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The reduction of acetylpyridine adenine dinucleotide by NADH: is it a
significant reaction of proton-translocating transhydrogenase, or an

artefact?
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Abstract

q Ž .Transhydrogenase is a proton pump. It has separate binding sites for NAD rNADH on domain I of the protein and for
q Ž .NADP rNADPH on domain III . Purified, detergent-dispersed transhydrogenase from Escherichia coli catalyses the

q Ž q.reduction of the NAD analogue, acetylpyridine adenine dinucleotide AcPdAD , by NADH at a slow rate in the absence
of added NADPq or NADPH. Although it is slow, this reaction is surprizing, since transhydrogenase is generally thought to

Ž . Ž .catalyse hydride transfer between NAD H – or its analogues and NADP H – or its analogues, by a ternary complex
mechanism. It is shown that hydride transfer occurs between the 4 A position on the nicotinamide ring of NADH and the 4 A
position of AcPdADq. On the basis of the known stereospecificity of the enzyme, this eliminates the possibilities of

Ž . q Ž .transhydrogenation a from NADH in domain I to AcPdAD wrongly located in domain III; and b from NADH wrongly
located in domain III to AcPdADq in domain I. In the presence of low concentrations of added NADPq or NADPH,
detergent-dispersed E. coli transhydrogenase catalyses the very rapid reduction of AcPdADq by NADH. This reaction is
cyclic; it takes place via the alternate oxidation of NADPH by AcPdADq and the reduction of NADPq by NADH, while
the NADPH and NADPq remain tightly bound to the enzyme. In the present work, it is shown that the rate of the cyclic
reaction and the rate of reduction of AcPdADq by NADH in the absence of added NADPqrNADPH, have similar
dependences on pH and on MgSO concentration and that they have a similar kinetic character. It is therefore suggested that4

the reduction of AcPdADq by NADH is actually a cyclic reaction operating, either with tightly bound NADPqrNADPH on
Ž . q Ž q .a small fraction -5% of the enzyme, or with NAD rNADH or AcPdAD rAcPdADH unnaturally occluded within the

Ž .domain III site. Transhydrogenase associated with membrane vesicles chromatophores of Rhodospirillum rubrum also
catalyses the reduction of AcPdADq by NADH in the absence of added NADPqrNADPH. When the chromatophores were

Žstripped of transhydrogenase domain I, that reaction was lost in parallel with ‘normal reverse’ transhydrogenation e.g., the
q .reduction of AcPdAD by NADPH . The two reactions were fully recovered upon reconstitution with recombinant domain

I protein. However, after repeated washing of the domain I-depleted chromatophores, reverse transhydrogenation activity
Ž . qwhen assayed in the presence of domain I was retained, whereas the reduction of AcPdAD by NADH declined in
activity. Addition of low concentrations of NADPq or NADPH always supported the same high rate of the NADH™
AcPdADq reaction independently of how often the membranes were washed. It is concluded that, as with the purified E.
coli enzyme, the reduction of AcPdADq by NADH in chromatophores is a cyclic reaction involving nucleotides that are

q Ž .Abbreviations: AcPdAD , acetylpyridine adenine dinucleotide oxidized form .
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tightly bound in the domain III site of transhydrogenase. However, in the case of R. rubrum membranes it can be shown
with some certainty that the bound nucleotides are NADPq or NADPH. The data are thus adequately explained without
recourse to suggestions of multiple nucleotide-binding sites on transhydrogenase.

Ž . Ž .Keywords: Transhydrogenase; Proton pump; Nicotinamide nucleotide; Rhodospirillum rubrum ; Escherichia coli

1. Introduction

Transhydrogenase, which is found in the inner
membranes of animal mitochondria and in the cyto-
plasmic membranes of bacteria, couples the transfer

Ž .of hydride equivalents between NAD H and
Ž .NADP H to the translocation of protons. Thus, in

the probable physiological direction:

NADHqNADPqqnHq
out

mNADqqNADPHqnHq 1Ž .in

where Hq and Hq represent hydrogen ions in theout in

external and internal aqueous phases, respectively,
w xand where ns1 1 .

