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Mitochondrial dysfunction is the foremost perpetrator of the nigrostriatal dopaminergic neurodegeneration
leading to Parkinson's disease (PD). However, the roles played by majority of the mitochondrial proteins in PD
pathogenesis have not yet been deciphered. The present study investigated the effects of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and combined maneb and paraquat on the mitochondrial proteome of the
nigrostriatal tissues in the presence or absence of minocycline, levodopa and manganese (III) tetrakis (1-methyl-
4-pyridyl) porphyrin (MnTMPyP). The differentially expressed proteins were identified and proteome profiles
were correlated with the pathological and biochemical anomalies induced by MPTP and maneb and paraquat.
MPTP altered the expression of twelve while combined maneb and paraquat altered the expression of fourteen
proteins. Minocycline, levodopa and MnTMPyP, respectively, restored the expression of three, seven and eight
proteins in MPTP and seven, eight and eight proteins in maneb- and paraquat-treated groups. Although levodopa
and MnTMPyP rescued from MPTP- and maneb- and paraquat-mediated increase in the microglial activation and
decrease in manganese-superoxide dismutase expression and complex I activity, dopamine content and number
of dopaminergic neurons, minocycline defended mainly against maneb- and paraquat-mediated alterations. The
results demonstrate that MPTP and combined maneb and paraquat induce mitochondrial dysfunction and
microglial activation and alter the expression of a bunch of mitochondrial proteins leading to the nigrostriatal
dopaminergic neurodegeneration and minocycline, levodopa or MnTMPyP variably offset scores of such changes.
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1. Introduction

Parkinson's disease (PD) is a chronic neurodegenerative disorder
characterized by the selective degeneration of dopaminergic neurons
of the nigrostriatal pathway. Resting tremor and impaired movement
and coordination are reported to be the major symptomatic features of
the disease [1,2]. Loss of dopaminergic neurons depletes dopamine con-
tent in the dorsal striatum [1]. Anatomically, the disease is characterized
by the formation of intra-cytoplasmic protein aggregates called Lewy
bodies, in the adjacent neurons [1]. While PD is mainly an aging related
disease, inputs of the genetic factors and environmental exposure to
pesticides and heavymetals have also beenwell documented [2]. Sever-
al animal models have been developed to study the cellular and molec-
ular pathogenesis and to ascertain the effective therapy to encounter PD
[2]. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) not only
reproduces some of the basic PD features in primates and rodents but
is also regarded as awell establishedmodel [1]. Similarly, two common-
ly used pesticides namely manganese ethylene-bis-dithiocarbamate
(maneb) and N,N′-dimethyl-4,4′-bipyridinium dichloride (paraquat)
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in combination also mimic several cardinal features of PD in mice [2].
The combined maneb and paraquat model is environmentally relevant
and exhibits the slow and progressive nigrostriatal dopaminergic
neurodegeneration similar to sporadic PD [2].

Due to multi-factorial and sporadic nature of PD, all animal models
developed so far have some or the other limitations [2]. While trans-
genic models elucidate the roles played by the selected genes, patho-
logical aberrations in sporadic PD are contributed by multiple genes
rather than a few selected genes [3,4]. MPTP and combined maneb
and paraquat models were selected over the transgenic models, as
environmental toxins are implicated in PD pathogenesis [1,2]. While
rotenone model is environmentally relevant and is better than
MPTP or combined maneb and paraquat in a few aspects, such as dis-
tinct Lewy body formation, it non-specifically affects the brain. MPTP
and combined maneb and paraquat models were preferred over the
rotenone model since MPTP and paraquat are structurally alike,
their preferential target is the nigrostriatal dopaminergic neurons
and they lead to the mitochondrial dysfunction and subsequent free
radical generation almost in the similar fashion [1,2].

The mitochondrion acts as an epicenter of PD pathogenesis since
its impaired function is associated with sporadic PD and a few
toxicant-induced PDmodels [1]. MPTP and combined maneb and para-
quat inhibit the mitochondrial complex I and/or III [2,5,6] and induce
oxidative stress, neuroinflammation and microglial activation, which
subsequently lead to the nigrostriatal dopaminergic neurodegeneration
[2,7]. Albeit MPTP and combined maneb and paraquat inhibit the mito-
chondrial complex I, underlying mechanisms have been found to be
unrelated. MPTP inhibits ATP biosynthesis owing to the inhibition of
electron transfer from iron–sulfur cluster of complex I to ubiquinone
[8] while paraquat generates free radicals mainly through redox cycling
bywithdrawing the electron from themitochondrial complex I enzyme
[6]. Such differences raise the possibility that diverse steps could be in-
volved after complex I inhibition in both the models.

Proteomic approaches have been used to identify MPTP-induced
changes in the expression of multiple proteins associated with defec-
tive energy metabolism, ubiquitin proteasome system, apoptosis and
mitochondrial function [2]. A few proteins, which decide the fate of
the genetic forms of PD, are localized in or interact with the mito-
chondria and mitochondrial dysfunction could affect neuronal surviv-
al [9]. MPTP and maneb and paraquat have been shown to affect
the mitochondrial protein complexes, their effects on the proteins of
the mitochondrion and the roles of such proteins in the mechanisms
of neurodegeneration have not been fully characterized. Mitochon-
drial proteomics could be used as a precise tool to explicate the
inputs of the novel mitochondrial proteins in MPTP- or maneb- and
paraquat-induced PD.

Minocycline is a clinically available antibiotic and is an anti-
inflammatory molecule. Its neuroprotective efficacy is reported
against many neurological disorders employing animal models [10].
Minocycline is also used in animal models of Parkinsonism and
found to inhibit microglial activation and neuroinflammation, two
key events involved in PD pathogenesis [11,12]. Therefore, the present
study investigated the effect ofminocycline against toxin-induced rodent
models of PD. Similarly, levodopa, a dopamine precursor (in combination
with 3,4-dihydroxyphenylalanine decarboxylase inhibitor-carbidopa), is
extensively used to ameliorate motor dysfunction and other deleterious
effects of dopamine depletion against chemically-induced Parkinsonism
[13–15]. While levodopa is used to improve symptomatic features,
conflicting reports are available in literature and a few studies failed
to detect protective or toxic effect [13]. Toxic potential of levodopa is
described in culture cells but in vivo experimentations failed to un-
equivocally demonstrate whether levodopa accelerates degeneration
of dopaminergic neurons of the substantia nigra and causes permanent
impairment of their function or not [13]. Effect of levodopa largely de-
pends on the route of its administration, dose and time of exposure
[16].
Role of oxidative stress in pesticides-induced Parkinsonism and al-
tered level of superoxide dismutase (SOD) in PD patients are widely
reported [6,17,18]. Use of a levodopa or SOD/catalase mimetic, such as
MnTMPyP, could rescue a compromised antioxidant defense system.
Moreover, superoxide ion is produced as a result of electron transfer re-
actions occurring within the mitochondria, assessment of the effect of
MnTMPyP on the mitochondrial proteome could highlight the link be-
tween oxidative stress and mitochondrial dysfunction. Deficiency of
manganese-superoxide dismutase (Mn-SOD) or its altered expression
is also associated with oxidative stress caused by paraquat or MPTP
[6,17]. Metalloporphyrins, synthetic SOD/catalase mimetics, protect
against MPTP- and paraquat-induced toxic effects in rodents [19,20].
Manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP),
a metalloporphyrin, inhibits lipopolysaccharide-induced free radical
generation and dopaminergic neurodegeneration [21]. Chemical enti-
ties, which restore dopamine content, attenuate oxidative stress and in-
hibit microglial activation, could resist the mitochondrial dysfunction
and subsequent events leading to neurodegeneration [17,22,23]. Albeit
several studies are performed tomeasure the neuroprotective efficacies
of minocycline, levodopa and MnTMPyP against PD [12,14,21], studies
relating with their effects on the mitochondrial proteome have been
limited. A few studies based on the mitochondrial proteomics are
conducted using MPTP model [24–26] but not even a single study de-
scribing the mitochondrial proteome profile of combined maneb and
paraquat model is reported to date with the best of our knowledge.
Comparative mitochondrial proteome patterns of MPTP and maneb
and paraquat at the doses, which induce PD phenotype, could offer
clues to understand the similarities and discrepancies between the
two. Moreover, changes in the mitochondrial proteome profiles of
MPTP and combined maneb and paraquat in the presence or absence
of levodopa, minocycline and MnTMPyP could help in identifying
their variable effects and mode of actions and elucidating the dispar-
ities, if any.

