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Abstract

We give conditions under which localization at a set of primkeis the sense of Casacuberta and
Peschke [Trans. Amer. Math. Soc. 339 (1993) 117-140] preserves homotopy pushouts and homotopy
pullbacks. We then apply these results to infer conditions under whidbcalization preserves
homotopy epimgrshisms and homotopy monarphisms. We also obtaiconditions under which
P-localization of non-nilpotent spaces indudgdocalization of its homotopy groups.

0 2004 Elsevier B.V. All rights reserved.

Keywords:Localization; Homotopy-pushout; Honagy-pullback; Homotopy-epimorphism;
Homotopy-monomorphism

Introduction

Localizing spaces at a set of primes in the sense of Casacuberta and Peschke [3] is
one of the possible ways of extendimglocalization of nilpotent spaces [13,5] over all
spaces. On nilpotent spaces the effecPdbcalization is quite transparent, while various
degrees of mystery surround its effect on milpotent spaces andaps between them.

This constitutes an unwelcome obstaitl the use of localization methods.

Here we give conditions under whidk-localization preserves fundamental constructs
of homotopy theory, like homotopy pushouts/pullbacks, and homotopy epimorphism/
monomorphisms. The main results are 2.1 preservation of homotopy pushouts, 3.2
preservation of homotopy epimorphisms, 4.2 preservation of homotopy fibrations, 4.3
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preservation of homotopy pullbacks, and 5.3. We comment briefly on what ‘preserves’
means in each case. Further details can be fouttgtimtroductions to the various sections.

Let haCWW denote the homotopy category of based connected CW-complexes, and
hoCW p the full subcategory oP-local CW-complexes. Th&-localization of a homotopy
pushout diagram in BV always deserves to be regarded as a homotopy pushout in
hoCWp. Thus 2.1 expresses conditions under whitttocalization preserves a homotopy
pushout diagram in &V in the stronger sense that the result is again a homotopy
pushout in h6W. Likewise, P-localizing an epimorphisny in haCW always yields
an epimorphism in ©Wp. So 3.1, and 3.2 express conditions under whjghis an
epimorphism in h6W. This extends earlier work of Lin and Shen [7] who answered a
question posed by Hilton and Roitberg in [6] by showing that, in the homotopy category
of nilpotent spaces, talization at a primg always preserves epimorphisms strongly; see
Sections 2 and 3.

P-localization need not turn a homotopy pullback diagram iGWbdinto a homotopy
pullback diagram in h&WW p. However, if it does, then the-localized homotopy pullback
in haCWp is automatically a homotopy pullback in &aV. The situation for homotopy
monomorphisms is similar. These results depend upon the new concepP-dbrgion
action space: the fundamental group acts @mhér homotopy groups through automor-
phisms whose order is finite and is divisible by prime#inFor such spaces we show that
P-localization induceg-localization of all homotopy groups 4.2; see Sections 4 and 5.

Notation and conventions

ThroughoutP denotes a set of prime numbers, aRdthe multiplicative closure of the
set of primes not inP. Localization atP of a groupG will be as in [11,10]. LetP[G]
denote the ring localization of the group riddg; obtained by inverting all of the elements
1+ g+ ---+g" 1 whereg € G, andn € P’. See [3, Section 2] for details on this
construction and its role in the-localization of spaces.

Localization atP of a connected based space will be as in [3]. We denote 8y\the
homotopy category of based CW-spaces, and @#p the full subcategory of-local
spaces. For a spageand a right modul@/ over its fundamental groufi{,(Z; M) denotes
homology with twisted coefficients .

1. Categorical facts

For the reader’s convenience we collect here some basic facts about the interaction
between localizing functors and the concepts of pushouts, homotopy pushouts, epimor-
phisms, and pullbacks, homotopy pullbacks and monomorphisms. As a reference for
category theoretical terms, we recommend [8]. The classical reference for homotopy
(co-)limits is [1]. For specific properties of homotopy pushouts and pullbacks we recom-
mend [9,12]. Finally, we point out that a homotopy pushoutis a weak pushoufivhthe
homotopy category of based CW-spaces, dnad a homotopy pullback is a weak pullback
in haCW.
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Proposition 1.1. A localizing functorL : € — D on a categong turns weak pushouts into
weak pushouts i, the full subcategory df consisting of.-local objects.

Proof. In the commutative box below, suppose the top is a weak pushditaind the
bottom results from applying to the top.

C———D1

e S

We need to show that the bottom square has the weak pushout prop&riyNiaw, if Z

is L-local, we first obtain a map/ — Z with the required commuting properties. Second,
this map factors througli W, and the expected commuting properties follow from the
universal propertyol.. 0O

Turning to epimorphisms and monomorphisms, we begin with the observation:

Lemmal.2. If f:A — B ina categoryC has a right inversérespectively a left inverge
then f is an epimorphisnfrespectively a monomorphiraf C. Moreover, every functor
€ — D sendsf to an epimorphisnirespectively a monomorphi$wf D.

