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Matrix metalloproteinases (MMP) are a family of
structurally related proteinases most widely recog-
nized for their ability to degrade extracellular matrix,
although recent investigations have demonstrated
other biologic functions for these enzymes. MMP are
typically not constitutively expressed, but are regu-
lated by: (1) cytokines, growth factors, and cell±cell
and cell±matrix interactions that control gene
expression; (2) activation of their proenzyme form;
and (3) the presence of MMP inhibitors [tissue
inhibitors of metalloproteinases, (TIMP)]. MMP have
important roles in normal processes including
development, wound healing, mammary gland, and
uterine involution, but are also involved in angio-
genesis, tumor growth, and metastasis. Angiogenesis,
characteristically de®ned as the establishment of new
vessels from pre-existing vasculature, is required for
biologic processes such as wound healing and patho-
logic processes such as arthritis, tumor growth, and

metastasis. Blocking of MMP activity has been
studied for potential therapeutic ef®cacy in controll-
ing such pathologic processes. Synthetic MMP
inhibitors, most notably the hydroxymates, have
been engineered for this purpose and are presently in
clinical trial. These inhibitors may have broad versus
speci®c MMP inhibitory activity. As increased non-
matrix degrading capabilities of MMP are recog-
nized, however, i.e., cytokine activation, processing
of proteins to molecules of distinct biologic function,
it becomes less clear whether the nonselective inhibi-
tion of MMP activity for all pathologic processes
involving MMP is appropriate. This review focuses
upon the contribution of MMP to the process of
tumor invasion and angiogenesis, and discusses the
design and use of MMP inhibitors as therapeutic
agents in these processes. Key words: angiostatin/
endothelial cell/hydroxymates. Journal of Investigative
Dermatology Symposium Proceedings 5:47±54, 2000

M
atrix metalloproteinases (MMP) are a structurally
related family of proteinases (Fig 1) that are part
of a larger superfamily of zinc-dependent endo-
proteinases called metsincins (Stocker et al, 1995).
MMP are widely recognized for their ability to

degrade extracellular matrix, and as a family are capable of
degrading all extracellular matrix components. Presently, there
are over 20 human MMP described, and although most MMP are
secreted extracellularly, certain MMP are membrane associated
[membrane-type (MT) MMP]. The collagenases (MMP-1, ±3, and
±13) cleave native ®brillar collagen types I, II, and III (Goldberg
et al, 1986; Hasty et al, 1987; Welgus et al, 1990; Frieje et al, 1994).
Stromelysin-1 and ±2 (MMP-3, MMP-10) have broad substrate
speci®city. Stromelysin-3 (MMP-11) has a more restricted activity
(Basset et al, 1990) and has been found to function in the release of
matrix-bound growth factors (Manes et al, 1997). Gelatinase A
(MMP-2, 72 kDa) and gelatinase B (MMP-9, 92 kDa) degrade
denatured collagens and basement membrane components (Hibbs
et al, 1987; Wilhelm et al, 1989). Gelatinase A is typically produced
by mesenchymal cells, and gelatinase B is found in neutrophils,
other in¯ammatory cells, and endothelial cells (Saarialho-Kere et al,

1993a, b; Stahle-Backdahl and Parks, 1993; Romanic and Madri,
1994; Zucker et al, 1995; Lee and McCulloch, 1997; Nguyen et al,
1998; Vu and Werb, 1998; Xie et al, 1998; Makela et al, 1999).
Matrilysin (MMP-7) cleaves types I, III, IV, and V collagens,
®bronectin, and procollagenase-1 (Quantin et al, 1989). More
recently described members of the MMP family are ®ve
membrane-type matrix metalloproteinases (MT-MMP), mem-
brane-associated proteases that function not only in matrix
remodeling but also in pericellular activation of pro-MMP
(Knauper et al, 1996; Knauper and Murphy, 1998). MMP-19
(Pendas et al, 1997) and enmelysin (MMP-20) (Llano et al, 1997)
are the newest MMP described. MMP-19 has been demonstrated
in synovial capillary endothelial cells during acute in¯ammation,
®ndings that may suggest a role in angiogenesis (Kolb et al, 1999).
MMP-20 presently has no known function in angiogenesis. In
addition to their matrix degrading capabilities, investigations have
also determined that MMP have important roles in other biologic
processes; most notably, activation of other MMP (Knauper et al,
1996; Knauper and Murphy, 1998) and certain cytokines (TNFa)
(Black et al, 1997), modulation of cell adhesion (Makela et al, 1999;
Sarkissian and Lafyatis, 1999) and the proteolysis of parent
molecules to biologic proteins with separate and speci®c activities
(angiostatin from plasminogen) (Dong et al, 1997; Patterson and
Sang, 1997; Cornelius et al, 1998).

