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We prove a criterion for the identifiability of symmetric tensors P of type 3 × · · · × 3,
d times, whose rank k is bounded by (d2 + 2d)/8. The criterion is based on the study of
the Hilbert function of a set of points P1, . . . , Pk which computes the rank of the tensor P .
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1. Introduction

The aim of this paper is to study criteria which can assure that an explicitly given symmetric tensor, whose rank k is
known, is identifiable, i.e. it can be written uniquely (up to scalar multiplication and permutations), as a sum of decompos-
able tensors.

Recently, new methods for studying the identifiability of tensors are arising from the theory of secant varieties to pro-
jective varieties, and their tangential behavior.

In the paper, we deal with symmetric tensors (and their geometric counterpart: the space of a Veronese embedding of
a projective space). Let us introduce some definition, in order to properly state the problem, along with our achievements.

Let P
n := P

n
C

be a projective space over the complex field.

Write νd for the d-th Veronese map, which sends P
n to a space P

N , with N = (n+d
n

)− 1. The embedding space P
N can be

seen as the space of symmetric tensors (up to scalar multiplication) of type (n + 1) × (n + 1) × · · · × (n + 1). We call n + 1
the size of these tensors.

The image X := νd(P
n) corresponds to the subset parameterizing decomposable symmetric tensors (as always: up to

scalar multiplication). The rank of P ∈ P
N is the minimum k for which there exists an expression

P = P1 + · · · + Pk

with Pi ∈ X for all i.
Identifiability is related with the uniqueness of the previous expression.
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Definition 1.1. We say that P ∈ P
N , of rank k, is identifiable if there is a unique expression of P (up to scaling and permuta-

tions) as sum of k elements in X .

In geometric terms, X is a projective variety (the d-th Veronese variety of Pn) and the rank of a tensor P corresponds to
the minimal k such that P belongs to the standard open subset Uk(X) of the secant variety Sk(X), formed by (k − 1)-spaces
spanned by k distinct points of X .

Following the classical Terracini’s analysis of the tangent spaces to secant varieties, one obtains criteria for detecting
when a general tensor P of rank k is identifiable. An account of how this can be done can be found in [6]. Let we recall
briefly what happens for the general symmetric tensor of rank k.

It is a general non-sense that when the dimension of the secant variety Uk(X) is not the expected value (i.e. when X
is (k − 1)-defective), then also identifiability fails. After the results of [1], the cases in which the Veronese variety νd(P

n)

is defective, are well known. On the other hand, there are cases in which the dimension attains the expected value, and
nevertheless the general symmetric tensor is not identifiable. For n = 2, it is classically known that identifiability of the
generic symmetric tensor fails, besides the defective cases, only when d = 3 and k = 6 (see [2]). In higher dimension, by the
results of [6], and the analysis of the tangential behaviour of Veronese varieties, carried on by the first author in [3], one
knows that the general symmetric tensor of rank k is identifiable, as soon as k < (N + 1)/(n + 1), with the only possible
exception (n,d) = (3,4) (and the defective cases, listed in [1]).

The previous methods, however, only tell us about generic tensors, but do not apply to detect whether or not a specific
tensor P is identifiable.

Remark 1.2. Indeed, if we know that the general tensor of rank k is identifiable, then we can say that every point, of rank k,
in the regular locus of Sk(X) is identifiable, by the Zariski Main Theorem.

On the other hand, since the equations for secant varieties are far from been known, it seems uneasy to detect directly
whether or not a given P belongs to the singular locus of Sk(X).

In a private conversation, Joseph Landsberg asked one of us about the chance of finding some criteria for the identifiability
of a specific, given tensor.

Landsberg himself, with Buczyński and Ginensky, found a criterion which works for symmetric tensors of any size and
dimension d, provided that the rank k is at most (d + 1)/2 (see [5]). The criterion thus works for tensors whose rank
increases linearly, with respect to d.

Landsberg’s problem amounts also to determine methods for certifying that a given point of the standard open subset
Uk(X) ⊂ Sk(X), is not singular.

