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I-Factors and Polynomials

W. T. TUITE

In this paper we give a fuller exposition of a property of l-Iactors discussed in [1]. The l-factors of
cubic graphs are found to be enumerated by a graph-function closley related to the chromatic and
flow polynomials. The first part of the paper is a short account, with some minor improvements, of
the theory of V -functions and 4>-functions first set out in [1].

1. V -FUNCTIONS

Given a link A in a graph G we can define two derived graphs G~ and G':4,. The first is
the spanning subgraph of G obtained by deleting A. The second is derived from G by
contracting A, with its two ends, into a single new vertex.

We consider graph-functions. Such a function assigns to each abstract graph a unique
value. Here we suppose this value to be an integer, or an element of some ring of
polynomials over the integers.

There are graph-functions V(G) that satisfy the following identity:

V(G) = V(G~)+ V(G~).

The complexity, or number of spanning trees is an example.
In other interesting cases we usually have

V(G) = V(H) . V(K)

(1)

(2)

whenever G is the union of two disjoint subgraphs Hand K. We refer to a graph-function
satisfying (1) and (2) as a V-function. One.example is the number of spanning subgraphs of
G whose intersection with each component of G is a tree. Examples related to the
chromatic polynomial and what is now known as the flow polynomial are given in [1, 2]. It
follows from (2) that a V -function must take the value 1 for the null graph, except in the
trivial case in which it is zero for all graphs.

Let us write X no (n = 0, 1,2,3, ...), for the graph consisting of a single vertex and n
loops. We observe that the cyclomatic number of X n is n.

THEOREM 1.1. Let G be a graph ofcyclomatic number n. Let V be any V-function. Then
V( G) can be written as a polynomial with integral coefficients, and with a form independent
of V; in those expressions V(Xk ) for which k ,,;;: n. Hence V is uniquely determined when its
value for each X k is known.

In proving this we bear in mind that contraction of a link does not change the cyclomatic
number, that deletion of a link does not increase the cyclomatic number, and that the
cyclomatic number of a graph is the sum of the cyclomatic numbers of its components.

The proof is by induction over m(G), the number of edges and vertices of G. At each
step in the induction we use Equation (1) if G has a link A, and Equation (2) if G is
disconnected. In the remaining case there is nothing to prove.

Theorem 1.1 tells us that a V -function is completely determined when it is known for
each X n (and for the null graph). There is a converse theorem saying that there exists a
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V -function having arbitrary assigned values for the graphs X m but it is a little more difficult
to prove.

To prove the converse theorem we first define a graph-function Z(G) as follows :

co
Z(G) =L Il (zyT(S,il.

s j=O

(3)

Here S denotes any subset of the set E of edges of G. The z, are independent
indeterminates over the integers. S determines a spanning subgraph G :S of G, and we
write u(S, j) for the number of components of G :S with cyclomatic number j.

By a simple exercise in graph theory we find that Z(G) satisfies (1) and (2), and is
therefore a V -function. (See [1] and [2].)

THEOREM 1.2. There exists a V-function V taking an arbitrarily assigned value (within
the appropriate ring) for each of the graphs X n •

PROOF. Suppose we wish V(Xn ) to be vn• Then we write

n "(n)z~ = L (-1)1 . Vm
j=O J

(4)

for each n. Substituting Z i for Zj on the right of (3) we obtain a V -function which we denote
by V.

By inversion of (4) we have

vn = £ (~)zi.
j=O J

(5)

But this is V(Xn ) , by (3).

Theorems 1.1 and 1.2 tell us that the graph-function Z(G) defined by (3) is the most
general V -function taking the value 1 for the null graph. We have indeed noted an
exceptional V -function which is zero for all graphs. But let us ignore that triviality from
now on .

2. TOPOLOGICALLY INVARIANT V -FUNCTIONS

Special interest attaches to those V -functions V for which

V(XO) =-1.

We call them the topologically invariant V -functions,

(6)

THEOREM 2.1. LetG be a graph having a monovalent vertex x. Let V be a topologically
invariant V-function. Then

V(G)=O.