MMP are expressed in an inactive, or zymogen form, and
activity is dependent upon extracellular activation of the enzyme
that requires cleavage of the cysteine-containing pro-enzyme
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region that contacts the zinc atom in the active catalytic site (Fig 1)
(Woessner, 1998). X-ray crystalographic studies have contributed
greatly to our understanding of MMP structure and concomitant
activity. Studies of full-length collagenase-1 (MMP-1) (Li et al,
1995) reveal that the N-terminal catalytic domain and the
C-terminal hemopexin domain are connected by a ¯exible
proline-rich linker, and that the hemopexin domain contains four
units of a four-stranded antiparallel beta sheet resulting in a four-
bladed propeller-like structure. Physiologic MMP inhibitors,
known as tissue inhibitors of metalloproteinases (TIMP 1±4),
inhibit MMP by forming noncovalent bimolecular complexes with
them to block activation or block the active enzyme site itself
(Gomis-Ruth et al, 1997b). Synthetic MMP inhibitors have also
been engineered to bind irreversibly to the Zn++ atom of the
enzyme active site (Brown, 1998). The C-terminal hemopexin
domain is responsible for MMP substrate and inhibitor speci®city,
but the actual inhibition of MMP activity occurs due to binding of
both physiologic (TIMP) and synthetic inhibitors (hydroxamates)
to the catalytic domain. Based upon their 3-dimensional structures,
speci®city pocket subsites (designated S) within the MMP are
formed that determine binding of the speci®c inhibitor amino acid
segments, and result in inactivity of the enzyme. More speci®cally,
determination of the crystal structure of the TIMP-1-MMP-3
complex reveals that the critical TIMP binding residues surround
the TIMP disul®de bond between Cys1 and Cys70, with Cys1

located on top of the MMP-3 catalytic site coordinating the
catalytic Zn (Gomis-Ruth et al, 1997a).

Regulation of MMP activity is dependent upon gene expression,
enzyme activation, and the presence of inhibitors. With few
exceptions (Saarialho-Kere et al, 1995), MMP are not constitutively
expressed and investigations into gene regulation have found that
growth factors, cytokines and cell±matrix interactions are important
regulators of MMP gene expression (reviewed by Birkedal-Hansen
et al, 1993). In fact, the regulatory region of most MMP genes
contain an AP-1 binding site and TRE-element, which are
classically involved in this regulation (Angel et al, 1987a, b; Gaire
et al, 1994; Pierce et al, 1996). Transcription factors that have been
implicated in MMP gene regulation via these, and other sites
(PEA3/ets) (Gum et al, 1996), and include members of the jun
family (Mauviel et al, 1996; Solis-Herruzo et al, 1999), AP-2 and
YB-1 (Mertens et al, 1998), NF-kB (Bond et al, 1998), and Egr-1
(Haas et al, 1999). Tyrosine kinase and protein kinase C signaling
pathways have been implicated in the control of MMP expression
(Sudbeck et al, 1994; Vincenti et al, 1999).

MMP are expressed by various cell types during processes of
development, as well as during certain physiologic and pathologic
processes. In cancer, MMP activity has been implicated in tumor
invasion and metastasis. The matrix degradative activity of tumor
cells themselves, the interstitial cells of the surrounding matrix,
tumor-associated in¯ammatory cells, and endothelial cells of the
tumor vasculature has been studied. Work investigating the MMP
expression of tumors is based upon the premise that increased
protease activity leads to the removal of physical barriers to invasion
(Kleiner and Stetler-Stevenson, 1999) and correlates with tumor
growth, tumor cell intravasation into the vasculature, extravasation,
and metastasis (Sloane et al, 1993). In support of this, increased
MMP expression has been found in many malignant tumors (Basset
et al, 1990, 1997; Sato et al, 1994; Tolivia and Lopez-Otin, 1994).
Correspondingly, inhibition of MMP activity through inhibition of
multiple regulatory and activating pathways has been investigated
(Fig 2). Increased expression of the physiologic inhibitor TIMP has
been found to reduce the invasive and metastatic capacity of
transformed cells in certain murine tumor models (Montgomery
et al, 1994). Regulators of MMP expression that suppress MMP
synthesis in certain cancer cell types, such as the retinoids (Li et al,
1999), have been investigated for their potential antitumor activity
(Schoenermark et al, 1999). In seeming contradistinction to these
®ndings, there is some evidence that MMP may function as
regulators of cellular apoptosis (Vu et al, 1998).

