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Abstract

We give conditions under which localization at a set of primesP in the sense of Casacuberta a
Peschke [Trans. Amer. Math. Soc. 339 (1993) 117–140] preserves homotopy pushouts and ho
pullbacks. We then apply these results to infer conditions under whichP -localization preserve
homotopy epimorphisms and homotopy monomorphisms. We also obtain conditions under which
P -localization of non-nilpotent spaces inducesP -localization of its homotopy groups.
 2004 Elsevier B.V. All rights reserved.
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Introduction

Localizing spaces at a set of primes in the sense of Casacuberta and Peschk
one of the possible ways of extendingP -localization of nilpotent spaces [13,5] over
spaces. On nilpotent spaces the effect ofP -localization is quite transparent, while vario
degrees of mystery surround its effect on non-nilpotent spaces and maps between them
This constitutes an unwelcome obstacle in the use of localization methods.

Here we give conditions under whichP -localization preserves fundamental constru
of homotopy theory, like homotopy pushouts/pullbacks, and homotopy epimorp
monomorphisms. The main results are 2.1 preservation of homotopy pushou
preservation of homotopy epimorphisms, 4.2 preservation of homotopy fibration
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preservation of homotopy pullbacks, and 5.3. We comment briefly on what ‘preserves’
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means in each case. Further details can be found inthe introductions to the various section
Let hoCW denote the homotopy category of based connected CW-complexes

hoCWP the full subcategory ofP -local CW-complexes. TheP -localization of a homotopy
pushout diagram in hoCW always deserves to be regarded as a homotopy pusho
hoCWP . Thus 2.1 expresses conditions under whichP -localization preserves a homoto
pushout diagram in hoCW in the stronger sense that the result is again a homo
pushout in hoCW . Likewise, P -localizing an epimorphismf in hoCW always yields
an epimorphism in hoCWP . So 3.1, and 3.2 express conditions under whichfP is an
epimorphism in hoCW . This extends earlier work of Lin and Shen [7] who answere
question posed by Hilton and Roitberg in [6] by showing that, in the homotopy cate
of nilpotent spaces, localization at a primep always preserves epimorphisms strongly;
Sections 2 and 3.

P -localization need not turn a homotopy pullback diagram in hoCW into a homotopy
pullback diagram in hoCWP . However, if it does, then theP -localized homotopy pullbac
in hoCWP is automatically a homotopy pullback in hoCW . The situation for homotop
monomorphisms is similar. These results depend upon the new concept of aP -torsion
action space: the fundamental group acts on higher homotopy groups through automo
phisms whose order is finite and is divisible by primes inP . For such spaces we show th
P -localization inducesP -localization of all homotopy groups 4.2; see Sections 4 and

Notation and conventions

ThroughoutP denotes a set of prime numbers, andP ′ the multiplicative closure of the
set of primes not inP . Localization atP of a groupG will be as in [11,10]. LetP [G]
denote the ring localization of the group ringZG obtained by inverting all of the elemen
1 + g + · · · + gn−1, whereg ∈ G, and n ∈ P ′. See [3, Section 2] for details on th
construction and its role in theP -localization of spaces.

Localization atP of a connected based space will be as in [3]. We denote by hoCW the
homotopy category of based CW-spaces, and by hoCWP the full subcategory ofP -local
spaces. For a spaceZ and a right moduleM over its fundamental group,H∗(Z;M) denotes
homology with twisted coefficients inM.

1. Categorical facts

For the reader’s convenience we collect here some basic facts about the inte
between localizing functors and the concepts of pushouts, homotopy pushouts, e
phisms, and pullbacks, homotopy pullbacks and monomorphisms. As a referen
category theoretical terms, we recommend [8]. The classical reference for hom
(co-)limits is [1]. For specific properties of homotopy pushouts and pullbacks we re
mend [9,12]. Finally, we point out that a homotopy pushout is a weak pushout in hoCW , the
homotopy category of based CW-spaces, andthat a homotopy pullback is a weak pullba
in hoCW .
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Proposition 1.1. A localizing functorL :C → D on a categoryC turns weak pushouts into
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weak pushouts inD, the full subcategory ofC consisting ofL-local objects.