2. Experimental procedures

2.1. Chemicals

Acetonitrile, acrylamide, ammonium bicarbonate, ammonium
persulphate, anti-antioxidant-like protein 1 (AOP1)/peroxiredoxin
(Prx) 3, anti-isocitrate dehydrogenase 3 (NAD+) α (IDH3α) and
anti-voltage dependent anion channel (VDAC) primary antibodies,
anti-mouse/rabbit biotin conjugated secondary antibody, antimycin,
MPTP, alkaline phosphatase chromogen containing 5-bromo-4-
chloro-3-indolyl phosphate (BCIP)/nitro blue tetrazolium (NBT)
liquid substrate, bromophenol blue, 3-[(3-cholamidopropyl)
dimethylammonio]-1-propanesulfonate (CHAPS), 3,3′-diaminobenzidine
liquid enhanced system, 3,4-dihydroxybenzylamine hydrobromide
(DHBA), dithiothreitol (DTT), ethylenediaminetetraacetic acid (EDTA),
ethylene glycol tetraacetic acid (EGTA), fatty acid free bovine serum
albumin (BSA), Folin Ciocalteu's reagent, 3-hydroxytyramine hydrochlo-
ride, magnesium chloride (MgCl2), mannitol, maneb, N,N′-methylene
bisacrylamide, NBT salt, nonidet P-40, paraformaldehyde, paraquat, pro-
tease inhibitor cocktail, phenylmethylsulfonyl fluoride (PMSF), rotenone,
sodium cyanide (NaCN), sodium deoxycholate, sodium dodecyl sulfate
(SDS), sodium fluoride, sodium orthovanadate, sodium pyruvate,
sodium succinate, tris-base, N,N,N′,N′-tetramethylethylenediamine,
trifluoroacetic acid (TFA), tween-20, triton X-100, ubiquinone and urea
were procured from Sigma-Aldrich, St. Louis, MO, USA. Immobiline pH
gradient (IPG) strips, IPG buffers and dry strip cover fluid were obtained
from GE Healthcare, Chalfont, St. Giles, UK. Copper (II) sulfate 5-hydrate,
formaldehyde, glycerol, methanol, MnTMPyP, potassium chloride,
potassium dihydrogen orthophosphate (KH2PO4), potassium sodium
tartrate, silver nitrate, sodium carbonate and sodium thiosulphate were
procured from Merck Biosciences, Darmstadt, Germany. Acetic acid,
agarose, cytochrome c, dibutyl phthalate xylene, disodium hydrogen
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phosphate, ethanol, ethylacetate, heptane sulphonic acid, isobutanol,
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), reduced
nicotinamide adenine dinucleotide disodium salt (NADH), sucrose,
sodium chloride, sodium dihydrogen orthophosphate, thiourea and
trichloroacetic acid were procured from Sisco Research Laboratories
Private Limited, Mumbai, India. Horseradish peroxidase conjugated
streptavidin and normal goat serum were obtained from Bangalore
Genei, Bangalore, India. Acetone, hydrogen peroxide, orthophosphoric
acid, perchloric acid and xylene were obtained from Thermo Fisher
Scientific Pvt. Ltd, Rockford, IL, USA. Anti-Mn-SOD, anti-stathmin,
anti-tyrosine hydroxylase (TH), anti-integrin-αM/OX-42 primary
antibodies and anti-rabbit and anti-mouse alkaline phosphatase
conjugated-secondary antibodies were purchased from Santa Cruz Bio-
technology, Santa Cruz, CA, USA. Trypsin (sequencing grade) was
obtained from Promega, USA. Polyvinylidene difluoride (PVDF) mem-
branewas procured fromMillipore, Billerica,MA, USA and frozen section
medium Neg-50 from Richard Allen Scientific, Kalamazoo, MI, USA.
Coomassie brilliant blue (CBB) R-250was purchased from VWR Interna-
tional Limited, UK. Minocycline and levodopa (in combination with
carbidopa) were of pharmaceutical grade and purchased locally.

2.2. Animal treatment, isolation of brain and dissection of the
nigrostriatal tissues

Male Swiss albino mice were obtained from animal colony of the
CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow,
India. Mice were kept under standard conditions, as described else-
where [27]. Animals were treated intraperitoneally with MPTP
(30 mg/kg), once a day, for 15 days or with maneb (30 mg/kg) and
paraquat (10 mg/kg), twice a week, for 9 weeks along with respec-
tive controls [28,29]. The treatment schedules of MPTP and combined
maneb and paraquat were selected in order to achieve the compara-
ble level of dopamine depletion and the selected doses are also in ac-
cordance with the previously published studies [27,28]. Subsets of
animals were also treated intraperitoneally with levodopa (carbidopa
combined; total 7 mg/kg) or minocycline (30 mg/kg) or MnTMPyP
(5 mg/kg) [11,30,31], once a day, for 15 days in case of MPTP and for
9 weeks in case of maneb- and paraquat-treated groups along
with respective controls. Levodopa, minocycline or MnTMPyP was
administered 2 h before the administration time of the toxin. Controls
were injected with an equal volume of vehicles using the similar treat-
ment paradigms. Animals were killed via cervical dislocation and brain
was dissected out and kept at −80 °C till further use. The substantia
nigra and dorsal striatum were dissected out from the brain. Enzyme
activities and dopamine content were measured on the same day;
however, remaining experiments were performed a few days after the
day of animal killing. The study (a part of BSC0115) was approved by
the institutional ethics committee for the use of laboratory animals.

2.3. Immunostaining of dopaminergic neurons and activated microglia

TH and integrin-αM specific antibodies were used to stain dopami-
nergic neurons andmicroglial cells, respectively, of the substantia nigra
in the coronal sections of mouse brain. TH- and integrin-αM-
immunoreactivities were performed, as described elsewhere [27]. Sec-
tions were viewed under the microscope (Leica Microscope DM6000
B, Germany), images were captured and the cells were counted using
Leica QWin image analysis software (Leica Microsystems, Heerbrugg,
Switzerland), as described previously [11,27]. In summary, the slides
were coded by a person and counting was done in an unbiased way
by another person in the area recognized by the anatomical landmarks.
The first section from each brain was selected from a fixed distance.
Thereafter, every second section was selected and TH-positive cells/
microglial cells were counted bilaterally using two sampling areas
(100 μm × 100 μm) on one side for each tracing. Counting was
performed in three sections per animal using 3 animals per group per
set of experiment and aminimumof 3 independent sets of experiments
were performed [11,27].

