabolic
equations and their adjoint equations (cf. [He1, Section 7.3]). Further, the
space 4k is separable (so that (h1) holds), (h4) is satisfied by the definition
of G and (, and (h3) is obvious. It remains to verify (h5). Fix any f0 # (
and any neighborhood V of f0 in (.

In this neighborhood, we find an f� with the following properties:

v f� # RGH
n & 4r where r>N=dim 0 and r>m(e)+1 for any equi-

librium e of (1.1), (1.2) with f = f� satisfying &e&L��n.

v f� is analytic in u, uniformly with respect to x.

v f� # RGSE where GSE is as in Subsection 3.b.

We find such an f� making a few successive perturbations of f0 . Fix an
r�max k, N such that r>m(e)+1 for any equilibrium e of (1.1), (1.2)
satisfying

&e&L��n (5.1)

(there are only finitely many such hyperbolic equilibria, as follows by a
simple compactness argument, as in the proof of Theorem 4.c.1). As RGH

n

is open in 4k and 4r is dense in 4k, perturbing f slightly we may assume
that it is contained in V & RGH

n & 4r. Two further forthcoming perturba-
tions will be done in the space 4r. With no further notice we shall assume
that the perturbations are so small that the perturbed function f will still
be contained in V & RGH

n and, moreover, the maximal Morse index of
equilibria satisfying (5.1) will still be less than r&1 (to guarantee the latter
we use continuous dependence of the Morse indices on f and compactness
of the set of equilibria; see the proof of Theorem 4.c.1). As (the restrictions
of ) analytic functions are dense in 4r, perturbing f, we first achieve that it
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is analytic (in (x, u) jointly). Next, making one more perturbation, we
find an f� that is analytic in u and contained in GSE. Here we invoke
Lemma 3.b.2. This f� satisfies all the above properties.

Now let

4� =4r.

Choose a bounded neighborhood V� of f� in 4r such that

V� /V.

With this choice, properties (a), (b) of (h5) are satisfied. In order to prove
(c), we assume that u(x, t) is a heteroclinic solution of (1.1), (1.2) with f = f�
such that u( } , t) # G (t # R), and �( } , t) # Lq (1�p+1�q=1) is a solution of
the adjoint linearized problem

&wt&2w& f� u(x, u(x, t))w=0, t # R, x # 0, (5.2)

w=0, t # R, x # �0, (5.3)

with &�( } , t)&Lq bounded. (We remark that as f� is of class Cr with r�2
each weak* solution of (5.2), (5.3) is classical.) Using the duality between
Lp, Lq and the linearity of F in f, we see that condition (c) requires that
there be a function g # 4r such that

|
�

&�
|

0
�(x, t) g(x, u(x, t)) dx dt{0. (5.4)

For the proof of existence of such a g we prepare the following two
lemmas.

Lemma 5.2. For each x # 0, u(x, t) and �(x, t) are real analytic functions
of t.

Proof. Since f� is real analytic in u, one proves, using abstract regularity
results (see [He1, Section 3.4]), that

t [ u( } , t) : R � X 1�2

is analytic. Then

t [ f� u( } , u( } , t)) : R � C(0� )

is analytic. Using the abstract regularity results again, one obtains that
�(x, &t) (and �(x, t) along) is analytic in t. K
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Lemma 5.3. There exists a subset D/0, residual in 0, such that for any
x # 0 the following properties are satisfied:

(i) e&(x){e+(x), where e\(x) :=limt � \� u(x, t) (both limits exist
as u is a heteroclinic solution and the convergence in X 1�2 implies (uniform)
pointwise convergence).

(ii) ut(x, t){0 for all t with |t| sufficiently large.

(iii) e&(x) is a regular value of the function t [ u(x, t) : R � R.

Proof. Let e\, be the limit equilibria of u( } , t) as t � \�. Then v :=
e+&e& solves the equation

2v+a(x)v=0, x # 0,

v=0, x # �0,

where

a(x)=|
1

0
fu(x, e&(x)+s(e+(x)&e&(x))) ds.

As e&{e+ ((1.1), (1.2) has a Lyapunov function, see Section 1, so it has
no homoclinic solutions), by unique continuation for elliptic equations (see
[Mi]), v cannot be identical to zero on any nonempty open set. Thus (i)
holds for all x in an open dense subset 0� of 0.

Next, the function z=ut solves the equation

zt=2z+ fu(x, u(x, t))z, t # R, x # 0

z=0, t # R, x # �0,

where the coefficient of z converges, as t � \�, to fu(x, e\(x)). As the
eigenvalues of L\ :=(2+ fu(x, e\(x)) are all simple ( f� belongs to RGSE ),
it follows that, as t � \�, z�&z&L2 converges (uniformly in x) to ,\, an
eigenfunction of L\. This convergence property is obtained by a direct
application of Theorems B.4, B.5 in [Che-C-H]. By unique continuation,
each of the eigenfunctions ,\ is nonzero on an open dense set in 0.
Clearly, for each x in this set property (ii) is satisfied.

It remains to consider (iii). Let

y(x, t)=u(x, t)&e&(x).

This function solves

yt=2y+a(x, t) y, t # R, x # 0

y=0, t # R, x # �0,
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with

a(x, t)=|
1

0
fu(x, e&(x)+s(u(x, t)&e&(x))) ds.