Proof. In the commutative box below, suppose the top is a weak pushout inC and the
bottom results from applyingL to the top.

C D1

D2 W

LC LD1

LD2 LW

Z

We need to show that the bottom square has the weak pushout property inD. Now, if Z

is L-local, we first obtain a mapW → Z with the required commuting properties. Seco
this map factors throughLW , and the expected commuting properties follow from
universal property ofL. �

Turning to epimorphisms and monomorphisms, we begin with the observation:

Lemma 1.2. If f :A → B in a categoryC has a right inverse(respectively a left inverse),
thenf is an epimorphism(respectively a monomorphism) of C. Moreover, every functo
C → D sendsf to an epimorphism(respectively a monomorphism) of D.

In the presence of weak pushouts (respectively weak pullbacks), we reco
epimorphisms (respectively monomorphisms) via the following lemma. We om
straightforward proof.

Lemma 1.3. Suppose the categoryC has weak pushouts(respectively weak pullbacks).
Then a morphismf :A → B in C is

(1) an epimorphism if and only ifu = v, for any weak pushout diagram,

A
f

f

B

v

B u W

(2) a monomorphism if and only ifi = j , for any weak pullback diagram,

U
i

j

Y

f

Y
f

Z
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2. Preserving homotopy pushouts
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A general theorem [4, 1.7] suggests thatP -localization will, in general, not commut
with homotopy colimits: there is a natural isomorphism

(ho lim−→ X )P � (
ho lim−→ XP

)
P
.

For a specific example in the case of homotopy pushouts, consider the univers
S1

P ∨ S1
P → (S1 ∨ S1)P : Inspection of fundamental groups shows that it is not a homo

equivalence. The following theorem gives conditions under which the canonical map

ho lim−→(YP ← VP → XP ) −→ (
ho lim−→(Y ← V → X)

)
P

is a homotopy equivalence

Theorem 2.1. Let f :V → X and g :V → Y be maps inducing epimorphisms
fundamental groups. Form the homotopy pushout diagram on the left below.

VP

fP

gP

XP
βP

YP

αP

Ũ
γ̃

V
f

g

X
β

VP

gP

fP
XP βP

W̃P

Y α W YP

αP

U
γ

WP

Assume that the following conditions are satisfied:

(i) Each of the group homologies̃H∗(kerπ1(βf )P ;Z), H̃∗(kerπ1(αP );Z), and
H̃∗(kerπ1(βP );Z) are gradedZP -modules;

(ii) For G := π1WP , the coefficient mapZP G → P [G] induces homology isomorphism
H∗(−;ZP G) → H∗(−;P [G]).

ThenP -localization turns the left homotopy pushout into a homotopy pushout inhoCW .

Proof. For the argumentP -localize the left pushout diagram to obtain the outer par
the right floor. The bottom square is a homotopy pushout, andγ is some map renderin
the floor homotopy commutative. We claim thatγ is a homotopy equivalence. To s
this build the top floor by taking homotopy fibers overBG. Thus ‘̃ ’ denotes ‘universa
cover’. Consequently [12, 7.6.1], all sides of the right diagram are homotopy pullbac
By Mather’s 2nd cube theorem [9, p. 240], the top square is a homotopy pushout dia
We show thatγ̃ is a homotopy equivalence. The claim then follows because, with the
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long exact homotopy sequences of the relevant fibrations, we conclude thatγ is a weak
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homotopy equivalence and, hence, a homotopy equivalence.
We first establish that the simply connected spacesŨ andW̃P areP -local:W̃P because

its homotopy groups areP -local; Ũ becauseH̃∗(Ũ ;Z) is a gradedZP -module; see [5
Theorem 3B]. We infer this latter property from: (1)VP ,XP ,YP haveP -local fundamenta
groups which actP -locally on their higher homotopy groups. Therefore these spaces
P -local. (2)H̃∗(VP ;Z), H̃∗(XP ;Z), andH̃∗(YP ;Z) areZP -modules using hypothesis (
and 2.2. TheH∗(−;Z)-Mayer–Vietoris sequence of the top square shows thatH̃∗(Ũ ;Z) is
aZP -module as well.