Following an idea developed by A. Bernardi and the first author (see [4]), we are able to produce here, for the case n = 2
and in some range for the rank k, a criterion for detecting identifiability.

Our method is based on the study of the Hilbert function of a set of points Z = {x1, . . . , xk}, such that P = νd(x1) + · · · +
νd(xk), i.e. such that P belongs to the linear span

P ∈ 〈
νd(x1), . . . , νd(xk)

〉
.

Let us recall the following:

Definition 1.3. A set of k distinct points Z ∈ P
n has general uniform position (GUP) if for any m = 1, . . . ,k, no subsets Z ′ ⊂ Z

of cardinality m belong to hypersurfaces of degree u, as soon as

m �
(

u + n

n

)
.

It is known that general sets of points have GUP, and the Hilbert function of points with GUP is well known, when n = 2,
i.e. when Z sits in a plane.

With this in mind, by using standard results for the Hilbert function of points in the plane (we will refer to [8] for this),
as well as by means of Lemma 8 in [4], we are able to give a criterion for the identifiability of symmetric tensors of size 3,
i.e. points in the projective space of the Veronese variety νd(P

2).

Theorem 1.4. Consider the Veronese variety X = νd(P
2), n > 2, embedded in the space PN , N = d(d + 3)/2. Let P ∈ P

N be a point of
rank k, P = P1 + · · · + Pk, with Pi = νd(xi). Assume that the subset Z = {x1, . . . , xk} ⊂ P

2 has GUP, and

k <
d2 + 2d

8
.

Then P is identifiable.

By means of the Zariski Main Theorem, the previous theorem can be rephrased in terms of the singular locus of Sk(X).



E. Ballico, L. Chiantini / Differential Geometry and its Applications 30 (2012) 233–237 235
Corollary 1.5. Let X be the Veronese surface X = νd(P
2) and consider a subset Z = {x1, . . . , xk} ⊂ P

2 with GUP. Assume k <

(d2 + 2d)/8 and consider the span

L = 〈
νd(x1), . . . , νd(xk)

〉
.

Then L ∩ Uk(X) meets the singular locus Sing(Sk(X)) only along a subset of Sk−1(X).

Going back to Landsberg’s problem, we notice that the effectiveness of the criterion for deciding the identifiability of a
given P depends on how much we know about P . In particular, we need to know:

• the rank k of P ;
• one decomposition P = P1 + · · · + Pk , Pi ∈ X .

Then, assuming that we are in the range k < (d2 + 2d)/8 (quadratic, with respect to the dimension of the tensor), it is easy
to compute the set Z = {x1, . . . , xk}, with Pi = νd(xi), and see if it has GUP.

Although these assumptions require a certain knowledge about the tensor P , we hope that the criterion could be effec-
tive, in some interesting cases.

On the other hand, the criterion has some intriguing geometric aspects. To mention one: a link between the postulation
of Z and the identifiability of points in 〈Z〉.

It is, in any event, a starting point. We cannot exclude that, on the same lines, it will be possible to produce criteria with
a wider range of applicability.

2. Proof of the criterion

We keep here the notation of the Introduction, from the geometric point of view.
So, X = νd(P

2) is the d-th Veronese embedding of the plane in P
N , N = (d + 3)d/2. P is a point of PN , which has rank

k > 1. Fix k points x1, . . . , xk of P2 such that

P ∈ 〈
νd(x1), . . . , νd(xk)

〉
.

Write Z = {x1, . . . , xk}. We make the following assumptions:

• k < (d2 + 2d)/8;
• Z has GUP.

We want to prove that P is identifiable.
Assume, on the contrary, that there is another subset Z ′ ⊂ P

2, Z ′ = {y1, . . . , yk}, of cardinality k, such that P ∈ 〈νd(Z ′)〉.
Call W the union W = Z ∪ Z ′ , which is a subset of cardinality w � 2k. We will look carefully at the Hilbert function hW

of W and at its difference function DhW .