PROOF. Let A be the link of G incident with x. Then G~ is the union of two disjoint
subgraphs, of which one is X o and the other is isomorphic with G ''.4. (See Figure 1.) So by
(1) and (2) we have

V(G)= V(G;'){(-1)+1}=O.

Consider next a graph G having a divalent vertex x incident with two links A and B. Let
the other ends of A and B be a and b respectively. The vertices a and b may coincide. To
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FIGURE 1
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suppress x in 0 is to replace A, B and x by a single new edge D with ends a and b. The
reverse operation is called subdividing D by means of a new divalent vertex c.

THEOREM 2.2. Let 0 be a graph having a divalent vertex x incident with two links A and
B. Let Ox be the graph derived from 0 by suppressing x. Let V be any topologically invariant
V-function. Then

V(Ox) = V(O).

PROOF. The vertex x is monovalent in O~. Moreover 0':4. is isomorphic with Ox. (See
Figure 2.) Hence V(O)= V(O':4.) = V(Ox), by Theorem 2.1.

x
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G

x

o.._--eb

FIGURE 2

B

f/J'
Theorem 2.2 justifies the term "topologically invariant V -function".
Let us consider also the case of a graph 0 having a divalent vertex x incident with a loop

A. It is sometimes convenient to be able to speak of suppressing x even in this case. We
take it that the operation removes x and turns A into a loose edge, incident with no vertex
at all.

By allowing loose edges we are of course extending the usual definition of a graph. A
generalized graph 0 will be an ordinary graph H to which m ~ 0 loose edges have been
adjoined. Each loose edge is considered to constitute by itself a component of 0 that is also
a circuit. So the components of 0 are those of Hand m others defined by the loose edges.
The cyclomatic number of 0 is defined as that of H, plus m. It is still the least number of
edges whose deletion destroys all the circuits. But the rule that the cyclomatic number is
the number of edges minus the number of vertices plus the number of components must be
modified. Instead of "number of edges" we should say "number of attached edges".

Replacing a loose edge A in a generalized graph by a loop on a single new divalent vertex
x is called subdividing A by means of x.

Let V be any topologically invariant V -function. With 0 and H as above we extend V
to the generalized graph 0 by the following rule.

(7)

With this extension V still remains invariant under subdivision, and it still satisfies (1) and
(2), even in the realm of generalized graphs.

In diagrams we shall represent a loose edge by a small simple closed curve on which no
vertices are marked.
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THEOREM 2.3. Let G be a connected non-null'graph having no monovalent vertex. Let
its cyclomatic number be n. Let V be any topologically invariant V-function. Then

V(G)= V(Xn)+P, (8)

where P is a polynomial whose form does not depend on the choice of V, in those expressions
V(Xk ) for which 1:s;; k < n.

PROOF. We proceed by induction over the number e of edges of G. If e = 0 then
G =X oand V(G) = -1, so that the theorem holds. Assume it true whenever e is less than
some positive integer q, and consider the case e = q.

Suppose first that G has no link. Then G =X m unless n = 1 and G consists of a single
loose edge. But in any case V(G) = V(Xn), and so the theorem holds.

We may now suppose G to have a link A. Then

V(G) = V(G~)+ V(G~), (9)

by (1). We note that G~ is connected, that it has cyclomatic number n, and that it satisfies
the theorem by the inductive hypothesis. For G~ there are several possibilities. However,
in no case can its cyclomatic number exceed n.

First, G~ may have a monovalent vertex. Then V(G~) = 0, by 2.1. It now follows from
(9) that the theorem holds for G.

We may now assume that G~ has no monovalent vertex. Suppose it connected. Then its
cyclomatic number is n -1, since G has a circuit through A. By the inductive hypothesis
the theorem holds for G~, with n replaced by n -1. Hence, by (9), the theorem holds for
G.