In the presence of weak pushouts (respectively weak pullbacks), we recognize
epimorphisms (respectively monomorphisms) via the following lemma. We omit its
straightforward proof.

Lemma 1.3. Suppose the categoy has weak pushoutgespectively weak pullbacks
Then a morphisnf: A — BinCis

(1) an epimorphism if and only if = v, for any weak pushout diagram,
f

A———>B

/| e

B—p—=W

(2) a monomorphism if and only if= j, for any weak pullback diagram,

U—r—>

i

Y—/—Z

f
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2. Preserving homotopy pushouts
A general theorem [4, 1.7] suggests ttRatocalization will, in general, not commute
with homotopy colimits: there is a natural isomorphism
(holimX)p = (holimXp ) .
For a specific example in the case of homotopy pushouts, consider the universal map

St v 3 — (STv shp: Inspection of fundamental groups shows that it is not a homotopy
equivalence. The following theorem gives conditions under which the canonical map

holim(Yp <= Vp — Xp) — (holim(Y <V — X)),

is a homotopy equivalence

Theorem 2.1. Let f:V — X and g:V — Y be maps inducing epimorphisms of
fundamental groups. Form the homotopy pushout diagram on the left below.

Ve —"—=Xp

NN,

Yp ——————>U

5 Vp Ir — > Xp
B
8 gp
Y —————————W Yp————U

ap WP

Assume that the following conditions are satisfied

() Each of the group homologiesd,(kermi(Bf)p;Z), Hs(kermi(ap);Z), and
ﬁ*(kernl(ﬂp); 7Z) are gradedZp-modules

(i) For G :=m1Wp, the coefficient mafp G — P[G] induces homology isomorphisms
Hi(=;ZpG) = Hy(—; PIG]).

ThenP-localization turns the left homotopy pushout into a homotopy pushdwddny .

Proof. For the argumenP-localize the left pushout diagram to obtain the outer part of
the right floor. The bottom square is a homotopy pushout,jamsome map rendering

the floor homotopy commutative. We claim thatis a homotopy equivalence. To see
this build the top floor by taking homotopy fibers ov@6&. Thus ~ denotes ‘universal
cover'. Consequently [12, 7.6.1], all selef the right diagram are homotopy pullbacks.

By Mather’s 2nd cube theorem [9, p. 240], the top square is a homotopy pushout diagram.
We show thaty is a homotopy equivalence. The ithathen follows lecause, with the
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long exact homotopy sequences of the relevant fibrations, we conclude that weak
homotopy equivalence and, hence, a homotopy equivalence.

We first establish that the S|mply connected spamedep are P-local: Wp because
its homotopy groups ar@-local; U becausef, (U; Z) is a gradedZp-module; see [5,
Theorem 3B]. We infer this latter property from: (¥}, X p, Y» haveP-local fundamental
groups which actP-locally on their higher homotopyrgups. Therefore these spaces are
P-local. (2)Hy(Vp; Z), Hy(X p; Z), and H.(Y p; Z) areZ p-modules using hypothesis (i)
and 2.2. TheH,(—; Z)-Mayer-Vietoris sequence of the top square showshhat/; Z) is
aZp-module as well.

It follows thaty is a homotopy equivalence H,(y; Zp) is an isomorphism. To key to
verifying this property are the isomorphisms below: foe= V, X, Y,

Ho(W: PIG]) = Ho(Wp: PIG]) = Ho(Wp: ZpG) = H(Wp: Zp),
Ho(A; PIG]) = Ho(Ap: PIG]) = Hu(Ap; ZpG) = Hy(Ap: Zp).

The last isomorphism holds because(ked p — 71 Wp) acts trivially onZpG.

Thus theH, (—; P[G])-Mayer-Vietoris sequence of the diagram on the left turns into
an H.(—; Zp)-Mayer-Vietoris sequence of the outer rectangle of the top floor. Now
establishes a morphism &f, (—; Z p)-Mayer-Vietoris sequences, and the 5-lemma shows
that H.(y; Zp) is an isomorphism as claimedO

The following lemma is needed in the proof of 2.1.

Lemma2.2. LetX be aP-local space such thatthe homolo&y(G; 7Z) of its fundamental
group G is a gradedZ p-module. TherH, (X; Z) is a gradedZ p-module.

Iiroof. The Serre spectral sequence abuttingHQ(X; 7Z) associated to the fibration
X - X — BG has

E?, =, (BG; Hy(X: 2)).

