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1. Introduction 

In aqueous solution D-fructose-6-phosphate exists 
as an equilibrium mixture of 20 + 4% a-D-fructofura- 
nose-6-phosphate and 80 + 10%/3-D-fructofuranose- 
6-phosphate [ 1 ]. The furanose configurations are 
equilibrated via the keto form of D-fructose-6-phos- 
phate which is present in the equilibrium mixture at 
about 2.5% [21. 

This multiplicity of configurations of D-fructose- 
6-phosphate prompts the questions whether enzymes 
catalyzing reactions of D-fructose-6-phosphate are 
specific with respect to one configuration or are non- 
specific, and whether there exist enzymes capable of 
catalyzing the anomerization of D-fructose-6-phos- 
phate. 

This paper describes stopped flow experiments 
which indicate, that most probably fructose-6-phos- 
phate kinase specifically catalyzes the phosphoryla- 
tion of/~-D-fructofuranose-6-phosphate but not that 
of a-D.fructofuranose-6-phosphate. In addition it will 
be shown, that glucose-6-phosphate 1-epimerase from 
bakers' yeast, an enzyme that catalyzes the anomeri- 
zation of D-glucose-6-phosphate 13-5],  is not capa- 
ble of catalyzing the anomerization of D-fructose-6- 
phosphate. 

2. Materials and methods 

All chemicals of p.a. grade were purchased from E. 
Merck AG., Darmstadt. Dithioerythritol was obtained 
from Serva, Heidelberg. D-fructose-6-phosphate, D-glu- 
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cose-6-phosphate, phosphoenol-pyruvate, pyruvate, 
ATP, ADP, NADH, NADI ~ ,  pyruvate kinase EC 
2.7.1.40), lactate dehydrogenase (EC 1.1.1.27), both 
enzymes from rabbit muscle, and glucose-6-phosphate 
dehydrogenase (EC 1.1.1.49) from yeast as well as 
Precinorm S were bought from Boehringer Mannheim 
GmbH. Highly purified fructose-6-phosphate kinase 
from rabbit muscle [6] was a gift from Dr. H.W. 
Hofer, Konstanz. Glucose-6-phosphate 1-epimerase 
from bakers' yeast was prepared as described in ref. 
[5]. 

Protein was determined by the biuret reaction [7] 
using Precinorm S as a standard. Enzymes were freed 
from ammonium sulphate by dialysis. The determina- 
tion of substrate concentrations and enzyme activities 
were performed at 25°C in standard buffer pH 7.6 
(50 mM imidazole/HCl, 50 mM KC1, 8 mM MgSO 4, 
1 mM dithiorythritol) using an Eppendorf photome- 
ter. With minor modifications substrates were assayed 
according to ref. [8]. Methods for enzyme activity 
determinations were taken from ref. [9] ; modified 
conditions were: Fructose-6-phosphate kinase: 1 mM 
D-fructose-6-phosphate, 1 mM ATP, 1 mM phospho- 
enolpyruvate, 0.25 mM NADH, 10 U/ml pyruvate 
kinase and 10 U/ml lactate dehydrogenase. Pyruvate 
kinase: 1 mM phosphoenolpyruvate, 2 mM ADP, 
0.25 mM NADH and 10 U/ml lactate dehydrogenase. 
Lactate dehydrogenase: 3 mM pyruvate and 0.25 mM 
NADH. Specific activities were: Fructose-6-phosphate 
kinase 180 U/mg, pyruvate kinase 350 U/mg, lactate 
dehydrogenase 430 U/mg. 

The activity constant of glucose-6-phosphate 1-epi- 
merase was determined in system 2 as described in ref. 
[31. 
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4. Discussion 
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Fig. 2. Semilogarithmic plot of the progress curves of the 
fructose-6-phosphate kinase reaction at three different en- 
zyme activities. 3500 U/ml pyruvate kinase, 5000 U/ml lac- 
tate dehydrogenase, 0.06 mM D-fructose-6-phosphate, 0.1 
mM ATP, 1 mM phosphoenol-pyruvate and 0.25 mM NADH; 
(o) 60 U/ml, (~) 120 U/ml and (o) 240 U/ml fructose-6-phos- 
phate kinase. Log % D-fructose-6-phosphate remaining is 
plotted against the time. 

nose-6-phosphate as substrate. We cannot decide 
from our experiments whether the keto from of D- 
fructose-6-phosphate, present in the equilibrium mix- 
ture at 2.5% [2], is also a substrate of  fructose-6-phos- 
phate kinase. If the keto form of D-fructose-6-phos- 
phate is not accepted by fructose-6-phosphate kinase, 
which seems likely, the slow reaction of first order 
observed in our experiments which is not influenced 
by the enzyme concentration, represents mainly the 
spontaneous anomerization of a- to ~-D-fmctofura- 
nose-6-phosphate. 