Tumors are heterogeneous in their expression of MMP and the
MMP expressing cell type (tumor versus stromal) varies. In certain
cancers, MMP, such as matrilysin, characteristically localise to
tumor cells themselves (Powell and Matrisian, 1996), whereas
induction or activation of stromelysin-1 expression is typically
found within the stromal cells (Nagase, 1998). The gelatinases,
however, may be expressed by both tumor cells and cells of the
surrounding stroma (Birkedal-Hansen et al, 1993). In both basal cell
and squamous cell carcinomas, altered MMP-2 and TIMP
expression has been demonstrated (Wagner et al, 1996).
Con¯icting results have been reported with respect to the
relationship of MMP expression and the invasiveness of melanoma
cells both in vitro and in an in vivo murine model (Montgomery et al,
1994; Huijzer et al, 1995). Nonetheless, with the increasing
recognition of the multiple biologic functions performed by MMP,
the simplistic assumption that increased tumor MMP expression
correlates with increased tumor growth and metastasis cannot
always be supported. In this paper, we will speci®cally address the
role of MMP expression as it contributes to one area important to

Figure 1. MMP family, structural domains,
and substrates.
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tumor growth and metastasis ± tumor angiogenesis ± and the
potential implications that inhibiting these enzymes may have on
tumor behavior.

MATRIX METALLOPROTEINASES AND ANGIOGENESIS

The contribution of MMP to angiogenesis has been studied
through both in vitro and in vivo investigations, and involves cell±
cell and cell±matrix interactions together with proteolysis. Growth
factors and cytokines have been identi®ed that promote angio-
genesis, and include vascular endothelial cell growth factor (VEGF)
(Cao et al, 1998; Shweiki et al, 1993; Yamagishi et al, 1997), basic
®broblast growth factor (bFGF, FGF-2) (Kandel et al, 1991)
(reviewed by Friesel and Maciag, 1995), hepatocyte growth factor
(HGF) (Rosen and Goldberg, 1997), tumor necrosis factor alpha
(TNFa) (Koolwijk et al, 1996; Leibovich et al, 1987) and platelet-
derived growth factor-beta (PDGF-b) (Battegay et al, 1994).
Interestingly, many of these same factors are regulators of MMP
gene expression (VEGF, TNFa, bFGF; Cornelius et al, 1995; Qin
et al, 1998) in endothelial cells and other cell types, although this
regulation may not be directly related to their effect on angiogenesis.

In vitro work has demonstrated the role of endothelial cell MMP
in the degradation of basement membrane matrix proteins (collagen
type IV and laminin), endothelial cell migration on proteins of the
interstitial and provisional matrix (collagen type I and ®brin), and
endothelial cell±matrix interactions that promote endothelial cell
``differentiation'' in vitro (the formation of endothelial cell ``tubes''
or ``chords'') (Tables I and II). Collagenase is induced in
microvascular endothelial cells migrating upon type I collagen in
the presence of angiogenic cytokines (Cornelius et al, 1995), and is
required for endothelial cells to invade a collagen type I gel matrix
(Fisher et al, 1994). Plating endothelial cells on the EHS-derived
basement membrane matrix Matrigel (Collaborative Biomedical,
Twin Oak Park, Bedford, MA), containing types IV collagen,
proteoglycans and laminin, induces the formation of endothelial
cell ``tubes'' within 18±24 h (Kubota et al, 1988), and provides one
in vitro model of endothelial cell morphogenesis. In this model,
both type IV collagenases (MMP-2, ±9) (Schnaper et al, 1993) and
serine proteases (urokinase plasminogen activator, uPA) (Schnaper
et al, 1995) are induced, and inhibition of either protease type
decreases tube formation, although at distinct stages. Microvascular
endothelial cells cultured within three-dimensional collagen gels
express the membrane-type MMP, MT1-MMP, the inhibition of
which delays their differentiation into tube-like structures (Chan
et al, 1998). Work by other investigators demonstrated that, in a
similar system, MT1-MMP was coordinately expressed with, and
involved in, the activation of MMP-2 (Haas et al, 1998).
Additionally, endothelial cells plated in a ®brin gel utilize MT1-