2.4. Measurement of dopamine

Dopamine was measured (n = 3 independent sets comprised of
the striatal tissue of 2 animals per set) in filtrate of the supernatant,
which was collected after centrifugation of the striatal tissue homog-
enate (10% w/v), employing high performance liquid chromatogra-
phy coupled with reverse phase C-18 column and electrochemical
detector (Waters, Milford, MA, USA) [27]. DHBA was used as the in-
ternal standard and 3-hydroxytyramine hydrochloride as the external
standard.

2.5. Isolation of mitochondrial fraction

Mitochondrial fraction was isolated from the nigrostriatal tissues
(dorsal striatum and substantia nigra) by differential centrifugation
[32]. The tissues were homogenized in the mitochondria isolation
buffer (pH 7.2) containing HEPES (20 mM), sucrose (75 mM), manni-
tol (215 mM), EGTA (1 mM), EDTA (1 mM), PMSF (1 mM) and pro-
tease inhibitor cocktail. Homogenate was centrifuged at 1000 ×g for
5 min at 4 °C and the supernatant was collected. The pellet was
re-suspended in the same buffer, centrifuged and the supernatant
was taken. The supernatants were pooled and centrifuged at high
speed (13,000 ×g) for 10 min at 4 °C. The pellet was washed twice
with the same buffer and suspended in a minimum volume of the mi-
tochondria isolation buffer. The suspension was challenged with re-
peated freezing and thawing followed by sonication to release the
mitochondrial proteins.

2.6. Measurement of protein content

Protein content was measured by Lowry's method using the stan-
dard curve of BSA [33].

2.7. Succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH)
assays

Isolated mitochondrial or cytoplasmic fraction (n = 3 indepen-
dent sets and the nigrostriatal tissues of 3 animals were pooled to
make one set) was suspended in SDH buffer (pH 7.4) containing sodi-
um phosphate (0.25 M), fatty acid free BSA (5 mg/ml) and distilled
water [24]. Iodonitrotetrazolium (1% w/v) was added to the reaction
mixture and vortexed. Sodium succinate (100 mM) was added,
mixed and the reaction mixture was incubated at 37 °C for 90 min.
Trichloroacetic acid (10% w/v) was added to the reaction mixture to
stop the reaction. Ethylacetate was added to obtain an organic
phase, which was used to read absorbance at 490 nm. For LDH
assay, isolated mitochondrial or cytoplasmic fraction was mixed
with sodium pyruvate (27 mM) and phosphate buffered saline.
NADH (4 mM) was added to initiate the reaction and change in ab-
sorbance was recorded at 340 nm for 3 min. The SDH or LDH specific
activity was calculated in terms of nmol/min/mg protein. LDH or SDH
activity was also assayed in the total homogenate. The value of the
total homogenate was considered as 100% and the specific activity
of LDH or SDH was calculated accordingly.

2.8. Complex I and complex III activities

Complex I and III activities were performed from the isolated pure
mitochondrial fractions (n = 3 independent sets and the nigrostriatal
tissues of 3 animals were pooled to make one set). For complex I activ-
ity, isolated mitochondria and ubiquinone 1 (0.05 mM) were added to
the assay buffer (pH 7.4) containing potassium phosphate (35 mM),
NaCN (2.65 mM), MgCl2 (5 mM), EDTA (1 mM), fatty acid free BSA
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(1 mg/ml) and antimycin (2 μg/ml). The reactionmixture was incubat-
ed for 2 min and NADH (5 mM) was added to initiate the reaction. The
rate of decrease of absorbance at 340 nm was monitored (SpectraMax
M5 spectrophotometer, Molecular Devices, USA) for 3 min at the inter-
val of 15 s. The enzyme activity was calculated as nmol of NADH
oxidized/min/mg protein and expressed as % of control [34].

Complex III activity was measured employing a method described
elsewhere [35] with minor modifications. Isolated mitochondria were
added to the reaction mixture containing potassium phosphate
(50 mM; pH 7.4), EDTA (10 mM), MgCl2 (5 mM), NaCN (2 mM), ro-
tenone (1 μM) and cytochrome c (1.25 mg/ml). The reaction was ini-
tiated by the addition of ubiquinol (100 μM). The absorbance was
recorded (SpectraMax M5 spectrophotometer, Molecular Devices,
USA) at 550 nm for 5 min. The enzyme activity was calculated as
nmol of cytochrome c reduced/min/mg protein and expressed as %
of control.
2.9. Proteome profiling

Mitochondrial proteins (n = 3 independent sets and the nigrostriatal
tissues of 3 animals were pooled to make one set) were separated
employing two-dimensional polyacrylamide gel electrophoresis (2-D
PAGE) and differentially expressed proteins were identified by matrix
assisted laser desorption/ionization-time of flight/time of flight (MALDI-
TOF/TOF) mass spectrometry.
2.9.1. 2-D PAGE
Mitochondrial proteins (~400 μg) were mixed with chilled acetone

(1:10 ratio) and the mixture was kept at −20 °C for 2 h to precipitate
the proteins. Mitochondrial proteins were concentrated by centrifuging
the sameat 15,000 ×g for 20 minat 4 °C anddissolving the resultant pellet
in a minimum volume of 2-D PAGE lysis buffer (4% CHAPS, 1 mM EDTA,
7 M urea, 2 M thiourea, 20 mM tris, 10 mM DTT, 1 mM PMSF and
protease inhibitor cocktail). The mixed content was kept at room
temperature for 1 h to solubilize the proteins. IPG strips were
rehydrated in the rehydration buffer (2% IPG buffer, 2% CHAPS,
0.002% bromophenol blue, 8 M urea and 18 mMDTT) containing mi-
tochondrial proteins for 8 h and the isoelectric focusing was
performed up to 14,000 V h. IPG strips were equilibrated [29] in
the equilibration buffer [50 mM Tris–HCl (pH 8.8), 30% glycerol,
6 M urea, 2% SDS, 0.002% bromophenol blue and 65 mM DTT] for
20 min and the second dimension electrophoresis was carried out
in 12.5% SDS polyacrylamide gels. CBB R-250 or silver staining was
done to visualize the protein spots in the gels. The analysis of resul-
tant spots was done using image master 2-D platinum software ver-
sion 7.0 [11,29].
2.9.2. MALDI-TOF/TOF analysis
The differentially expressed protein spots were excised from the

CBB R-250 stained gels, chopped into tiny pieces and destained
until blue color disappeared. Gel pieces were rinsed with ammonium
bicarbonate (25 mM) and dehydrated thrice with the equal volume
of acetonitrile and ammonium bicarbonate. Gel pieces were dried
and trypsin (2 μg/μl) and ammonium bicarbonate (25 mM) were
added and incubated overnight at 37 °C to digest the proteins. The
mixed content was centrifuged and the supernatant was taken. The
pellet was suspended in 60% acetonitrile containing 1% TFA; incubat-
ed for 15 min and centrifuged to obtain the supernatant. Superna-
tants were pooled and speed vac concentrated. Concentrated
trypsinized peptides were dissolved and co-crystallized with the
matrix, i.e., α-cyano-4-hydroxy cinnamic acid. MALDI-TOF/TOF was
performed in the reflectron mode (model 4800, ABsciex, USA) and
the protein identity was established, as described elsewhere [29].
2.10. Western blotting of IDH3α, Prx3, stathmin and Mn-SOD