For j=1, 2, ... denote

Dj=[x # 0 : 0 is a regular value of t [ y(x, t) : (&j, j ) � R].

We claim that Dj is residual in 0. This implies that for any x in the residual
set � j Dj property (iii) is satisfied. We prove our claim using the
parameterized transversality theorem and the following property.

(H) The Hausdorff dimension of the singular nodal set of y,

S=[(x, t) # 0� _[& j, j] : y(x, t)=0 and {x y(x, t)=0],

does not exceed N&1. Here 0� is as above: (i) holds for x # 0� .
This property has been proved by Han and Lin (see [Han-L, Proposi-

tion 1.2]) under an extra assumption, the so-called doubling condition,
on y. The doubling condition is satisfied, provided y enjoys a unique con-
tinuation property such as the one in Theorem 1.1 (II) of [Al-V]. As
Alessandrini and Vessella prove, y does enjoy this property, provided it has
no zero of infinite order. This is the case here, as y is analytic in t (see
Lemma 5.2) and it is not identical to zero for any fixed x # 0� . Let us
remark that for equations on RN or for the Dirichlet problem on a convex
domain (but not yet for equations on any bounded domain), a general
unique continuation theorem, which implies (H) for solutions of such equa-
tions, has recently been proved by Chen (see [Che1, Che2]; see also
[Poo] for an earlier weaker result).

From (H) one obtains easily that the set

K :=[x # 0� : y(x, t)=0 and {x y(x, t)=0 for some t # [& j, j]],

which is the projection of S in 0, has empty interior. (In fact, the
N-dimensional Hausdorff measure, that is, the Lebesgue measure, of K
must be zero.) As this set is relatively closed,

Q=0� "K

is open and dense in 0� .
Consider the map

(x, t) [ y(x, t) : Q_(& j, j ) � R.

It is of class Cr, where r was chosen greater than N, and, by definition
of Q, it has 0 as a regular value. Therefore, by Theorem 2.1, Dj contains
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a set that is residual in Q (hence also in 0). This proves the claim and
completes the proof of the lemma. K

We are now ready to complete the verification of (h5)(c). Suppose it
fails; that is, for any g # 4r, one has

|
�

&�
|

0
�(x, t) g(x, u(x, t)) dx dt=0 (5.5)

We show this leads to a contradiction. First taking g in the form b(x) g(u),
where b # Cr(0� ), g # Cr([&n, n]) are arbitrary, and changing the order of
integration, we see that (5.5) implies

|
�

&�
�(x, t) g(u(x, t)) dt=0 for any x # 0, g # Cr([&n, n]). (5.6)

Let D be as in Lemma 5.3. Fix any x # D. For definiteness, we assume the
following relations (cf. Fig. 1):

(1) ut(x, t)>0 for each sufficiently large negative t.
(2) e&(x)>e+(x).

All other sign combinations can be treated in a similar way.
Denote

`0 :=e&(x).

By (1), (2), there are positive constants T1 , $ such that

ut(x, t)>0 (t�&T1),

u(x, t)<`0&$ (t>T1).

As `0 is a regular value of u(x, } ), making $ smaller, if necessary, we may
in addition assume that the interval (`0&$, `0+$) consists of regular
values of u(x, } ). Let m be the number of preimages of `0 under the map
u(x, } ). By the inverse function theorem, there are real analytic strictly
monotone functions t1(`), ..., tm(`) defined on (`0&$, `0+$) such that

&T1<t1(`)<t2(`)< } } } <tm(`),

u(x, ti (`))=`, i=1, ..., m,

and t1(`), ..., tm(`) are all the preimages of ` under u(x, } ) in [&T1 , �).
Furthermore, for ` # (`0&$, `0) there is no other preimage of ` in R,
whereas for ` # (`0 , `0+$) there is exactly one more preimage t0(`) which
is contained in (&�, &T1) (cf. Fig. 1). Again, t0(`) is a real analytic
strictly monotone function.
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Fig. 1. ` # (`0&$, `0) : u(x, tj)=` for j>0; ` # (`0 , `0+$) : u(x, tj)=` for j�0.

Let us now reconsider (5.6). We claim that it implies that for any
` # (`0&$, `0) one has

:
m

i=1

�(x, ti (`)) ti$(`)=0. (5.7)

To prove that (5.7) indeed follows from (5.6), take

g(u)=
1
=

b \u&`
= + ,

where b is a smooth bump function, for example,

b(s)={e&1�(1&s2),
0,

|s|�1,
|s|>1.

Using the properties of the local preimages of ` under u(x, } ), we see that
for small =>0 the integral in (5.6) equals the sum of m integrals in which
it is justified to perform the change of variables t=ti (!). Letting = � 0 in
the transformed integrals, we obtain (5.7).

Similar arguments prove that for any ` # (`0 , `0+$) one has

:
m

i=0

�(x, ti (`)) ti$(`)=0. (5.8)
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Now, by analyticity, (5.7) continues to hold for ` # [`0 , `0+$). Therefore
(5.8) implies

�(x, t0(`)) t$0(`)=0 (` # (`0 , `0+$)).

Since t$0(`){0, we obtain that

�(x, t)#0

on some time interval and therefore, due to analyticity of �(x, } ), on the
whole real line. We have derived this conclusion for each x in the residual
set D. Hence �#0, a contradiction. This contradiction completes the
verification of (h5)(c) and thereby the proof of the theorem.
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