Transhydrogenase has no known redox centres or
prosthetic groups. Extensive kinetic analyses of the

w x w xmembrane-bound 2–4 and detergent-dispersed 5
protein indicate that the reaction proceeds by a ternary
complex mechanism; there are separate binding sites
on transhydrogenase for NADqrNADH and for
NADPqrNADPH. Measurements of isotopic ex-

w xchange 6 indicate that the transfer of the hydride
equivalent between the nicotinamide rings of the

Ž .nucleotides is direct, from the A or pro-R position
Ž .on NADH to the B or pro-S position on NADPH.

The amino acid sequences of a number of trans-
hydrogenases indicate a tridomain structure. Domains
I and III are relatively hydrophilic and protrude from

Žthe membrane on the matrix side in mitochondria
.and on the cytoplasmic side in bacteria . The

NADqrNADH binding site is located in domain I
and the NADPqrNADPH binding site in domain III
w x7–10 . The very hydrophobic domain II spans the
membrane.

AcPdADq is an analogue of NADq. ‘Reverse’
Ž .transhydrogenation see Eqn. 1 is conventionally

assayed as the reduction of AcPdADq by NADPH
Žthe absorbance maximum of AcPdADH is shifted

Ž . .relative to that of NAD P H . Transhydrogenase from
various sources, in the presence of either NADP q or
NADPH, can also catalyse the reduction of AcPdADq

Ž .by NADH sometimes at very high rates . Detailed
analysis of this reaction by solubilized E. coli trans-

w x Ž qhydrogenase 11,12 showed that it is cyclic NADP
and NADPH remain tightly bound to domain III of
the enzyme, while being alternately reduced and oxi-
dized by NADH and AcPdADq located on domain I,

.see Fig. 1 . There are some differences in the charac-
ter of the cyclic reaction in transhydrogenases iso-
lated from different species. Solubilized bovine mito-
chondrial transhydrogenase catalyses the cyclic reac-
tion with added NADPq, but not with added NADPH
Ž q .evidently, NADP binds only rather weakly , unless
the enzyme is first partially inactivated by prolonged

w xexposure to the nucleotide 13 . A mixture of the
recombinant domains I and III of R. rubrum trans-
hydrogenase catalyses the cyclic reaction by way of
the very tightly bound NADPq and NADPH that are
associated with the domain III protein even after

w xextensive purification 10 . We proposed that the
cyclic reaction does not involve the pumping of

w xprotons 11,12 , whereas Rydstrom and colleagues¨
have maintained that oxidation of bound NADPH
causes proton pumping in one direction and reduction
of bound NADPq causes proton pumping in the

w xopposite direction 14 .

Fig. 1. The cyclic reduction of AcPdADq by NADH involving
NADPq and NADPH tightly bound to transhydrogenase Es
transhydrogenase. See text.
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w xMany years ago Fisher’s group 15,16 claimed
that transhydrogenase on R. rubrum chromatophores
could catalyse AcPdADq reduction by NADH in the

Ž .absence of added NADP H . They took this as evi-
dence for the existence of a reduced enzyme interme-
diate. Although this conclusion does not fit with the
modern view of the mechanism of action of this
enzyme – there was some concern about the validity

w xof the experimental controls 5 – the original obser-
vation has still not been satisfactorily explained. We
reported a very slow reduction of AcPdADq by
NADH by purified E. coli transhydrogenase in the

Ž . w xabsence of added NADP H 11 and, more recently,
Bragg and colleagues have reported conditions where

Žthis reaction takes place at a higher rate though it is
Ž .still slow compared with the NADP H -dependent

. w xreaction 17 . From our present knowledge, four
possible explanations might account for the reduction
of AcPdADq by NADH in the absence of added

Ž .NADP H .
Ž . Ž .1. There might be some tightly bound NADP H

associated with the domain III of transhydro-
genase and this would permit the cyclic reaction to
operate.

2. On the basis that transhydrogenase can bind the
w xnucleotides very tightly 11,12 , there might be

Ž . Ž .enough contaminating NADP H e.g., -0.1%
in commercial solutions of AcPdADq or NADH
to permit the cyclic reaction to operate.