Western blotting was performed according to the method described
elsewhere [27]. Isolated mitochondria (n = 3 independent sets and the
nigrostriatal tissues of 3 animals were pooled to make one set) were
suspended in radioimmunoprecipitation assay buffer [pH 7.6; Tris–HCl
(50 mM), sodium chloride (150 mM), EDTA (2 mM), EGTA (2 mM),
nonidet P-40 (1% v/v); triton X-100 (1% v/v), sodium fluoride (10 mM),
sodium orthovanadate (2 mM), sodium deoxycholate (1% w/v), SDS
(1% w/v) and PMSF (1 mM)]. Suspended sample was sonicated and
centrifuged at 100,000 ×g for 1 h to isolate the membrane bound pro-
teins as well as matrix associated proteins. The protein content was mea-
sured as mentioned in the preceding section and ~50 μg protein was
subjected to SDS-PAGE. The resultant gel was electro-blotted onto PVDF
membrane. Non-fat dry milk (5% w/v) and tween-20 (0.1% v/v) in tris
buffered salinewere used to block the non-specific binding. After success-
ful electro-transfer [as detected by Ponceau S (1.1% w/v in 1% v/v acetic
acid) staining], the membrane was incubated with respective primary
antibody (anti-VDAC, dilution: 1:700; anti-IDH3α, dilution: 1:2000 or
anti-AOP1, dilution: 1:5000 or anti-stathmin, dilution: 1:500, anti-Mn-
SOD, dilution: 1:2000) for 3–4 h at room temperature. The membrane
was incubated with anti-mouse/anti-rabbit monoclonal-alkaline phos-
phatase conjugated secondary antibody. The color was developed using
BCIP and NBT as substrates. The relative band density was calculated
with respect to VDAC, whichwas developed under the similar conditions
using computerized densitometry system (Alpha Imager System, Alpha
Innotech Corporation, San Leandro, CA, USA).

2.11. Statistical analysis

Data obtained from multiple experimental groups were compared
using one-way analysis of variance, followed by Newman–Keuls post
hoc test. However, Student's t-test was used for comparisons where
only two groups were involved. The data are expressed in means ±
standard error of means (SEM). The difference was considered statis-
tically significant, when ‘p’ value was b0.05.

3. Results

3.1. Dopamine content

MPTP or combined maneb and paraquat depleted dopamine con-
tent in the striatum. While levodopa, MnTMPyP or minocycline sig-
nificantly brought back maneb- and paraquat-mediated depletion in
dopamine content, restoration in MPTP-mediated dopamine deple-
tion was observed in the presence of levodopa or MnTMPyP but not
in the presence of minocycline. Minocycline, levodopa or MnTMPyP
alone did not alter dopamine content in the striatum (Fig. 1A).

3.2. Assessment of purity of the mitochondrial fraction and Mn-SOD
protein expression

Significant SDH activity (241.8 ± 39.9, p b 0.05) and insignificant
LDH activity (18.5 ± 8.0, p b 0.001) were noted in the mitochondrial
fraction as compared with the total homogenate (considered 100% for
all independent sets of experiments in case of SDH or LDH). On the
contrary, significant LDH activity (309.4 ± 59.6, p b 0.05) and insig-
nificant SDH activity (26.4 ± 11.3, p b 0.01) in the cytoplasmic frac-
tion were observed as compared with the total homogenate. Such
observations showed that the fractionation cleanly separated the mi-
tochondria from the nigrostriatal tissues. MPTP or combined maneb
and paraquat reduced the expression of Mn-SOD protein in the mito-
chondrial fraction of the nigrostriatal tissues. The expression level
was significantly restored towards normal level in the animals treated
with MnTMPyP or levodopa along with MPTP or maneb and paraquat.



0

5

10

15

20

25

Control
Minocycline
Levodopa
MnTMPyP
Toxin
Toxin+minocycline
Toxin+levodopa
Toxin+MnTMPyP**

## ## ##

***

δδ
δδ

ns

D
op

am
in

e 
le

ve
l (

ng
/m

g 
ti

ss
ue

)

MPTP Maneb+paraquat

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Control
Minocycline
Levodopa
MnTMPyP
Toxin
Toxin+minocycline
Toxin+levodopa
Toxin+MnTMPyP

*
*

# #
#δ δ

ns

B
an

d 
de

ns
it

y 
ra

ti
o 

of
 M

n-
SO

D
re

la
ti

ve
 t

o 
V

D
A

C
  

MPTP Maneb+paraquat

Mn-SOD (25 kDa)

MPTP

Minocycline
Levodopa
MnTMPyP

−      −       −       −      +       +       +       +  
−      +       −       −      −       +       −       −

−      −       −       +      −       −       −       +  
−      −       +       −      −       −       +       −

Maneb+paraquat

−       −      −      −       +        +       +       +  

−       −      −      +       −        −       −       +  
−       −      +      −       −        −       +       −

Toxin        
−       +      −      −       −        +       −       −

VDAC (31 kDa) 

A

B

C

Fig. 1. Effects of MPTP and maneb and paraquat on the striatal dopamine content and Mn-SOD expression in the nigrostriatal tissues in the presence or absence of levodopa,
minocycline or MnTMPyP. Bar diagram representing the dopamine level in the striatum of MPTP- and maneb- and paraquat-treated groups with or without levodopa, minocycline
and MnTMPyP treatment is shown in panel (A). Western blots of Mn-SOD in MPTP and maneb- and paraquat-treated groups with or without levodopa, minocycline and MnTMPyP
treatment are shown in panel (B) while bar diagram representing the relative band density ratio of Mn-SOD and VDAC in MPTP- and maneb- and paraquat-treated groups with or
without levodopa, minocycline and MnTMPyP treatment is depicted in panel (C). The values are calculated as means ± SEM (n = 3 independent experiments). Significant changes
are expressed as * (p b 0.05), ** (p b 0.01) and *** (p b 0.001) in comparison with controls, δ (p b 0.05) and δδ (p b 0.01) in comparison with MPTP-treated group [F = 10.680 and
6.259 in case of dopamine level and Mn-SOD expression, respectively and df (among groups) = 7 and df (within groups) = 16] and # (p b 0.05) and ## (p b 0.01) in comparison
with maneb- and paraquat-treated group [F = 4.299 and 2.875 in case of dopamine level and Mn-SOD expression, respectively and df (among groups) = 7 and df (within
groups) = 16]. The insignificant change with respect to MPTP-treated group is represented as ‘ns’ and the group “Toxin” refers to the animals treated with either MPTP or
maneb and paraquat.
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Minocycline restored the expression of Mn-SOD significantly only in
maneb- and paraquat-treated group (Fig. 1B and C).

3.3. TH-immunoreactivity

MPTP or maneb and paraquat in combination attenuated the num-
ber of TH-positive neurons in the substantia nigra. Minocycline, levodo-
pa or MnTMPyP alone did not alter the level of TH-immunoreactivity.
Levodopa or MnTMPyP significantly reinstated the MPTP- or maneb-
and paraquat-induced changes in the number of TH-positive neurons.
Minocycline rescued maneb- and paraquat-induced decrease in the
number of TH-positive neurons while it did not produce significant
change in MPTP-treated animals (Fig. 2).