In order to test whether the spontaneous reaction 
is enhanched by glucose-6-phosphate 1-epimerase, 
which catalyzes the anomerization reaction of D-glu- 
cose-6-phosphate [ 3 -5 ] ,  this enzyme (activity con- 
stant 600 rain -1 × m1-1) was added to the reaction 
mixture. Glucose-6-phosphate 1-epimerase did not 
cause an alteration of the progress curves, excluding 
a catalysis of  the anomerization of D-fructose-6-phos- 
phate. 

The experiments described above indicate, that 
most probably fructose-6-phosphate kinase specifical- 
ly catalyzes the phosphorylation of t3-D-fructofura- 
nose-6-phosphate but not that of a-D-fructofuranose- 
6-phosphate. An earlier report that this enzyme only 
uses a-D-fructofuranose-6-phosphate as substrate 
[ 11 ] has been modified by these authors: They are 
now certain that fructose-6-phosphate kinase cataly- 
zes the reaction of/3-D-fructofuranose-6-phosphate, 
however with their rapid quench approach they can- 
not decide whether a-D-fructofuranose.6-phosphate 
is also a substrate (Dr. I.A. Rose, personal communi- 
cation July 20, 1973). 

Finally, we would like to point to the relevance of 
the anomeric specificity of fructose-6-phosphate 
kinase with respect to the anomeric specificity of the 
enzymes preceding and succeeding fructose-6-phos- 
phate kinase in the glycolytic chain, glucosephos- 
phate isomerase (EC 5.3.1.9) and fructose-diphos- 
phate aldolase (EC 4.1.2.13), respectively. The results 
on the anomeric specificity of  glucosephosphate iso- 
merase, fructose-6-phosphate kinase and fructosedi- 
phosphate aldolase are summarized in the following 
scheme. 

~-D-glucopyranose- ,.. 0ldehvde 0! F)-O-gtucopyronose 
6-phosphole ~ O-glucose-G-phosphole~ 6-phosphole 

o~-O-fructofuronose ~ ketone of ~(l-O-fruclo(uronose 
6- phosphote ~ O-fruclose-6-phosphote~ 6- phosphote 

"~ AFP 
f r u ct ose _6.phosphote"~/"- 
kmnose ~ ADP 

~-D-fructoforonose- ~ ketone of O-tructose-~FLO-fructofuronose- 
1.6- dlphosphote 1,6-d=phot;phole ~ 1,6 dlphosphole 

|lructosedlphosphote 
L otdolase J 

/ /  % 
dlhydro=yocetone phosphote O-glyceroldehyde-3-phosphote 

It could be shown that glucosephosphate isomerase 
nonspecifically catalyzes the isomeration of a- and 
/3-D-glucopyranose-6-phosphate to a- and ~3-D-fructo- 
furanose-6-phosphate [12, 13], however the a-ano- 
mers are the preferred substrates [ 12-14] .  In addi- 
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For stopped flow experiments the equipments de- 
veloped by Hess et al. [10] was used with the mono- 
chromator set at 366 nm. The flow system of the ap- 
paratus has a total dead time of 2 msec, flow velocity 
5 m/sec, volume of the flow chamber 22/~1, d = 1 cm. 
Reactions were initiated by mixing equal volumes of 
a) fructose-6-phosphate kinase + pyruvate kinase + 
lactate dehydrogenase + ATP + phosphoenolpyruvate 
+ NADH and b) fructose-6-phosphate kinase + pyru- 
vate kinase + lactate dehydrogenase + D-fructose-6- 
phosphate + NADH in the respective drive syringes. 
Final conditions: Fructose-6-phosphate kinase 60, 
120 and 240 U/ml, respectively, pyruvate kinase 
3500 U/ml, lactate dehydrogenase 5000 U/ml, 0.06 
mM D-fructose°6-phosphate, 0.1 mM ATP, 1 mM 
phosphoenolpymvate and 0.25 mM NADH. 