From the assumptions we see that, fars) £ (0, 0), Eﬁs is aZp-module. This implies
the claim. O

Remark 2.3. The class ofP-local groupsG for which ﬁ*(G; 7)) is aZp-module contains
all finite P-groups [2, 111.10], all nilpotentP-local groups, and is closed under directed
colimits.

3. Strongly preserving homotopy epimor phisms

From 1.1 and 1.3 we deduce thAtlocalizing an epimorphism in BV yields an
epimorphism in h6Wp. Here we address the question: for which epimorphisfns
in haCW, apart from those of 1.2, igp also an epimorphism in &oV?

A homotopy epimorphism in K9V necessarily induces an epimorphism of fun-
damental groups (consider maps into Eilenberg-Mac Lane spd¢esl)). Moreover,
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P-localization of an epimorphism of groups always yields an epimorphism of groups. This
is so because, igrp categorical epimorphisms and surjective homomorphisms coincide.
Butin Grp, P-localization turns surjective maps into surjective maps; [10, 2.2].

We give two complementary criteria faP-localization to turn an epimorphism in
hoCWV into an epimorphism in V. We make frequent and tacit use of 1.3.

Proposition 3.1. Associated with an epimorphisth in hoaCW consider the homotopy
pushout diagrams belaw

f

X—— XPL>YP

N

Y —— Yp——5—U

If ﬁ*(nlxp; 7Z) is aZp-module and ifU is a nilpotent space, thefip is an epimorphism
in haCW.

Proof. First note thatr1Yp = 71U is nilpotent. Therefore’-NI*(U; 7Z) is a gradedZp-
module. This follows with Lemma 2.2 using the Mayer—Vietoris sequence of the diagram
on the right. Thus the nilpotent spacgis P-local, by [5, Theorem 3B]. On the other
hand,P-localizing the diagram on the left yields a weak pushout diagram in the homotopy
category of P-local spaces; see 1.1. Therefare= 8, implying that fp is a homotopy
epimorphismin h6W. 0O

Theorem 3.2. Let f : X — Y be an epimorphism ihoCWV. Assume that:

(i) the group homologﬁ*(ker(nlf)p; 7) is a gradedZ p-module
(i) for G := m1Yp, the coefficient maff.p G — P[G] induces homology isomorphisms
Hi(=;ZpG) = Hy(—; PIG]).

Thenfp is an epimorphism itmaCWV.

Proof. It follows from 2.1 that P-localization preserves the homotopy pushout of

v <L x —L5 v. With 1.3 we conclude thafj is an epimorphism in KOV. O

Corollary 3.3. Let f: X — Y be an epimorphism ihoCW such thatr,1Yp is a P-torsion
group. If, in addition,ker((m1X)p — (m1Y)p) is a directed colimit of nilpotent and
P-torsion groups, therfp is an epimorphism imoCW .

Proof. This follows from 3.2: hypothesis 3.2(i) is satisfied by 2.3. Hypothesis 3.2(ii) is
satisfied by [3, 2.18]. O
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4. Preserving homotopy pullbacks

P-localization of spaces relates lessetditly to homotopy pullbacks and homotopy
monomorphisms than to honagy pushouts and homotopy epirphisms. Various facets
of this phenomenon are: (1) there is no pullback analogue of 1.1; (2) a homotopy
monomorphism necessarily induces a moogohism of homotopy groups (consider
maps with a sphere as its domain); (B)localization of groups fails to preserve
monomorphisms.

Here we give conditions under whicR-localization preserves homotopy pullbacks.
Our main result here depends upon two auxiliary results each of which has some interest
in its own right: (1) Under which conditions do@slocalization induceP-localization of
all homotopy groups? (2)nder which conditions dog-localization preserve a homotopy
fibration? Our approach to answering these questions relies upon the conc@ptarséion
action space:

Definition 4.1. A spaceX is a P-torsion-action space (PTA-space) if there i® dorsion
group Q, called an acting torsion group, and an epimorphist® — Q, such that, for
eachk > 2, the action homomorphismy X — Aut(sr X) factors throughp.

Theorem 4.2. SupposeX is a PTA-space withP-local fundamental group and acting
torsion groupQ. Then the following hold

(i) Fork > 2, mp X — m X p is P-localization.
(i) Xp is a PTA-space with acting torsion groyp.
(i) P-localization preserves the homotopy fiber sequexice- X — BQ.

Proof. First consider the case whege= 1 is the 1-element group; i.e., whete:= 71X
acts trivially on the higher homotopy groups ¥f In the diagram below seif := G. So
X' is the universal cover aX. Apply P-localization fiberwise [4, 1.F] to the fibration on
the left to obtain the commutative diagram below.