It follows that γ̃ is a homotopy equivalence ifH∗(γ̃ ;ZP ) is an isomorphism. To key t
verifying this property are the isomorphisms below: forA = V,X,Y ,

H∗
(
W ;P [G]) ∼= H∗

(
WP ;P [G]) ∼= H∗(WP ;ZP G) ∼= H∗

(
W̃P ;ZP

)
,

H∗
(
A;P [G]) ∼= H∗

(
AP ;P [G]) ∼= H∗(AP ;ZP G) ∼= H∗

(
AP ;ZP

)
.

The last isomorphism holds because ker(π1AP → π1WP ) acts trivially onZP G.
Thus theH∗(−;P [G])-Mayer–Vietoris sequence of the diagram on the left turns

an H∗(−;ZP )-Mayer–Vietoris sequence of the outer rectangle of the top floor. Noγ̃

establishes a morphism ofH∗(−;ZP )-Mayer–Vietoris sequences, and the 5-lemma sh
thatH∗(γ̃ ;ZP ) is an isomorphism as claimed.�

The following lemma is needed in the proof of 2.1.

Lemma 2.2. LetX be aP -local space such that the homologỹH∗(G;Z) of its fundamenta
groupG is a gradedZP -module. TheñH∗(X;Z) is a gradedZP -module.

Proof. The Serre spectral sequence abutting toH∗(X;Z) associated to the fibratio
X̃ → X → BG has

E2
r,s

∼= Hr

(
BG;Hs

(
X̃;Z

))
.

From the assumptions we see that, for(r, s) 	= (0,0), E2
r,s is a ZP -module. This implies

the claim. �
Remark 2.3. The class ofP -local groupsG for which H̃∗(G;Z) is aZP -module contains
all finite P -groups [2, III.10], all nilpotentP -local groups, and is closed under direc
colimits.

3. Strongly preserving homotopy epimorphisms

From 1.1 and 1.3 we deduce thatP -localizing an epimorphism in hoCW yields an
epimorphism in hoCWP . Here we address the question: for which epimorphismf
in hoCW , apart from those of 1.2, isfP also an epimorphism in hoCW?

A homotopy epimorphism in hoCW necessarily induces an epimorphism of fu
damental groups (consider maps into Eilenberg-Mac Lane spacesK(π,1)). Moreover,
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P -localization of an epimorphism of groups always yields an epimorphism of groups. This
cide.
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is so because, inGrp categorical epimorphisms and surjective homomorphisms coin
But in Grp, P -localization turns surjective maps into surjective maps; [10, 2.2].

We give two complementary criteria forP -localization to turn an epimorphism i
hoCW into an epimorphism in hoCW . We make frequent and tacit use of 1.3.

Proposition 3.1. Associated with an epimorphismf in hoCW consider the homotop
pushout diagrams below:

X
f

f

Y

u

Y u W

XP
fP

fP

YP

β

YP α U

If H̃∗(π1XP ;Z) is a ZP -module and ifU is a nilpotent space, thenfP is an epimorphism
in hoCW .

Proof. First note thatπ1YP
∼= π1U is nilpotent. ThereforẽH∗(U ;Z) is a gradedZP -

module. This follows with Lemma 2.2 using the Mayer–Vietoris sequence of the dia
on the right. Thus the nilpotent spaceU is P -local, by [5, Theorem 3B]. On the othe
hand,P -localizing the diagram on the left yields a weak pushout diagram in the homo
category ofP -local spaces; see 1.1. Thereforeα = β , implying thatfP is a homotopy
epimorphism in hoCW . �
Theorem 3.2. Letf :X → Y be an epimorphism inhoCW . Assume that:

(i) the group homologỹH∗(ker(π1f )P ;Z) is a gradedZP -module;
(ii) for G := π1YP , the coefficient mapZP G → P [G] induces homology isomorphism

H∗(−;ZP G) → H∗(−;P [G]).