3.4. Microglial activation

MPTP or maneb and paraquat in combination augmented the
number of activated microglia in the substantia nigra. Minocycline,
MnTMPyP or levodopa alone did not alter the number of activated
microglia. Minocycline, MnTMPyP or levodopa reduced the number
of activated microglia in the substantia nigra of MPTP- or maneb-
and paraquat-treated animals. However, the reduction was more pro-
nounced in minocycline- or MnTMPyP-treated groups (Fig. 3).

3.5. Mitochondrial complex activity

Mitochondrial complex I (NADH: ubiquinone reductase or NADH
dehydrogenase) activity was significantly reduced by MPTP or
maneb and paraquat. MPTP-induced inhibition in the mitochondrial
complex I activity was significantly rescued by MnTMPyP or levodopa
but not by minocycline. However, maneb and paraquat-mediated al-
teration was significantly restored by all the three agents (Table 1).

Trifling and statistically insignificant reduction in the mitochon-
drial complex III (coenzyme Q: cytochrome c oxidoreductase or
cytochrome b–c1 complex) activity was observed in maneb- and
paraquat-treated animals. Mitochondrial complex III activity in the
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nigrostriatal tissues was not altered in MPTP treated animals. Similar-
ly, no significant change in the mitochondrial complex III activity was
observed in the remaining treated groups (data not shown).

3.6. 2-D PAGE and mass spectrometry

The proteins that displayed statistically significant changes in abun-
dance of at least 1.4 fold were identified by MALDI-TOF/TOF mass spec-
trometry. Twelve protein spots selected from MPTP-treated group
(Fig. 4 and Table 2) on the basis of the criteria mentioned above were
identified by MALDI-TOF/TOF. Up-regulated proteins were identified
as ATP synthase β, dihydrolipoyllysine-residue succinyltransferase
component of 2-oxoglutarate dehydrogenase complex (DLST), IDH3α,
γ-enolase, α-enolase and tubulin α-1A chain while down-regulated
proteins were identified as cytochrome c oxidase subunit 5a (COX 5a)
preprotein, stathmin, dihydropyrimidinase-related protein-2 (DRP-2),
septin-5, Prx3 and Prx2. Similarly, fourteen protein spots from maneb-
and paraquat-treated group (Fig 5 and Table 3), which fulfilled the se-
lection criteria, were identified by MALDI-TOF/TOF. The proteins,
which were up-regulated as compared with respective controls,
were identified as complex III subunit 1, DLST, IDH3α, pyruvate dehy-
drogenase E1 component subunit α (PDH E1α), γ-enolase, α-enolase,
tubulin α-1A chain and actin-1 and proteins, which were down-
regulated, were identified as ATP synthase α, COX 5a preprotein,
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Fig. 3. Effects of MPTP and maneb and paraquat on integrin αM-positivity in the substantia nigra in the presence or absence of levodopa, minocycline or MnTMPyP. The images
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Table 1
Statistics of the mitochondrial complex I activity (expressed in terms of percentage of controls) of the nigrostriatal tissues. The values are calculated as means ± SEM (n = 3
independent experiments). Significant changes are expressed as ** (p b 0.01) and *** (p b 0.001) in comparison with controls, δδ (p b 0.01) and δδδ (p b 0.001) in comparison
with MPTP [F = 19.880 and df (among groups) = 7 and df (within groups) = 16] and # (p b 0.05) and ## (p b 0.01) in comparison with maneb- and paraquat-treated groups
[F = 6.054 and df (among groups) = 7 and df (within groups) = 16]. The insignificant change with respect to MPTP-treated group is represented as ‘ns’.

MPTP group Complex I specific activity (% of control) Maneb + paraquat group Complex I specific activity (% of control)

Control 100 ± 0.0 Control 100 ± 0.0
Minocycline 99.7 ± 4.3 Minocycline 97.9 ± 5.9
Levodopa 98.2 ± 3.4 Levodopa 99.7 ± 6.1
MnTMPyP 97.2 ± 4.5 MnTMPyP 99.8 ± 4.0
MPTP 61 ± 2.9⁎⁎⁎ Maneb + paraquat 66.2 ± 5.3⁎⁎

MPTP + minocycline 65.8 ± 4.0ns Maneb + paraquat + minocycline 82.5 ± 4.7#

MPTP + levodopa 83.2 ± 2.9δδ Maneb + paraquat + levodopa 84.1 ± 4.1#

MPTP + MnTMPyP 90 ± 3.4δδδ Maneb + paraquat + MnTMPyP 91.8 ± 5.8##
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phosphatidylethanolamine-binding protein 1 (PEBP1), stathmin, Prx3
and ubiquitin carboxyl-terminal hydrolase isozyme-L1 (UCH-L1).
Eight proteins-DLST, IDH3α, γ-enolase, α-enolase, tubulin α-1A chain
and COX 5a preprotein, stathmin and Prx3 were common between
maneb- and paraquat- and MPTP-treated groups in terms of the
differential expression patterns. DRP-2, Prx2, septin-5 andATP synthase
β were differentially regulated only in MPTP-treated animals while
PEBP1, UCH-L1, ATP synthase α, complex III subunit 1, PDH E1α and
actin-1 were altered inmaneb- and paraquat-treated animals. Differen-
tially expressed proteins were found to be associated with the



Table 2
Fold changes of differentially expressed proteins in MPTP-treated animals in the presence or absence of levodopa, minocycline or MnTMPyP. The values are calculated as means ± SEM
(n = 3 independent experiments). Significant changes are expressed as * (p b 0.05), ** (p b 0.01) and *** (p b 0.001) in comparison with controls and δ (p b 0.05), δδ (p b 0.01) and
δδδ (p b 0.001) in comparison with MPTP-treated groups. The insignificant changes with respect to MPTP-treated group are represented as ‘ns’ (F-value for each protein is shown in
table while df values among groups and within groups are 7 and 16, respectively). The fold changes are calculated with respect to controls (considering 1 in all independent set of
experiments); therefore, there is no SEM in controls.

Protein name Control Minocycline Levodopa MnTMPyP MPTP + minocycline MPTP MPTP + levodopa MPTP + MnTMPyP F-value