MMP for ®brinolysis in this system (Hiraoka et al, 1998), an activity
that is characteristically ascribed to the serine proteinases and is
required for provisional matrix migration. In some studies, the
expression of endothelial cell MMP, speci®cally MMP-9 (gelatinase
B, 92 kDa gelatinase) by microvascular (small vessel) cells, the
prototypic cell involved in angiogenesis, and macrovascular (large
vessel) cells, differs according to cell type (Cornelius et al, 1995;
Nguyen et al, 1998).

In separate investigations, Brooks et al demonstrated that MMP-
2 (gelatinase A, 72 kDa gelatinase) is expressed on the surface of
invasive cells and endothelial cells involved in active angiogenesis,
bound to the cell surface integrin avb3 (Brooks et al, 1996). These
investigators had previously shown that avb3 is an endothelial cell
surface integrin that is required for angiogenesis both in vitro and in
vivo (Brooks et al, 1994). This group then demonstrated that the
noncatalytic hemopexin fragment of the MMP-2 domain (Fig 1),
termed PEX, mediates the MMP-2-avb3 binding, and that
recombinant PEX could inhibit angiogenesis by competing for
this binding (Brooks et al, 1998). Recently, a family of angio-
inhibitory proteins, called METH-1 and METH-2, which also
contain a metalloproteinase domain, has been described (Vazquez
et al, 1999). These proteins also share a disintegrin and
thrombospondin domain. Thrombospondin has well-recognized
antiangiogenic activity (Good et al, 1990; Iruela-Arispe et al, 1991;
Tolsma et al, 1993; Dameron et al, 1994; Volpert et al, 1995; Grant
et al, 1998) with some investigators also demonstrating angiogenic
properties, dependent upon the speci®c protein domain expressed
(Qian et al, 1997).

Figure 2. Targets for inhibiting MMP expres-
sion and activity. Reproduced with permission
from Westermerck and Veli-Matti (1999).

Table I. Endothelial cell MMP and TIMP

collagenase (MMP-1) TIMP-1
gelatinase A (MMP-2) TIMP-2
gelatinase B (MMP-9)
stomelysin (MMP-3)
MT1-MMP (MMP-14)
MP-19

Table II. Endothelial cell MMP in angiogenesis

In vitro assays In vivo assays Knock outs

migration assays corneal pocket MMP-2
collagen I gels dorsal air sac MMP-9
Matrigel gels ®rbrin gels Chick chorioallantoic membrane
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It should be noted that for many years, physiologic and
pathologic angiogenesis in the postnatal period has been de®ned
as the ``sprouting'' of new vessels from differentiated, pre-existing
vessels and has been distinguished from vasculogenisis, or the
development of vessels during embryogenesis from progenitor cells.
The in vivo role of MMP in blood vessel development has been
studied in fetal angiogenesis, and MMP-1 was demonstrated in
early microvessels developing from undifferentiated mesoderm
(Karelina et al, 1995). Recent investigations have determined that
endothelial progenitor cells may also play a role in postnatal
neovascularization (Asahara et al, 1999). Studies of myocardial and
hindlimb ischemia demonstrate vascular endothelial cell growth
factor (VEGF)-dependent collateral artery growth (Takeshita,
1994). Further work by these investigators has determined that
circulating endothelial cell progenitor cells are mobilized from the
bone marrow following ischemia and VEGF induction, and may be
incorporated into the neovasculature (Takahashi, 1999). To this
author's knowledge, the contribution of MMP to this process has
not yet been determined.

TUMOR ANGIOGENESIS

The requirement of a tumor and its metastasis to develop a
functional vasculature for its survival and growth has been well
established, and speci®c morphometric parameters have been
determined in vitro and in vivo (Folkman, 1990, 1992). Tumor
angiogenesis studies are driven by the need to understand the role
of blood vessel development in tumor growth, with the ultimate
goal of inhibiting growth and metastasis. Quantitative evidence has
shown that in certain nonsmall cell lung carcinoma (Macchiarini
et al, 1992), prostate (Wakui et al, 1992), and breast cancers (Weich
et al, 1991), intratumoral microvessel density correlates with the
development of metastasis, and may be an independent and
signi®cant prognostic indicator in certain tumors (Weidner, 1998).
Folkman has proposed that tumor progression is associated with a
switch to an ``angiogenic phenotype'' and develops after abrogation
of the normal proliferative controls and tumor suppressor
mechanisms (Folkman, 1992).