We may now make the further assumption that G~ is disconnected. It must be the union
of two disjoint connected subgraphs Hand K, these being joined by A in G. Each of Hand
K has a circuit, since otherwise G would have a monovalent vertex. Hence each has a
non-zero cyclomatic number. But the sum of their cyclomatic numbers is that of G~, which
cannot exceed n. Hence each of Hand K has a cyclomatic number less than n. So by (2)
and the inductive hypothesis V(G~) can be expressed as a polynomial, with a form
independent of V, in those expressions V(Xk ) for which 1< k < n. Hence G satisfies the
theorem, by (9).

This completes the proof that the theorem holds whenever e = q. It follows in general by
induction.

THEOREM 2.4. For each positive integer k let there be given a connected graph Hi; of
cyclomatic number k and with no monovalent vertex. Then there exists a topologically
invariant V-function V taking an arbitrarily assigned value for each Hi, Moreover V is
uniquely determined.

PROOF. We use Equation (8) with G replaced successively by HI, Hz, H 3 , and so on.
Solving the resulting equations, in order of increasing k we find values for the V(Xn ) ,

n ;;:'1, which force the desired values on the V(Hk ) . Moreover these values of the V(Xn)
are uniquely determined. The theorem now follows from 1.1 and 1.2.

3. CUBIC GRAPHS AND q,-FUNCTIONS

A graph is called "cubic" if the valency of each of its vertices is 3. We consider that this
definition allows a cubic graph to have any number of loose edges. Indeed any graph
without vertices but with one or more loose edges is counted as cubic.
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We discuss a cubic graph G. For convenience in describing constructions we bear in
mind also the graph Q obtained from G by subdividing each attached edge by a single new
divalent vertex. We refer to the attached edges of Q as half-edges of G.

Let A be a link of G having ends x and y. Let x be incident with the half-edges a and {3
not in A. These may unite to form a loop of G on x, or they may be halves meeting x of two
distinct links of G. Similarly let y be incident with the half-edges 'Y and 8. In the graph G~
the vertices x and yare divalent, but we can get a new cubic graph GA by suppressing them.
GA may have more loose edges than G (see Figure 4).

Consider now the graph G';.. It has a tetravalent vertex w formed by the collapse of A, x
and y, and the half-edges incident with ware a, {3, 'Y and 8. To recover G we have to
arrange these four half-edges in two pairs, introduce x as a vertex incident with the
members of one pair and y as one incident with those of the other pair, and then bring in A
as an edge joining x and y. Since there are three possible pairings of the half-edges we can
in general get three cubic graphs G, Hand K in this way. (See Figure 3.) As abstract graphs
they are not necessarily all distinct. Each of G, Hand K is said to be derived from each of
the others by twisting A. We note that

G':4.=H':4.=K':4.. (10)

FIGURE 3

In [1] we define a "4>-function" of an abstract cubic graph. It is a function 4> which is
defined for all cubic graphs and which satisfies the two following rules.

THEOREM 3.1. Let G and H be cubic graphs such that H is derived from G by twisting a
link A. Then

(11)

THEOREM 3.2. Let the cubic graph G be the union of two disjoint subgraphs Hand K.
Then

4>(G) = 4> (H) . 4>(K). (12)

To these rules it is convenient to add that 4> must take the value 1 for the null graph.
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Figure 4 shows the graphs involved in Equation (11) in one very simple case

G

00

FIGURE 4

H

o

It is now convenient to describe a family of cubic graphs of specially simple structure. So
for each non-negative integer m we define a cubic graph Y m as follows. Yo consists of a
single loose edge. For a positive m Y m has exactly 2m vertices , conveniently enumerated
as Vb V2 , V3 , ••• , V2m' When the suffixj is odd u, and V j+l are joined by a single edge. When
j is even and less than 2m the vertices Vj and Vj+1 are joined by exactly two edges. Finally
there is a loop on VI and another on V2m' We observe that the cyclomatic number of Ym is
m + 1. Some of the graphs Y m are shown in Figure 5.

If the loop on VI is deleted from Y m we obtain a frond of order m, with root VI .

FIGURE 5

THEOREM 3.3. Let G be a connected cubic graph of 2n vertices. Then by twisting links of
G we can transform it into Y n •

PROOF. If n =0 then G is necessarily Yo, and there is nothing to prove . In the
remaining case G has a circuit C. If C is not a monogon we can transform it into one by
twisting all but one of its edges. We thus transform G into a graph G 1 containing a frond of
order 1.