3. Either AcPdADq or NADH might be able to enter
Ž Ž .the wrong site i.e., the NADP H site on domain

.III at a sufficient rate to allow transhydrogenation
to take place.

4. There is more than one pathway for hydride trans-
fer on transhydrogenase andror more than a sin-

Ž . Ž .gle site for NAD H binding and for NADP H
Ž .binding. For example, it might be possible, a that

NADH bound into the domain I of one partner of
the transhydrogenase dimer can reduce AcPdADq

w xlocated in domain I in the other partner 17 by a
pathway that does not operate during normal for-

Ž .wardrreverse transhydrogenation, or b there is a
Žsecond nucleotide-binding site on domain III see

w x.17–20 that can bind NADH to serve as hydride
q Ždonor for AcPdAD on domain I P.D. Bragg,

.personal communication .
This report describes the results of experiments to

distinguish between these possibilities.

2. Materials and methods

w xE. coli strain JM109, bearing plasmid pSA2 21
w xand R. rubrum strain RTB2 1 were grown and

w xmembranes prepared as described 22,23 . Mem-
branes of R. rubrum depleted of their transhydro-
genase domain I protein were prepared by washing
once by centrifugation in 2M NaCl, 20 mM Tris-Cl,
pH 8.0. Further washing was carried out in 100 mM
Tris-HCl, pH 8.0, 10% sucrose, 1 mM dithiothreitol,
as described in Table 2. The membranes were stored
in this medium, with 50% glycerol at y208C. The
bacteriochlorophyll content of the R. rubrum mem-
branes was estimated using the in vivo extinction

w x Žcoefficient given 24 . E. coli transhydrogenase 1
.mg per ml protein was solubilized in 10% Triton

X-100 and purified by column chromatography, es-
sentially by the procedure of Tong et al. Solubilized
transhydrogenase was loaded on to a 25=3cm col-

Ž .umn of DEAE Trisacryl LKB pre-equilibrated with
ŽTED buffer 50 mM Tris-Cl, pH 7.8, 1 mM EDTA, 1

.mM dithiothreitol . The column was washed with
TED buffer containing 0.05% Brij and 70 mM NaCl
and then transhydrogenase was eluted with TED
buffer containing 0.05% Brij and 300 mM NaCl.
Pooled active fractions were loaded on to a 15=1.7

Ž .cm column of Q-Sepharose HP Pharmacia pre-equi-
Žlibrated with MED buffer 20 mM Mops, pH 7.0, 1

.mM EDTA, 1 mM dithiothreitol, 0.01% Brij . Trans-
hydrogenase was eluted with a 0–500 mM gradient
of NaCl in MED buffer. Pooled active fractions were
further chromatographed on a MonoQ HR5r5 col-
umn in MED buffer with a 250–500 mM gradient of
NaCl using a Pharmacia FPLC system. The concen-
tration of protein was determined by the bicin-

w xchoninic acid assay 25 . The domain I protein of R.
rubrum transhydrogenase was expressed in E. coli

w xand purifed by column chromatography 8,23 ; its
concentration was determined by the microtannin

w xassay 26 .
The reduction of AcPdADq by NADH and by

NADPH was monitored, either with a Shimadzu
UV3000 dual-wavelength spectrophotometer at 375–
450 nm, or with a Perkin Elmer Lambda 16 double-
beam spectrophotometer at 375 nm, using extinction

w xcoefficients given 27 and in experimental media
described in the figure legends.

In some experiments solutions of commercial



( )S.N. Stilwell et al.rBiochimica et Biophysica Acta 1320 1997 83–9486

q Ž .AcPdAD and NADH from Sigma were purified
by chromatography on a Mono-Q HR5r5 column
fitted to a Pharmacia FPLC system using a modifica-
tion of the procedure described by Orr and Blanchard
w x28 . The column was equilibrated with 20 mM tri-
ethanolamine-HCl, pH 7.7 and developed with a
gradient of 0–200 mM KCl in 20 mM tri-
ethanolamine-HCl. Control experiments showed that
this elution system gave very good separation of
AcPdADq and of NADH from NADPq and NADPH.