The clinical observation that the removal of the primary tumor
in certain cancers led to the apparent increased growth of
previously dormant metastasis instigated the search for a circulating
tumor ``factor'' that inhibited metastatic growth. The ®rst of these
``factors'' to be identi®ed was from a murine model of Lewis lung
carcinoma (LLC) and was a protease-generated product of
plasminogen called angiostatin (O'Reilly et al, 1994). This protein
was found to have endothelial cell antiproliferative properties in vitro
(O'Reilly et al, 1994) and to inhibit angiogenesis of certain murine
tumors in vivo (O'Reilly et al, 1996). In this model, it was later
determined that a tumor-generated growth factor, GM-CSF,
induces the protease that cleaves plasminogen to angiostatin
(Dong et al, 1997), and that this protease is a macrophage MMP,
MMP-12, or macrophage elastase (Dong et al, 1997; Cornelius et al,
1998) (Fig 3). Further studies have found that both serine proteases
(plasmin) (Gately et al, 1996; Gately et al, 1997; Stathakis et al, 1997)
and other MMP (MMP-2, ±3, ±7, ±9) (Patterson and Sang, 1997;
Cornelius et al, 1998) are also capable of generating angiostatin
from plasminogen. In the LLC model, it was postulated that the
angiogenesis inhibitor angiostatin blocks the development of a
functional vasculature in the micrometastasis and consequently
inhibits their growth. Other endogenous angiogenesis inhibitors
have recently been described, most notably endostatin, a cleavage
product of collagen XVIII (O'Reilly et al, 1997), although the
speci®c protease(s) responsible for the cleavage have not been
determined.

Another intriguing development in the area of tumor metastasis
is the ®nding that, in certain in vivo models of lung metastasis,
tumor cells remain within the microvasculature, and form distinct
tumor cell colonies (Al-Mehdi et al 2000). Although not yet
investigated, further study of the expansion, perhaps proliferation,
and ultimately vascularization of such intravascular tumor colonies

could reveal novel mechanisms of tumor angiogenesis, possibly
involving MMP.

Nonetheless, it is indeed interesting that the MMP have been
recently implicated in the inhibition of angiogenesis, as suggested by
their role in the generation of angiogenesis inhibitors (Dong et al,
1997; Patterson and Sang, 1997; Cornelius et al, 1998) and the
antiangiogenic activity of certain speci®c MMP domains (Brooks
et al, 1998; Vazquez et al, 1999). As reviewed above, investigations
have previously demonstrated that both endothelial cell serine
proteases [urokinase plasminogen activator (uPA), tissue-type
plasminogen activator (tPA) and plasmin] (Pepper et al, 1987,

Figure 3. Cleavage of plasminogen by matrix metalloproteinases.
(A) Pancreatic elastase (PE) [39 mM] and the MMP [®nal concentration
5 3 10±7 M] mouse and human macrophage elastase (MMP-12, MME and
HME, respectively) were incubated with 4 mM plasminogen (HPg) [®nal
concentration] for 1 or 18 h at 37°C. The reaction mixtures were stopped
with SDS sample buffer containing DTT and subjected to electrophoresis
on a 10% SDS-polyacrylamide gel. (B) The MMP [®nal concentration
5 3 10±7 M] stromelysin (MMP-3), 92 kDa gelatinase (MMP-9), collagen-
ase-2 (MMP-8), matrilysin (MMP-7), collagenase-1 (MMP-1) and
collagenase-3 (MMP-13) were incubated with 4 mM HPg [®nal concen-
tration] for the indicated times. (C) MMP-12 was preincubated with either
aprotinin (Apr) [100 KIU/ml], a hydroxymate MMP-inhibitor (SC 44463)
[25 mM], or TIMP [25 mM] for 1 h prior to the addition of HPg. For all
parts, the arrows denote 38 kDa, 35 kDa, and 14 kDa cleavage products. The
38 k Da product was subsequently sequenced and is consistent with
angiostatin (kringle regions 1±4). Reproduced with permission from
Cornelius et al (1998), Copyright 1998, American Association of
Immunologists.
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1991; Blei et al, 1993; van Hinsbergh et al, 1997) and MMP (Fisher
et al, 1994; Moscatelli and Rifkin, 1988; Takigawa et al, 1990; Le
Querrec et al, 1993; Ray and Stetler-Stevenson, 1994; Taraboletti
et al, 1995; Stetler-Stevenson, 1999) can contribute to angiogenesis
through subendothelial basement membrane degradation, endo-
thelial cell migration, and ultimately, the formation of a newly
formed vasculature. Substantiating these ®ndings are studies in
MMP-9 de®cient mice that have demonstrated decreased ossi®c-
ation and growth plate vascularization (Vu et al, 1998). Tumor
models in MMP-2 de®cient mice have shown reduced angio-
genesis and tumor progression (Itoh et al, 1998). Additionally, the
expression of MMP-2 and MT1-MMP, which are the MMP most
frequently implicated in angiogenesis, has been found to correlate
with malignant progression in gliomas, a highly vascular tumor
(Lampert et al, 1998). Work such as this has led to the experimental
and current use of MMP inhibitors in clinical trials in certain types
of cancer (Breattie and Smyth, 1998; Davies et al, 1993; DeClerck
et al, 1992, 1997; Tarboletti et al, 1995).