Suppose that, by some sequence of twistings, we have transformed G into a graph H
having a frond. Let F be a frond in G of highest order k. Let its root be r. Then H is the
union of F with another subgraph Flo these having only the vertex r in common. If F1

consists of a single loop , then H = Y n and the theorem is verified. If F 1 contains a circuit
through r, other than a monogon, we can twist edges of this circuit so as to transform H into
a graph K with a frond of order k + 1.

In the remaining case F 1 has no circuit through r. But it must have some circuit C, and we
can find a shortest arc L in F1 joining C to r. By twisting the edges of L we can transform to
the case in which F 1 has a circuit through r, and we can go on to find K as before.

We repeat the process with K replacing H, and so on until it terminates with Yn •

THEOREM 3.4. A </J-function </J is uniquely determined when its value is known for each
Y n •

PROOF. Suppose </J is known for each Y n• We now have to show that it is determined
for each cubic graph G. We proceed by induction over the number 2n(G) of vertices of G.

If n(G) =0 then </J (G ) is determined as a power of </J(Yo), by 3.2. Assume (G )
determined whenever n (G) is less than some positive integer q, and consider the case
n (G) =q.
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¢J(G) = <!>(Yq ) +L,

where L is a linear form in expressions ¢J (H) such that n (H) < q, by 3.3 and the definition
of a ¢J-function. So ¢J(G) is determined, by the inductive hypothesis.

If G is not connected then ¢J(G) is determined, by 3.2 and the inductive hypothesis,
together with the result just proved if one component of G contains all the vertices. The
step to n (G) = q is now complete, and the theorem follows.

The next two theorems relate ¢J-functions to topologically invariant V -functions.

THEOREM 3.5. Let V be any topologically invariant V-function. Then its restriction to
cubic graphs is a ¢J-function.

PROOF. Let G and H be any cubic graphs such that H is derived from G by twisting a
link A. Then, by (1) and (10),

V(G)- V(G~)= V(G A) = V(HA) = V(H)- V(H~).

Hence, by topological invariance,

V(G)- V(GA ) = V(H)- V(HA ) .

The restriction ¢J of V to cubic graphs thus satisfies (11). But it satisfies (12) by (2). It is
therefore a ¢J-function.

THEOREM 3.6. Let ¢J be any ¢J-function. Then there exists a topologically invariant
V-function V such that the restriction of V to cubic graphs is ¢J. Moreover V is uniquely
determined.

PROOF. By 2.4 there exists a unique V-function V such that V(Ym ) = ¢J(Ym ) for each
Ym • Its restriction to cubic graphs is a ¢J-function, by 3.5 . This ¢J-function is identical with
¢J, by 3.4.

4. A ¢J-FUNCTION ASSOCIATED WITH I-FACTORS

We recall that a I-factor of a graph G is a spanning sub graph of G in which each vertex is
monovalent. We denote the number of I-factors in a cubic graph G by f(G).

Evidently the null graph has just one I-factor. Moreover any I-factor of a graph G
remains a I-factor when we adjoin to or delete from it any loose edge of G. For the cubic
graph consisting of k loose edges and no vertex we therefore write

(13)

We note also that

(14)

THEOREM 4.1. Let G and H be cubic graphs such that H is derived from G by twisting a
link A. Then

(15)

For an example of this identity we take the graphs of Figure 4. Evidently f(G) = 1 and
f(H) = 3, whereas f(GA ) = 4 and f(HA ) = 2, by (13).
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PROOF OF 4.1. We return to the notation of Figure 3. Figure 6 shows how the four
half-edges a , {3, 'Y and 8 relate to one another in G, GA , Hand HA •

u
K 1CN 8 r

r

G &;, H HA

FIG URE 6

Let us now write S for the set of all edges of G, other than A , which do not contain a , {3, 'Y
or 8. Let T be a subset of S, and U a subset of {a, {3, 'Y, 8}. We study those I-factors of G,
GA , Hand H A which meet Sin T and {a, {3, 'Y, 8} in U. We say that these l-Iactors are of
Type (T, U ). We readily verify that for given T and U each of the four graphs has at most
one I-factor of Type (T, U ).