Activities of  pyruvate kinase and lactate dehydro- 
genase were high compared with the velocity of the 
fructose-6-phosphate kinase reaction. Thus, the con- 
centration of the intermediates ADP and pyruvate 
become negligibly small, and the oxidation of  NADH 
in the lactate dehydrogenase reaction is a direct mea- 
sure of the phosphorylation of D-fructose-6-phos- 
phate in the fructose-6-phosphate kinase reaction. 

3. Results 
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Fig. 1. Record of a stopped flow experiment in the fructose- 
6-phosphate kinase-pyruvate kinase-lactate dehydrogenase 
system. 240 U/ml fructose-6-phosphate kinase, 3500 U/ml 
pyruvate kinase, 5000 U/ml lactate dehydrogenase, 0.06 mM 
D-fructose-6-phosphate, 0.1 mM ATP, 1 mM phosphoenol- 
pyruvate and 0.25 mM NADH. The reaction is recorded until 
it is complete. NADH concentration decreases from left to 
right. 

In order to analyse the catalytic activity of fruc- 
tose-6-phosphate kinase towards the various configu- 
rations of D-fructose-6-phosphate reactions were fol- 
lowed starting from small concentrations of  equili- 
brated D-fmctose-6-phosphate in the presence of 
high enzyme activity. 

Fig. 1 demonstrates a record of a stopped flow ex- 
periment in the fmctose-6-phosphate kinase-pyruvate 
kinase-lactate dehydrogenase system. The course 
of the reaction is biphasic: a fast initial reaction is 
succeeded by a slower reaction. In fig. 2 the progress 
curves of three reactions of this type at three different 
activities of fmctose-6-phosphate kinase are presented 
in a semilogarithmic plot. At increasing activity of 
fructose-6-phosphate kinase the fast initial reaction 
is accelerated, whereas the succeeding slower reaction 
of first order is not influenced by the enzyme activ- 
ity. From these experiments it can be concluded 
that fructose-6-phosphate kinase in the first phase of 
the reaction rapidly reacts with one configuration of 

D-fructose-6-phosphate, whereas the second phase of 
the reaction is determined by the spontaneous con- 
version of another configuration into the one accept- 
ed by the enzyme. 

From the slope of the regression line for this spon- 
taneous reaction a first order velocity constant of 1.6 
sec -1 is calculated. Extrapolating to zero time the in- 
tersection of the regression line with the ordinate re- 
veals that approximately 76% of the equilibrium mix- 
ture of D-fructose-6-phosphate reacts in the fast ini- 
tial reaction catalyzed by fructose-6-phosphate kinase, 
whereas 24% of D-fructose-6-phosphate can only be 
phosphorylated by the enzyme after a spontaneous 
alteration of configuration. 

Comparison of these results with the results, ob- 
tained in NMR experiments, that in aqueous solution 
the equilibrium mixture of D-fmctose-6-phosphate 
consists of 20 + 4% a -  and 80 -+ 10% ~3-D-fructofura- 
nose-6-phosphate [ 1 ] leads us to the conclusion that 
fructose-6-phosphate kinase accepts ~-D-fructofura- 
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tion to the isomerization reaction this enzyme also 
catalyzes the anomerization reactions of  a- to 3-D- 
glucopyranose-6-phosphate [ 12, 13] and a- to 3-D- 
fructofuranose 6-phosphate [13].  Thus, in vivo a- 
and 3-D-fructofuranose-6-phosphate will be equili- 
brated. Recently we reported that fructosediphos- 
phate aldolase accepts 3-D-fructofuranose- 1,6-diphos- 
phate but  not a-D-fructofuranose-l ,6-diphosphate as 
substrate [ 15 ]. However, since this enzyme catalyzes, 
the cleavage o f  some ketosephosphates which can 
exist only in the open chain configuration [ 1 6 - 1 8 ] ,  
it seems likely that the keto form of  D-fructose-1,6- 
diphosphate is also a substrate of  fructosediphosphate 
aldolase. 

Since fructose-6-phosphate kinase specifically cata- 
lyzes the phosphorylat ion o f  3-D-fructofuranose-6- 
phosphate,  yielding 3-D-fructofuranose- 1,6-diphos- 
phate,  which can be accepted as substrate by frucose- 
diphosphate aldolase, enzyme-catalyzed anomeriza- 
tion o f  D-fructose-1,6-diphosphate does not  seem 
to be necessary in the glycolytic pathway. 
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