MMP AND ANTI-ANGIOGENIC AGENTS

Physiologic inhibitors of MMP include the TIMP as well as the
more general inhibitor a2 macroglobulin. Proteolytic and biologic
activity of MMP is partially regulated by the expression of TIMP.
MMP often exist complexed with TIMP, and there is evidence to
suggest that this complex forms after their secretion (Nguyen et al,
1998). In vivo murine tumor models have shown that invasiveness
of certain tumors may be inversely related to tumor cell expression
of TIMP-1 (Soloway et al, 1996) and that overexpression of
TIMP-3 by tumor cells reduces tumor growth, possibly by its
angiostatic activity (Anand-Apte et al, 1996). Other systems have
used recombinant TIMP protein(s) to inhibit MMP and in vitro
angiogenesis (Takigawa, 1990; Schnaper et al, 1993), murine tumor
invasiveness (Bao et al, 1996), and blood vessel development
(Valente et al, 1998). In seeming contradiction, however, studies
have shown that TIMP may promote development of certain
tumors (Koop et al, 1994) and may perform separate biologic
functions other than MMP inhibition, such as being effectors of cell
proliferation (Murphy et al, 1993). As with the MMP, evidence
exists that, in certain tumors, TIMP also have tumor promoting
activity (summarized in Blavier et al, 1999). The clinical use of
recombinant TIMP proteins as antitumor or antiangiogenic agents
may be limited by this potential dual function together with the
low plasma half-life of the recombinant protein that necessitates
unrealistic dosage regimens and protein concentrations (Blavier et al,
1999).

Synthetic MMP inhibitors (MMPI) have been engineered based
upon knowledge of the MMP structure and subsites, combined

with the capability to chelate Zn++ at the active catalytic site
(Skotnicki et al, 1999). The most widely used Zn++-chelating
compounds contain a hydroxamic acid group (Fig 4) (Brown,
1998; Skotnicki et al, 1999). Structural modi®cations of regions
within the inhibitor backbone alter their recognition of MMP
enabling development of inhibitors that are more speci®c to certain
MMP (Skotnicki et al, 1999). As previously described, this work has
been greatly aided by determination of the MMP catalytic site and
MMP/inhibitor complex structures via X-ray crystallography (see
Introduction). Available X-ray structures of MMP-3 and MMP-8
have been used to design synthetic compounds with complimen-
tary composition to their respective MMP speci®city pocket(s)
(Matter et al, 1999).

One of the ®rst hydroxymates developed was Batimistat (BB-94,
British Biotech). This MMP inhibitor was found to have poor
solubility and was not suitable for oral or intravenous administra-
tion. It has shown ef®cacy, however, in early clinical studies when
administered intraperitoneally for malignant pleural effusions
and ascites (Ngo and Castaner, 1996). A second generation
hydroxymate MMP inhibitor, Marimistat, another broad spectrum
MMPI, has increased bioavailability and is in clinical trial as an
antiangiogenic agent in certain cancers, including nonsmall cell
lung cancer, metastatic breast cancer, small cell lung cancer and the
highly vascular glioblastoma (NCI). Recent reports of completed
clinical trials employing marimistat in advanced pancreatic
carcinoma have demonstrated no survival advantage over chemo-
therapy, however (Yip et al, 1999). AG3340 (Agouron
Pharmaceuticals, San Diego, CA), also a hydroxymate inhibitor,
has selective inhibitory activity for the gelatinases, MT1-MMP and
collagenase-3. In murine human tumor models, this agent has
demonstrated dose-dependant growth inhibition and decreased
tumor angiogenesis in certain colon, lung, and breast tumors
(Shalinsky et al, 1999).