ThenfP is an epimorphism inhoCW .

Proof. It follows from 2.1 that P -localization preserves the homotopy pushout

Y
f←− X

f−→ Y . With 1.3 we conclude thatfP is an epimorphism in hoCW . �
Corollary 3.3. Letf :X → Y be an epimorphism inhoCW such thatπ1YP is aP -torsion
group. If, in addition,ker((π1X)P → (π1Y )P ) is a directed colimit of nilpotent an
P -torsion groups, thenfP is an epimorphism inhoCW .

Proof. This follows from 3.2: hypothesis 3.2(i) is satisfied by 2.3. Hypothesis 3.2(
satisfied by [3, 2.18]. �
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4. Preserving homotopy pullbacks
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P -localization of spaces relates less directly to homotopy pullbacks and homoto
monomorphisms than to homotopy pushouts and homotopy epimorphisms. Various facet
of this phenomenon are: (1) there is no pullback analogue of 1.1; (2) a hom
monomorphism necessarily induces a monomorphism of homotopy groups (consid
maps with a sphere as its domain); (3)P -localization of groups fails to preserv
monomorphisms.

Here we give conditions under whichP -localization preserves homotopy pullbac
Our main result here depends upon two auxiliary results each of which has some i
in its own right: (1) Under which conditions doesP -localization induceP -localization of
all homotopy groups? (2)under which conditions doesP -localization preserve a homotop
fibration? Our approach to answering these questions relies upon the concept of aP -torsion
action space:

Definition 4.1. A spaceX is aP -torsion-action space (PTA-space) if there is aP -torsion
groupQ, called an acting torsion group, and an epimorphismπ1X � Q, such that, for
eachk � 2, the action homomorphismπ1X → Aut(πkX) factors throughQ.

Theorem 4.2. SupposeX is a PTA-space withP -local fundamental group and actin
torsion groupQ. Then the following hold:

(i) For k � 2, πkX → πkXP is P -localization.
(ii) XP is a PTA-space with acting torsion groupQ.
(iii) P -localization preserves the homotopy fiber sequenceX′ → X → BQ.

Proof. First consider the case whereQ = 1 is the 1-element group; i.e., whereG := π1X

acts trivially on the higher homotopy groups ofX. In the diagram below setH := G. So
X′ is the universal cover ofX. Apply P -localization fiberwise [4, 1.F] to the fibration o
the left to obtain the commutative diagram below.

X′ u′
X′

P

X
u 
X

BH BH

The mapu is aP -equivalence, and we claim that
X isP -local. We know thatu′ P -localizes
the homotopy groups ofX′. Therefore the same applies tou. Further, the action ofG on
πk


X is trivial for k � 2. This follows from the fact thatu inducesG-module morphisms
of higher homotopy groups: Ifb ∈ πk


X, thenb = u(a)/n for somea ∈ πkX andn ∈ P ′. If
g ∈ G, it follows that

n(g . b) = g . u(a) = u(a).
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As divisibility by n is unique inπk

X, g . b = b. Thus
X is P -local, and the claim follows

,
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in the case whereQ = 1.
As for the general case, setH := Q in the diagram above. The mapu is aP -equivalence

and we claim that
X is P -local. We know thatπ1X ∼= π1
X is P -local. Further, we just saw
that u′ and, henceu, induceP -localization of higher homotopy groups. The action
π1X

′
P on the higher homotopy groups is trivial, hence factors throughQ. Thereforeπ1
X

is a PTA-space with acting torsion groupQ, implying [3, 2.18] that
X is P -local. Thusu
P -localizesX. �
Theorem 4.3. From the homotopy pullback diagram on the left

U X

f

Y g Z

UP XP

fP

YP gP
ZP

obtain the diagram on the right byP -localization. Assume the following:

(i) The fundamental groups ofX,Y,Z areP -local.
(ii) f andg induce isomorphisms of fundamental groups.
(iii) X,Y,Z are PTA-spaces with common acting torsion groupQ.