Consider first the case in which U is null. Then if any of the four graphs has a I-factor of
Type (T, U ) so does each of the others. This I-factor would contain A in the cases of G and
H. Hence the I-factors of Type (T, U ), with U null, balance on the two sides of (15).

We have to verify such a balance for each of the subsets U. If U has 1 or 3 members this
is trivial. No corresponding I-factor exists in any of the four graphs .

Suppose next that U = {a, {3}. No corresponding I -factor is possible in G or H A • But if
one of GA and H has a I-Iactor of Type (T, U ) then so does the other. Again we have
balance in (15). Balance in the cases U={{3 ,'Y}, U={Y,8}, U ={8 ,a}, follows by
symmetry.

Suppose next that U ={a, 'Y}. There can be no corresponding I-factor in GA or H A • But
if one of G and H has a Lfactor of Type (T, U ) then so does the other. Balance is again
achieved. Balance in the case U = {{3, 8} follows by symmetry.

It remains only to consider the case U ={a, {3, 'Y, 8}. Then I-factors of Type (T, U) can
exist only for GA and HA , and if one of these two graphs has such a I -factor, then .so does
the other. This completes the verification of Equation (15).

THEOREM 4.2. Let a cubic graph G be the union of two disjoint subgraphs Hand K .
Th en f (G ) =f (H ) . f (K ).

This result is obvious. It is also clear that we can combine 4.1 and 4.2 into the following
statement.

THEOREM 4.3. Let the number of vertices of the cubic graph G be denoted by 2n(G).
Then

is a c/J-function.

A more general c/J-function is defined in [1]. It is written in the form

( - lr (G)D(G, x) ,

where D (G, x) is a polynomial in a variable x, and is defined by the following equation:

D(G, x) =L 1TdG )x k
•

k
(16)
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Here 71"k(G) denotes the number of spanning subgraphs of G which have no vertex of zero
valency and exactly 2k vertices of odd valency. Equivalently we can use complementary
spanning subgraphs, saying that 71"k(G) is the number of spanning subgraphs of G with no
vertex of valency 3 and with exactly 2k vertices of even valency. We note that 71"o(G) is
[(G). It must be left to the reader to verify that 71"dG) satisfies an analogue of (15), by an
argument similar to the proof of 4.1.

5. THE EXTENSION OF [

The q, -function of 4.3 extends as a topologically invariant V -function V to all finite
graphs, by 3.6. We can extend [to all these graphs by writing

[(G) = (-I)e+vV(G),

where G has e edges and v vertices. The function[, thus extended has the property (2), but
in place of (1) it satisfies the identity

[(G';..) = [(G) +[(G~)

for each link A of G. It also inherits from V the property of topological invariance.

THEOREM 5.1. [(G) is a non-negative integer [or each graph G.

(17)

PROOF. By repeated use of (17), with G';.. initially replaced by G, we can write [(G) as
a sum of expressions [(H), where H has no vertex whose valency exceeds 3. By 2.1 and 2.2
we can arrange that each H is cubic. But then each [(H) is a non-zero integer, being the
number of I-factors of H. The theorem follows.

Analogously we can show that D(G, x) extends to all graphs G, and that for each G it is a
polynomial in x with no negative coefficients.

We proceed to evaluate [(G) for a few simple non-cubic graphs. Let A(k, m) be the
graph obtained from a frond of order m by adjoining k loops on the root r. Thus
A(1, m) = Y m• Let B(k, m) be the graph obtained from A(k, m) by contracting the link
incident with r. Thus

B(k, 1) =Xk + 1•

Other examples are shown in Figure 7.

~
A(2,2)

FIGURE 7

8(3,4)

(18)

By applying (17) to a link A incident with r, first in A(k, m) and then in B(k, m), we
obtain the recursion formulae (19) and (20). In these and some following equations we
adopt the convention of writing G for [(G).