COX 5a preprotein 1.00 ± 0.00 0.97 ± 0.05 0.95 ± 0.11 0.93 ± 0.04 0.61 ± 0.04⁎⁎ 0.59 ± 0.01ns 0.87 ± 0.06δ 0.85 ± 0.01 δδ 8.182
Prx3 1.00 ± 0.00 0.94 ± 0.10 0.95 ± 0.06 0.99 ± 0.10 0.48 ± 0.05⁎⁎ 0.77 ± 0.06 δ 0.74 ± 0.08 δ 0.84 ± 0.02 δ 6.016
Prx2 1.00 ± 0.00 0.93 ± 0.09 0.97 ± 0.02 0.99 ± 0.06 0.67 ± 0.04⁎ 0.88 ± 0.05 δ 0.90 ± 0.02 δ 0.89 ± 0.06 δ 3.798
Stathmin 1.00 ± 0.00 0.97 ± 0.05 0.92 ± 0.03 1.02 ± 0.07 0.52 ± 0.07⁎⁎⁎ 0.57 ± 0.04 ns 0.81 ± 0.04 δδ 0.89 ± 0.07 δδ 12.29
Septin-5 1.00 ± 0.00 0.93 ± 0.08 0.93 ± 0.08 0.98 ± 0.08 0.45 ± 0.12⁎ 0.41 ± 0.04 ns 0.52 ± 0.13 ns 0.59 ± 0.12 ns 7.127
DRP-2 1.00 ± 0.00 0.96 ± 0.06 1.02 ± 0.04 1.00 ± 0.08 0.62 ± 0.07⁎⁎ 0.60 ± 0.03 ns 0.89 ± 0.06 δ 0.69 ± 0.09 ns 7.792
ATP synthase β 1.00 ± 0.00 0.98 ± 0.09 0.96 ± 0.03 1.01 ± 0.10 2.01 ± 0.19⁎⁎⁎ 1.87 ± 0.03 ns 1.27 ± 0.13 δδδ 1.69 ± 0.09 ns 18.05
DLST 1.00 ± 0.00 1.09 ± 0.17 1.06 ± 0.16 1.08 ± 0.07 1.93 ± 0.29⁎⁎ 1.79 ± 0.08 ns 1.90 ± 0.10 ns 1.18 ± 0.02 δδ 8.292
IDH3α 1.00 ± 0.00 0.98 ± 0.08 1.01 ± 0.11 0.97 ± 0.09 2.06 ± 0.24⁎⁎ 1.92 ± 0.28 ns 1.10 ± 0.07 δδ 1.21 ± 0.15 δδ 7.884
α-Enolase 1.00 ± 0.00 1.00 ± 0.03 1.00 ± 0.04 1.02 ± 0.07 1.56 ± 0.10⁎⁎ 1.18 ± 0.11 δ 1.52 ± 0.18 ns 1.09 ± 0.04 δ 6.546
γ-Enolase 1.00 ± 0.00 1.00 ± 0.12 1.05 ± 0.12 1.02 ± 0.12 1.64 ± 0.06⁎ 1.60 ± 0.19 ns 1.47 ± 0.08 ns 1.50 ± 0.10 ns 6.195
Tubulin α-1A chain 1.00 ± 0.00 1.01 ± 0.07 0.99 ± 0.07 1.05 ± 0.08 2.06 ± 0.25⁎⁎⁎ 1.86 ± 0.09 ns 1.97 ± 0.13 ns 1.27 ± 0.20 δδ 12.04
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mitochondrial electron transport chain, glucose metabolism, antioxi-
dant function, neuronal growth or with synaptic function, as inferred
from the literature.

Minocycline restored the expressions of three proteins in MPTP-
treated group (Fig. 4 and Table 2) and seven proteins in maneb- and
paraquat-treated groups (Fig. 5 and Table 3). Minocycline reduced the
MPTP-mediated up-regulation in the expression of α-enolase and re-
stored the down-regulation of Prx3 and Prx2 towards controls with var-
ied levels of statistical significances. While minocycline reduced the
expressions of DLST, tubulin alpha-1A chain and α-enolase, it augment-
ed Prx3, COX 5a preprotein, ATP synthaseα and stathmin expressions in
maneb- and paraquat-treated animals. Moreover, the restoration in the
expression patterns of Prx3 and α-enolase was common in both MPTP-
and maneb- and paraquat-treated groups.

Levodopa altered the expressions of seven proteins in MPTP and
eight proteins in maneb- and paraquat-treated groups towards normal
levels (Figs. 4 and 5 and Tables 2 and 3). Levodopa increased the expres-
sions of Prx3, Prx2, stathmin, DRP-2 and COX 5a preprotein, while it re-
duced the expressions of IDH3α and ATP synthase β in MPTP-treated
animals as compared with MPTP alone treated animals. Similarly, levo-
dopa increased the expressions of Prx3, PEBP1, stathmin, COX 5a
preprotein and decreased the expressions of IDH3α, complex III subunit
1, tubulin α-1A chain and PDH E1α in maneb- and paraquat-treated
group. Common restoration trend for Prx3, stathmin, IDH3α and COX
5a preprotein expressions was observed in maneb- and paraquat- as
well as MPTP-treated groups.

MnTMPyP restored the expressions of eight differentially expressed
proteins in maneb- and paraquat- and MPTP-treated groups (Figs. 4
and 5). Administration ofMnTMPyP inMPTP-treated animals increased
the expressions of Prx3, Prx2, stathmin and COX 5a preprotein and re-
duced the expressions of IDH3α, α-enolase, DLST and tubulin α-1A
chain. Similarly, MnTMPyP increased the expressions of Prx3, ATP
synthase α, stathmin, COX 5a preprotein and reduced the expressions
of complex III subunit 1, IDH3α, DLST and tubulin α-1A chain in
maneb- and paraquat-treated animals. Restoration in the expression
patterns of Prx3, stathmin, COX 5a preprotein, IDH3α, DLST and tubulin
α-1A chain by MnTMPyP exhibited the similar trend in both maneb-
and paraquat- and MPTP-treated groups (Figs. 4 and 5 and Tables 2
and 3).

3.7. Western blotting of IDH3α, stathmin and Prx3

The western blot analyses of stathmin, IDH3α and Prx3 were done
to validate the expression patterns of the proteins obtained from 2-D
PAGE. Prx3, a mitochondrial antioxidant and stathmin, a microtubule-
destabilizing protein, showed down-regulation while IDH3α, a pro-
tein involved in citric acid cycle, showed up-regulation in MPTP as
well as maneb- and paraquat-treated animals, as also observed in
2-D PAGE. IDH3α, Prx3 and stathmin expressions were restored,
when toxicant(s)-treated animals were also challenged with levodo-
pa or MnTMPyP while no significant alteration was noticed in the
expression of stathmin in animals treated with minocycline and
MPTP (Fig. 6). The expression of IDH3α remained unchanged in
minocycline treated groups that were also exposed to MPTP or
maneb and paraquat. The western blot images presented in the fig-
ures represent the pictures of a representative set selected from
three to four independent sets of experiments rather than the best
images of specific protein from different sets while the bar diagrams
are the averages of all the experiments; therefore, some minor devia-
tions could be noted while comparing the images with bars.

4. Discussion

MPTP and maneb and paraquat in combination reduced the num-
ber of TH-positive neurons and depleted the level of dopamine in the
dorsal striatum. Levodopa and MnTMPyP significantly rescued the
toxicants-mediated dopaminergic neuronal loss and dopamine deple-
tion in both models as also reported elsewhere [14,15,19,20,36]. Sta-
tistically insignificant increase in the striatal dopamine level was
observed in levodopa alone treated animals. This is in accordance
with many reports, which have shown lack of significant change in
the striatal dopamine content after levodopa administration in con-
trols [37,38]. While minocycline significantly ameliorated the loss
of TH-positive neurons and dopamine depletion in maneb- and
paraquat-treated animals [39], the changes were insignificant in
MPTP-treated animals in this study, as observed in earlier study
[40]. This could be due to inability of minocycline to restore the
MPTP-induced complex I inhibition and decreased Mn-SOD level.
The results provide a clue that superoxide radical could act as an
important mediator in MPTP-induced neurodegeneration. Reduction
in microglial activation reflects the anti-inflammatory nature of
minocycline, levodopa or MnTMPyP against MPTP- or maneb- and
paraquat-induced neurodegeneration [12,21,41]. The inhibition of
microglial activation observed with minocycline in animals treated
with MPTP reflects its anti-inflammatory property, which could not
be correlated with overall neurodegeneration [40]. We do not have
direct experimental evidence whether differences in the efficacy of
particular treatments against both models reflect mechanistic distinc-
tions or not. It could be mechanistic distinctions rather than trivial
explanations since animals were treated with levodopa, minocycline
or MnTMPyP 2 h prior to respective neurotoxin and the extent of
neurodegeneration observed at the end in both the models was com-
parable. Additionally, under the current paradigms, the drugs were
given 2 h prior to neurotoxin, which do not mimic a real-life situation
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Fig. 5. Effect of maneb and paraquat on the nigrostriatal mitochondrial proteome profile in the presence or absence of levodopa, minocycline or MnTMPyP. 2-D gel electrophoreto-
grams and differentially expressed proteins in maneb- and paraquat-treated groups in comparison with controls are shown in panel (A) and modulations in the expression levels of
differentially expressed proteins in the presence of levodopa, minocycline or MnTMPyP are shown in panel (B).
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where the cellular insult (be it a mutation or environmental factor) is
likely to be present for a number of years before patients are first di-
agnosed and treated.