Claim 2.1. hW (d) < w, so that DhW (d + 1) > 0.

Proof. By our first assumption on P , it turns out that the linear spans of both νd(Z) and νd(Z ′) have dimension k. Moreover
they meet in a point P which cannot lie in the linear span of the intersection νd(Z)∩νd(Z ′). It follows that νk(W ) does not
impose w = 2k − #(νd(Z) ∩ νd(Z ′)) conditions to the hyperplanes of PN , from which the claims on hW follow at once. �

Now, we use the numerical assumption, together with a knowledge of the main properties of Hilbert functions of sub-
schemes of P2.

Claim 2.2. Let u be the integer such that

u2 + 3u + 2

2
� k <

(u + 1)2 + 3(u + 1) + 2

2
.

Then u + 2 � d/2 and the function DhW satisfies

DhW (i) = i + 1 for i = 0, . . . , u.

Proof. The first inequality follows immediately from the assumption k < (d2 + 2d)/8. The second one follows from the fact
that Z has GUP, and thus

h0(IW (u)
)
� h0(I Z (u)

) = 0. �
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Claim 2.3. There exists some j � d with

u + 1 > DhW ( j) = DhW ( j + 1) > 0.

Proof. First observe that the definition of u and the numerical assumption k < (d2 + 2d)/8 imply that

2k � (u + 1)d − u2 + u + 2. (2.1)

On the other hand, if the quoted j does not exist, we must have

DhW (d + 1 − i)� i + 1 for i = 0, . . . , u

which gives, after a short computation, that the cardinality of W satisfies

#(W ) � (u + 1)d − u2 + u + 2,

a contradiction. �
Define the number m as

m = min
{

DhW ( j): j � d and DhW ( j) = DhW ( j + 1) > 0
}
.

By the previous claim, we know that m � u.

Claim 2.4. There exists a curve M ⊂ P
2 , of degree m, such that M intersects W in a subset A of cardinality a � (m +1)d −m2 +m +2.

Proof. This is an easy consequence of well-known facts on sets of points W in the plane, whose function DhW has the
behaviour described in Claim 2.3.

Namely (see e.g. [7] or [8], proposition at p. 112), since

max
{

DhW (i)
}

> m = DhW ( j) = DhW ( j + 1) > 0,

we know that there exists a curve M of degree m which meets W in a subset A whose Hilbert function is defined as

DhA = min{m, DhW }.
It follows immediately that the cardinality of A is at least:

a = m(m + 1)

2
+ (m + 1)(d + 2 − 2m) + m(m + 1)

2
,

which gives the claim. �
Now we have all the ingredients for the:

Proof of the Main Theorem. Define B = W \ M . By [8, p. 112], we know that the function DhB satisfies, for all i: DhA(i) +
DhB(i − m) = DhW (i).

Since DhW (d) � m, then DhA(d) = min{m, DhW (d)} = DhW (d), so that one has DhB(d − m) = 0. It follows from [4,
Lemma 8], that Z − M = Z ′ − M , which implies that Z ∩ M has the same cardinality as Z ′ ∩ M .

Thus Z ∩ M has cardinality:

#(A)

2
� (m + 1)d − m2 + m + 2

2
,

and sits in a curve of degree M . Since Z has GUP, we get that

(m + 1)d − m2 + m + 2

2
<

m2 + 3m + 2

2
.

This implies d � 2m, which is impossible, since m < u and u < d/2, by Claim 2.2. �
Remark 2.5. Let us notice that, with the same method, one can prove a slightly stronger condition. Namely, with the
previous assumptions, it follows that P cannot belong to the linear span of another subscheme νd(Z ′), with deg(Z ′) = k,
dropping the assumption that Z ′ is reduced.

Indeed, in this case, we may define W = Z ′ ∪ (Z \ Z ′). The results on the Hilbert function of 0-dimensional subschemes
of P2, obtained in [8], remain true even if W is not reduced, as well as Lemma 8 of [4]. So, the previous arguments work
verbatim.
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