B(k, m) =A(k, m) +X k • Y m - 1 (k ~ 0, m ~ 1).

A(k + 1, m -1) =B(k, m)+A(k, m -1), (k ~O, m ~2).

(19)

(20)
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Now we know that {(Xo) = -1 , { (A (O, m )) =0 by topological invariance and
{ (B (O, m» ={ (Ym - I ) . Moreover { (Yo) = 2 and{(Ym ) = 1 if m >0, by counting 1-factorsin
the cubic graphs concerned. But if {is known for Xi, A (k, m) and B (k, m ), for a given k
and all positive m, then it can be found for X k+), A (k + 1, m) and B (k + 1, m ) by the use of
Equations (18), ( 9) and (20). We can indeed establish the following three formulae by a
simple induction :

{ (A (k, m )) = i (3k-1 ), (21)

{ (B (k, m» = 3k (22)
and

{ (Xk) = ! (3k+ 1). (23)

Let us now define C (k, m) as consisting fo two vertices x and y, k loops on x , and m;;;.1
links joining x and y. Then

C(k, 1) = 0

by 2.1. For m > 1 we can use (7) to obtain the following recursion formula .

X k+m- 1 = C(k, m) + C(k, m -1).

This enables us to prove inductively that

{(C(k, m )) = 3 k +I (3 m -~+( _ I)m) +ko +( _ I)m).

In particular
{ (C(k , 3» = 3k

+
1

•

(24)

(25)

(26)

(27)

Now letD(k, m ), where m ;;;'1, be the graph derived from an arcL of length m, and one
extra vertex x, by the following cons truction. We join x to each end of L by exactly two
links , and to each internal vertex of L by exactly one link . We then attach k loops to x. For
examples, see Figure 8.

C(I,4) D(2 , 1)

FIGURE 8

D(I,3 1

From (7), taking A to be one of the links joining x to an end-vertex of L, we find that

D (k, 1) = C(k + 1, 3) - C (k, 3).

Hence, by (27),

{(D(k, 1) = 2· 3k
+

1
•

For m > 1 we find similarly that

D (k, m ) =D(k + 1, m -1 )-D(k, m -1).

Hence, by induction,

{ (D (k, m»=2m
• 3k

+
l

•

(28)

(29)

(30)

(31)

The wheel W m , (m > 1), is obtained from a circuit C; of length m by adjoining a new
vertex x called the hub, and then joining x to each vertex of C« by a single new link called a
spoke. (See Figure 9.)
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Let W(k, m) be the graph derived from Wm by adjoining k loops on the hub. We
observe that

W(k, 1) =A(k, 1) and W(k, 2) = C(k, 3) - W(k, 1).

Hence f(W(k, 1)) = !(3 k -1) andf(W(k, 2)) =!(5 . 3k + 1), by (21) and (27). For m > 2 we
find, using (17) and taking A to be a spoke, that

Hence, by induction,

W(k, m) =D(k, m -2)- W(k, m -1).

f(W(k, m)) =!{(2m+ (_I)m)3 k + (_I)m},

f(Wm) = 2m
-

1 + (_I)m.

(32)

(33)

(34)

From these and other examples we may hope to induce a graph-theoretical inter
pretation of f( G) in the general case.

6. A POSTSCRIPT

After studying the examples I did indeed find the graph-theoretical interpretation of
f(G) called for above. It runs as follows.

THEOREM 6.1. Let G be any graph. Let W be the set ofa subgraphs S of G such that (i)
each vertex ofS has non-zero even valency in Sand (ii) each vertex with odd valency in G is a
vertex ofS. Leta (S) denote the numberofattached edges ofS, and b (S) the numberofvertices
of S. Then

f(G) = L 2alSl-blSl.
SeW

(35)

PROOF. We easily verify that when G is cubic the sum on the right is the number of
2-factors, that is the number of l-factors, of G. It remains only to show that f( G), as defined
by (35), satisfies (2) and (17). The first requirement is trivial; the second is a simple exercise
in graph theory best left to the reader.

The question of the graph-theoretical interpretation of the extension of D(G, x) is still
open.
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