, u' X'
X =Ap

|,

X———=X
BH BH

The map is a P-equivalence, and we claim thatis P-local. We know that” P-localizes
the homotopy groups at’. Therefore the same appliesiioFurther, the action of; on
mx X is trivial for k > 2. This follows from the fact that inducesG-module morphisms
of higher homotopy groups: i € 7 X, thenb = u(a)/n for somea € 13 X andn € P'. If
g € G, it follows that

n(g.b)=g.u(a) =u(a).
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As divisibility by n is unique ity X, g . b= b. ThusX is P-local, and the claim follows
in the case wher@ = 1.

As for the general case, sBt:= Q in the diagram above. The maps a P-equivalence,
and we claim thak is P-local. We know thair; X = 71X is P-local. Further, we just saw
thatu’ and, hence:, induce P-localization of higher homotopy groups. The action of
71X, on the higher homotopy groups is trivial, hence factors throgghereforer; X
is a PTA-space with acting torsion grogp implying [3, 2.18] thatX is P-local. Thusu
P-localizesX. O

Theorem 4.3. From the homotopy pullback diagram on the left

U——X Up—Xp
N
Y—F—Z YPT>ZP

obtain the diagram on the right b§-localization. Assume the following

(i) The fundamental groups &f, Y, Z are P-local.
(ii) f andg induce isomorphisms of fundamental groups.
(i) X, Y, Z are PTA-spaces with common acting torsion grap

Then the diagram on the right is a homotopy pullback, &he> Up P-localizes higher
homotopy groups.

Proof. First consider the case whege= 1. To build the left commutative diagram below
setH := G := m1Z, and form the vertical fiber sequences; i.e., the top floor consists of
universal covers of the middle floor.

U’ X/ U}, X/p
Y’ 8 7! Y/P%Z/P
U X U Xp
/ / / %
Y 2 VA Yp T Zp
/BH /BH /BH /BH
BH BH BH BH

All of the 6 faces of the top left cube are homotopy pullbacks. AppHocalization
fiberwise to obtain the homotopy commutative diagram on the right. Then all the sides
of the right top cube are homotopy pullbacks. The top face on the right is also a homotopy
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pullback. To see this, note that tensoring the homotopy Mayer-Vietoris sequence of the
top face on the left withZp yields a homotopy Mayer—Vietoris sequence of the top
right square. The latter sequence maps ihtoltomotopy Mayer—Vietoris sequence of the
homotopy pullback diagram dfp — Zp < X p, whose limit space we caW. With the
5-lemma we conclude thdfp — W is a homotopy equivalence. It follows that the right
middle floor is a homotopy pullback as well. Consequently [4, 11103 also aP-local
space, implying that th@-equivalencd/ — U P-localizes. This implies the claim in the
case wherg) =1.

For the general case, sét:= Q in the diagram above. Again, all of the 6 faces of
the top left cube are homotopy pullbacks. Apptylocalization fiberwise to obtain the
homotopy commutative diagram on the right. Then all the sides of the right top cube are
homotopy pullbacks. We just saw that the top face on the right is also a homotopy pullback.
It follows that the right middle floor is a homotopy pullback as well. Consequently [4, 1.10]
U is also aP-local space, implying that th@-equivalencel/ — U P-localizes. That
U — Up P-localizes higher homotopy groups follows with a homotopy Mayer-Vietoris
argument. O

5. Preserving homotopy monomor phisms

A homotopy monomorphisnfi: Y — Z induces monomorphisms in homotopy groups
(consider mapg, 8:S" — Y). This simple criterion allows us to see that localization in
hoCWV at a set of prime#® does not preserve every homotopy monomorphism:
Example5.1. The mapf : BC3 — B X3, associated to the inclusion of the cyclic gratip
of order 3 into the symmetric grou@s, is a monomorphism in [BAV. Localizing it

at P := {3} yields (C3)p = C3, while (¥3)p = 1. Thereforefp cannot be a homotopy
monomorphism.

On the other hand:

Lemmab.2. If f:Y — Z is a monomorphism in the homotopy categoryeliocal CW-
spaces, it is automatically a monomorphisnha V.

Proof. Consider the homotopy pullback diagram below.

U——=Y
fl if
Y4f>Z

By [4, 1.10],U is P-local. It follows thati = j becausef is a monomorphism in the
homotopy category oP-local CW-spaces 1.3. However, the diagram is a weak pullback
in haCW. So f is a monomorphismin V. O
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Theorem 5.3. Let f:Y — Z be a homotopy monomorphism. Suppoese is an
isomorphism ofP-local fundamental groups and that and Z are PTA-spaces with
common acting torsion grou@. Thenfp :Yp — Zp is a homotopy monomorphism.

Proof. Consider the commutative diagrams below:

U—"-—>vy Up—L~yp
jl if jPl lfp
Y4f>Z YPT>ZP

If the diagram on the left is a homotopy pullback, we conclude j from 1.3. By 4.3
the right diagram is a homotopy pullback, and it satisfigs= jp. So fp is a homotopy
monomorphism. O
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