Negligible LDH activity in the mitochondrial fraction exhibited the
purity of the mitochondrial fraction. MPTP or maneb and paraquat
significantly inhibited complex I but not complex III in the study.
Unaltered complex III in MPTP-treated animals is in accordance
with an earlier finding [5] while no change in the activity of complex
III in maneb- and paraquat-treated animals reflects that maneb and
paraquat cause toxicity differently as compared with maneb alone
or maneb-induced toxicity could also act through other targets in ad-
dition to the mitochondrial electron transport chain [42]. Complex I
inhibition led to an incomplete reduction of oxygen and enhanced
superoxide radical production, which was reflected from the reduced
mitochondrial Mn-SOD expression. Nitric oxide generated by the
activated microglia could inactivate Mn-SOD [43]. This could be corre-
lated with the reports, which have shown that the mitochondrial anti-
oxidant defense system gets impaired in MPTP- or paraquat-induced



Table 3
Fold changes of differentially expressed proteins in maneb- and paraquat-treated animals in the presence or absence of levodopa, minocycline or MnTMPyP. The values are calcu-
lated as means ± SEM (n = 3 independent experiments). Significant changes are expressed as * (p b 0.05), ** (p b 0.01) and *** (p b 0.001) in comparison with controls and
# (p b 0.05), ## (p b 0.01) and ### (p b 0.001) in comparison with maneb- and paraquat-treated groups. The insignificant changes with respect to maneb- and
paraquat-treated group are represented as ‘ns’ (F-value for each protein is shown in table while df values among groups and within groups are 7 and 16, respectively). The fold
changes are calculated with respect to controls (considering 1 in all independent experiments); therefore, SEM value is 0 in controls.

Protein
name

Control Minocycline Levodopa MnTMPyP Maneb +
paraquat

Maneb + paraquat +
minocycline

Maneb + paraquat +
levodopa

Maneb + paraquat +
MnTMPyP

F-value

COX 5a
preprotein

1.00 ± 0.00 0.96 ± 0.08 0.96 ± 0.06 0.97 ± 0.04 0.62 ± 0.06⁎⁎ 0.82 ± 0.01# 0.92 ± 0.05## 0.89 ± 0.04## 5.207

Prx3 1.00 ± 0.00 1.01 ± 0.08 0.91 ± 0.07 0.97 ± 0.02 0.46 ± 0.08⁎⁎⁎ 0.77 ± 0.07# 0.74 ± 0.05# 0.69 ± 0.10# 7.865
PEBP1 1.00 ± 0.00 0.99 ± 0.06 0.93 ± 0.02 0.98 ± 0.06 0.59 ± 0.07⁎⁎ 0.61 ± 0.09 ns 0.85 ± 0.04# 0.63 ± 0.03 ns 9.474
Stathmin 1.00 ± 0.00 1.03 ± 0.03 0.97 ± 0.13 1.03 ± 0.06 0.50 ± 0.07⁎⁎ 0.92 ± 0.10## 0.84 ± 0.06## 1.03 ± 0.09## 5.058
UCH-L1 1.00 ± 0.00 0.95 ± 0.06 0.98 ± 0.03 0.98 ± 0.01 0.70 ± 0.07⁎ 0.78 ± 0.04 ns 0.82 ± 0.10 ns 0.69 ± 0.01 ns 5.811
ATP synthase α 1.00 ± 0.00 0.99 ± 0.07 0.95 ± 0.09 1.01 ± 0.03 0.55 ± 0.10⁎ 0.91 ± 0.04# 0.60 ± 0.08 ns 0.88 ± 0.11# 5.493
Complex III
subunit 1

1.00 ± 0.00 1.03 ± 0.23 1.11 ± 0.30 0.94 ± 0.10 2.64 ± 0.20⁎⁎⁎ 2.44 ± 0.25 ns 1.64 ± 0.26## 1.44 ± 0.13# 10.06

PDH E1α 1.00 ± 0.00 1.02 ± 0.08 0.93 ± 0.007 0.98 ± 0.07 1.54 ± 0.11⁎ 1.51 ± 0.14 ns 1.14 ± 0.02# 1.58 ± 0.17 ns 7.936
DLST 1.00 ± 0.00 0.96 ± 0.29 0.98 ± 0.12 0.92 ± 0.13 2.29 ± 0.12⁎⁎⁎ 1.41 ± 0.16## 2.03 ± 0.11 ns 1.46 ± 0.19## 10.44
IDH3α 1.00 ± 0.00 0.98 ± 0.13 0.92 ± 0.11 0.93 ± 0.13 1.84 ± 0.23⁎⁎ 1.52 ± 0.25 ns 1.16 ± 0.08# 1.01 ± 0.08## 4.748
α-Enolase 1.00 ± 0.00 1.06 ± 0.11 1.03 ± 0.12 0.98 ± 0.01 1.49 ± 0.04⁎⁎ 1.19 ± 0.02# 1.53 ± 0.08 ns 1.55 ± 0.14 ns 8.473
γ-Enolase 1.00 ± 0.00 0.95 ± 0.07 0.99 ± 0.15 1.00 ± 0.02 1.74 ± 0.22⁎⁎ 1.58 ± 0.16 ns 1.67 ± 0.07 ns 1.79 ± 0.16 ns 8.628
Tubulin α-1A
chain

1.00 ± 0.00 0.97 ± 0.14 0.94 ± 0.17 1.16 ± 0.13 1.82 ± 0.09⁎⁎ 1.19 ± 0.02# 1.42 ± 0.17# 1.26 ± 0.15# 4.962