Other Zn++-chelating groups that have been speci®cally
synthesized to inhibit MMP include the mercaptoalcohols and
mercaptoketones (Campbell et al, 1998; Levin et al, 1998). The
bisphosphonates, a separate class of drugs that are currently in use
for diseases of bone-resorption, have recently been recognized to
have MMP inhibitor activity in vitro, possibly due to their cation-
chelating ability (teronen et al, 1999). Another known class of
drugs, the tetracyclines, have been recognized for their ability to
inhibit MMP activity, originally in periodontal disease (Golub,
1983) in doses less than that exibiting antimicrobial activity. Such
®ndings have provided the basis for the development of a class of
tetracycline-based MMP inhibitors without antimicrobial activity,
the chemically modi®ed tetracyclines. A separate method used to
identify MMP inhibitors is the screening of phage display peptide
libraries. One group has screened for gelatinase-speci®c (MMP-2,

Figure 4. Synthetic MMP inhibitors. Hydroxy-
mate group (CONHOH) binds to active site Zn
ion of the MMP. Asterisks denote molecule sites
that affect recognition of speci®c MMP.
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±9) inhibitors and identi®ed cyclic peptides containing the
sequence HWGF (Koivunen et al, 1999), prompting the synthesis
of the synthetic peptide CTTHWGFTLV that has been shown to
inhibit tumors in murine models that target angiogenic blood
vessels (Koivunen et al, 1999).

Musculoskeletal pain and in¯ammation are a commonly reported
side-effect of the hydroxymate MMPI that is characteristically
dose-related (Nemunaitis et al, 1998). Along these lines, the ability
of both the broad spectrum and selective MMPI to exhibit
anticancer effects (in a mouse melanoma model) and to induce
tendinitis (in a rat tendinitis model) (Drummond et al, 1999) has
been investigated. Controlling for systemic dose and inhibitor
potency, the MMP-selective (collagense-, gelatinase-) inhibitors
caused less tendinitis but were also less effective as anticancer
agents. Interestingly, at equivalent dosages, one of the broad
spectrum MMPI tested that had less ability to inhibit certain MMP-
like enzymes known as membrane protein ``sheddases'' also
exhibited less capability to induce tendinitis. ``Sheddases'' are
metalloenzymes that release membrane-associated proteins, some of
which are growth factors and cytokines such as transforming
growth factor (TGF-a) (Arribas et al, 1996) and tumor necrosis
factor (TNF-a), and have previously been shown to be inhibited
by certain MMPI (Gearing et al, 1994). In related work, MMPI
have also been found to inhibit the release of L-selectin from the T
lymphocyte surface, and consequently affect lymphocyte transgres-
sion through the vasculature and into the lymph node (Preece et al,
1996). As studies with MMPI progress, it is increasingly evident
that these agents, like the MMP and sheddases that they inhibit,
affect varied biologic processes other than tumor cell invasion and
angiogenesis. Additionally, they are not cytotoxic but rather
cytostatic, and if their ef®cacy in human studies is proven, their
use as anticancer agents may ultimately be as selective adjuvants to
chemotherapeutic agents in certain tumors.

CONCLUSIONS

The contribution of MMP to tumor growth, invasion, and
angiogenesis has been established by multiple in vitro and in vivo
investigations. In light of such ®ndings, the inhibition of MMP
activity has been investigated as a mechanism of inhibiting tumor
growth and metastasis. Although the MMP pro®le of tumors is not
homogenous, the expression of certain MMP, i.e., MMP-2, ±9 and
MT1-MMP, are implicated in both tumor invasion and angio-
genesis. There is disagreement as to whether the application of
broad-spectrum inhibitors, such as the early hydroxymate inhibi-
tors, in distinction to the use of inhibitors that target certain MMP
(i.e., the gelatinases) is most appropriate. Investigations aimed at
improving our knowledge of the heterogeneity of speci®c tumor
types and the host defense mechanism(s) involved will potentially
allow more tumor-speci®c intervention of these therapeutic agents.
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