Then the diagram on the right is a homotopy pullback, andU → UP P -localizes higher
homotopy groups.

Proof. First consider the case whereQ = 1. To build the left commutative diagram belo
setH := G := π1Z, and form the vertical fiber sequences; i.e., the top floor consis
universal covers of the middle floor.

U ′ X′

f ′

U ′
P X′

P

f ′
P

Y ′ g′
Z′ Y ′

P

g′
P

Z′
P

U X

f


U XP

fP

Y g Z YP gP
ZP

BH BH BH BH

BH BH BH BH

All of the 6 faces of the top left cube are homotopy pullbacks. ApplyP -localization
fiberwise to obtain the homotopy commutative diagram on the right. Then all the
of the right top cube are homotopy pullbacks. The top face on the right is also a hom
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pullback. To see this, note that tensoring the homotopy Mayer–Vietoris sequence of the
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top face on the left withZP yields a homotopy Mayer–Vietoris sequence of the
right square. The latter sequence maps into the homotopy Mayer–Vietoris sequence of t
homotopy pullback diagram of̃YP → Z̃P ← X̃P , whose limit space we callW . With the
5-lemma we conclude that̃UP → W is a homotopy equivalence. It follows that the rig
middle floor is a homotopy pullback as well. Consequently [4, 1.10]
U is also aP -local
space, implying that theP -equivalenceU → 
U P -localizes. This implies the claim in th
case whereQ = 1.

For the general case, setH := Q in the diagram above. Again, all of the 6 faces
the top left cube are homotopy pullbacks. ApplyP -localization fiberwise to obtain th
homotopy commutative diagram on the right. Then all the sides of the right top cub
homotopy pullbacks. We just saw that the top face on the right is also a homotopy pu
It follows that the right middle floor is a homotopy pullback as well. Consequently [4, 1

U is also aP -local space, implying that theP -equivalenceU → 
U P -localizes. That
U → UP P -localizes higher homotopy groups follows with a homotopy Mayer–Viet
argument. �

5. Preserving homotopy monomorphisms

A homotopy monomorphismf :Y → Z induces monomorphisms in homotopy grou
(consider mapsα,β :Sn → Y ). This simple criterion allows us to see that localization
hoCW at a set of primesP does not preserve every homotopy monomorphism:

Example 5.1. The mapf :BC3 → BΣ3, associated to the inclusion of the cyclic groupC3

of order 3 into the symmetric groupΣ3, is a monomorphism in hoCW . Localizing it
at P := {3} yields (C3)P = C3, while (Σ3)P = 1. ThereforefP cannot be a homotop
monomorphism.

On the other hand:

Lemma 5.2. If f :Y → Z is a monomorphism in the homotopy category ofP -local CW-
spaces, it is automatically a monomorphism inhoCW .

Proof. Consider the homotopy pullback diagram below.

U
i

j

Y

f

Y
f

Z

By [4, 1.10], U is P -local. It follows thati = j becausef is a monomorphism in th
homotopy category ofP -local CW-spaces 1.3. However, the diagram is a weak pullb
in hoCW . Sof is a monomorphism in hoCW . �
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Theorem 5.3. Let f :Y → Z be a homotopy monomorphism. Supposeπ1f is an
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isomorphism ofP -local fundamental groups and thatY and Z are PTA-spaces with
common acting torsion groupQ. ThenfP :YP → ZP is a homotopy monomorphism.

Proof. Consider the commutative diagrams below:

U
i

j

Y

f

Y
f

Z

UP
iP

jP

YP

fP

YP fP
ZP

If the diagram on the left is a homotopy pullback, we concludei = j from 1.3. By 4.3
the right diagram is a homotopy pullback, and it satisfiesiP = jP . SofP is a homotopy
monomorphism. �
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