Actin-1 1.00 ± 0.00 1.17 ± 0.20 1.15 ± 0.13 1.01 ± 0.27 2.64 ± 0.22⁎⁎ 2.48 ± 0.29 ns 2.54 ± 0.28 ns 2.21 ± 0.22 ns 11.41
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Parkinsonism [17,42]. Minocycline restored themitochondrial complex
I inhibition and Mn-SOD level in maneb- and paraquat-treated animals
thereby attenuating the generation of reactive oxygen species, which
reflects the involvement of mitochondria in minocycline-induced
neuroprotection [23]. Restoration of complex I activity and Mn-SOD
expression by levodopa or MnTMPyP indicate that both offer
neuroprotection at the mitochondrial level by reducing oxidative stress
generated by MPTP or maneb and paraquat combined. Conflicting re-
ports are available in literature regarding the effect of levodopa on the
complex I activity. In this study, levodopa was found to increase the
complex I activity, when given with MPTP or maneb and paraquat,
however, it did not alter the complex I activity, when administered
alone. This is in accordancewith the previous reports, which have dem-
onstrated the improvement in motor dysfunctions by levodopa in mice
having mitochondrial defects [22]. MnTMPyP-mediated increase in
complex I activity could also be explained on the basis of a report,
which has shown the reduced complex I activity in heterozygous
Mn-SOD knockoutmice [44]. VDAC1was used as a protein loading con-
trol in thewestern blot analyses.While a few studies, including a prote-
omics study, which employed MPTP-treated neuroblastoma cells [24],
have shown an alteration in VDAC 1 protein expression after MPTP
treatment, no statistically significant changes were observed in any of
the treated groups, including MPTP, in the current study, as compared
with controls. This is in accordance with many reports [45–48], which
have also used VDAC1 as a loading control and did not see significant
change in VDAC protein expression after MPTP or paraquat exposure.

The proteome profile of MPTP and maneb and paraquat was com-
pared since the former is the most widely usedmice model while latter
is environmentally relevant and a chronic PD model. Down-regulation
of COX 5a preprotein, a component of mitochondrial complex IV, in
MPTP- and maneb- and paraquat-treated groups is in accordance
with a previous study [49]. Up-regulation of ATP synthase β and
down-regulation of ATP synthase α, components of complex V after
MPTP and maneb and paraquat treatment, respectively, reveal that
both agents alter the mitochondrial integrity. Maneb and paraquat
treatment increased the level of complex III subunit 1 protein, which
is in accordance with a study conducted employing 6-OHDA model
[50]. Altered level of subunits of the respiratory chain complexes in
MPTP- andmaneb- and paraquat-treated animals reflects that the inhi-
bition of complex I could disturb the expression of various proteins of
the respiratory chain, which may lead to mitochondrial damage and
subsequent neuronal death. Up-regulation of DLST, IDH3α, γ-enolase
and α-enolase in MPTP- and maneb- and paraquat-treated groups and
PDH E1α in only latter group indicate that in spite of common targets,
a few variable steps are also targeted. Altered levels of the IDH3α,
γ-enolase and α-enolase are in accordance with the previous reports
related to PD or other neurological disorders [51,52]. Mutations in a
gene that encodes DLST subunit of α-ketoglutarate dehydrogenase
complex and another gene, which encodes E1α subunit of pyruvate
dehydrogenase complex, have been reported to be associated
with increased risk of PD [53,54]. Although decreased expression of
α-enolase in total cellular proteins is reported [29], the level was in-
creased in the mitochondrial fraction in this study. Toxic insult of
MPTP or maneb and paraquat could increase an interaction of
α-enolase with themitochondrial membrane and thereby an increased
level in themitochondrial fraction [51]. Decreased expression of Prx3 in
MPTP- or maneb- and paraquat-treated group and Prx2 in MPTP-
treated animals indicate that toxins could impair the mitochondrial
and cellular antioxidant defense systems. Reduced level of Prx3 is
reported in PD patients [55] while Prx2 is found down-regulated in
MPTP-induced PD [56]. Stathmin destabilizes microtubule assembly,
binds to tubulin and helps in intracellular organelle migration
thus participates in neuronal growth [57]. Decreased stathmin and in-
creased tubulin expressions in MPTP- and maneb- and paraquat-
treated groups indicate the impaired mitochondrial translocation and
neuronal growth. Down-regulation of stathmin is also reported in the
cypermethrin-induced neurodegeneration [11]. Increased level of
actin in response to maneb and paraquat could indicate occurrence of
an interaction between mitochondria and cytoskeleton, which could
have significantly hampered due to toxic insult. Down-regulation of
DRP-2 inMPTP- and PEBP1 inmaneb- and paraquat-treated group indi-
cate possible defect in the neuronal repair and growth [58,59]. The de-
creased level of septin-5 in response to MPTP could lead to an
accumulation of MPP+ inside the synaptic vesicle and impaired vesicle
transport and fusion [60]. Down-regulation of UCH-L1, which hydroly-
ses polyubiquitin to monoubiquitin, in maneb- and paraquat-treated
animals, indicates the reduced accessibility of free ubiquitin for conju-
gation with proteins for degradation. This is supported by a recent
study, which has shown the down-regulation of UCH-L1 gene in
maneb- and paraquat-induced Parkinsonism [61]. Although stathmin,
UCH-L1 and Prx2 are not localized in the mitochondria, their presence
in the mitochondrial fraction raised the possibility of their interaction
or translocation to the mitochondrial membrane, as reported in a few
studies [57,62,63].
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Up-regulation of α-enolase and DLST expressions in maneb- and
paraquat-treated animals was reduced after minocycline treatment,
which could be due to restoration in the expression level of ATP
synthase α and COX 5a preprotein. The results further indicate that
minocycline either directly or indirectly modifies the deleterious mi-
tochondrial effects from toxin exposure [23]. Minocycline was able to
restore the expression of stathmin and tubulin in maneb- and
paraquat-treated animals reflecting its ability to partially improve
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the transport of intracellular organelles or pathway required for neu-
ronal growth [64]. The increased expression of Prx3 and Prx2 in the
animals treated with minocycline along with MPTP and Prx3 in
maneb- and paraquat-treated animals reveals anti-oxidative role of
minocycline [39] and could be associated with its ability to encounter
the NADPH oxidase-mediated production of free radicals leading
to reduced microglial activation. Inflammatory response to toxic in-
sult is related to enhanced production of plasminogen by activated
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microglia [51]. Restoration in the increased level of α-enolase after
minocycline treatment in MPTP- or maneb- and paraquat-treated ani-
mals could be correlated with decreased microglial activation in re-
sponse to minocycline, as plasminogen binds with α-enolase [51].
Levodopa-induced blockade of complex I inhibition could restore COX
5a preprotein, complex III subunit 1, IDH3α and PDH E1α. The restora-
tion of DRP-2, PEBP1, stathmin and tubulin by levodopa indicates that it
could up-regulate neuronal growth and repair process, as reported else-
where [13]. Levodopa increased the level of Prx3 and Prx2 showing that
it can encounter oxidative stress [13]. MnTMPyP-induced restorations
in COX 5a preprotein, complex III subunit 1, IDH3α, α-enolase, DLST,
stathmin and tubulin could be due to its ability to encounter oxidative
stress-induced changes in the expression of proteins by increasing
Mn-SOD level. Decreased activity of electron transport chain enzymes
in response to Mn-SOD deficiency is also reported in a study [44].
Overall, the study demonstrates that MPTP- and maneb- and
paraquat-induced dopaminergic neurodegeneration are regulated
through multiple routes. Neuroinflammation, mitochondrial dysfunc-
tion, microglial activation, and reduced neurotransmission could be
the predominant pathways in both models while microglial
activation-mediated alteration in the mitochondrial pathway could be
critical in maneb- and paraquat-induced Parkinsonism. Levodopa and
MnTMPyP protect against the changes induced by MPTP and combined
maneb- and paraquat while minocycline offers neuroprotection mainly
against combined maneb- and paraquat-induced Parkinsonism.
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