The stereospecificity of hydride transfer from
q wNADH to AcPdAD was performed using both 4 A-

3 x w 3 x wH NADH and 4B- H NADH, prepared from 4-
3 x q Ž .H NAD Amersham essentially as described by

w xWu et al. 29 , but using different procedures for the
w 3 xseparation of the nucleotides. 4 A- H NADH was

generated using glutamate dehydrogenase, type III
Ž .from bovine liver 4B-specific, Sigma . After 15 min

Ž .of reaction at 228C )90% conversion using the
w xconditions described 29 , the mixture was cooled to

Ž .48C passed through a 10k Centricon tube Amicon
Ž .and loaded on a Mono-Q HR5r5 column Pharmacia .

Unreacted NADq was eluted with 10 mM NH HCO4 3

and labelled NADH was eluted with a 10–500 mM
w 3 xgradient of NH HCO . 4B- H NADH was prepared4 3

Žusing alcohol dehydrogenase from yeast 4 A-specific,
. ŽSigma . After 30 min of reaction at 228C )90%

. w xconversion using the conditions described 29 , the
radiolabelled nucleotide was purified as above.

Ž .Freshly prepared NADH either 4 A or 4B labelled
Žwas added final concentration, 200 mM, and approx-

y1.imately 1 mCiPml to a solution containing 50
mM Mes, pH 6.0, 0.5 mM EDTA, 0.01% Brij 35, 2
mM dithiothreitol, 200 mM AcPdADq and 2 mg
purified E. coli transhydrogenase in a volume of 1ml
at 308C. The reduction of AcPdADq was monitored
at 375 nm on a Kontron double-beam spectrophotom-
eter, and, after 10min, the mixture was cooled to 48C
and passed through a 10k Centricon filter, before
loading on a Mono-Q column equilibrated with 20

w x qmM triethanolamine, pH 7.7 28 . NAD and unre-
acted AcPdADq were eluted from the column with
20 mM triethanolamine, pH 7.7. A gradient of 0–200
mM KCl in 20 mM triethanolamine, pH 7.7 was
applied to the column. AcPdADH was eluted as a
single peak which overlapped slightly with the unre-
acted NADH. Pooled peak fractions of the AcPdADH
were re-chromatographed under the same conditions;

this time the nucleotide was eluted as a single sharp
peak. After removing a sample for counting, the
radiolabelled AcPdADH was re-oxidised with 4 A-
specific yeast alcohol dehydrogenase, as described

w xfor the re-oxidation of NADH 29 . After 10 min the
ŽAcPdADH was largely oxidized as judged by the

.absorbance at 375 nm , the reaction mixture was
Ž .loaded on a Dowex 1 column mesh 200–400, Sigma ,

pre-equilibrated with water, and the AcPdADq was
eluted with a gradient of 0–1M formic acidrsodium

w xformate 30 . Radioactivity was determined using an
LKB-Wallac 1217 counter with Wallac Hisafe II
scintillation fluid.

3. Results

3.1. The reduction of AcPdADq by NADH by puri-
fied transhydrogenase from E. coli

We reported that purified E. coli transhydrogenase
catalyses a very low rate of AcPdADq reduction by

w xNADH 11 . Glavas and Bragg reported a higher rate
w x17 . The discrepancy between the two sets of data
arises partly as a result of different Brij 35 concentra-

Ž .tions data not shown , partly as a result of different
Žconcentrations of lysophosphatidyl choline data not

.shown , and partly as a result of differences in the
ionic strength, in the experimental media. A detailed

Ž .description of the effects of ionic strength MgSO4
Ž .on the reaction will be given below Fig. 2 .

3.2. The stereospecificity of the reduction of
AcPdADq by NADH by purified transhydrogenase
from E. coli

The nucleotide-binding site on domain I of trans-
Ž . w xhydrogenase is specific for NAD H 7–9 , and that

Ž . w xon domain III is specific for NADP H 7,10 . The
transfer of the hydride equivalents between nu-
cleotides bound to transhydrogenase is also stere-
ospecific. Thus, with physiological substrates, hy-

Ž .dride transfer to and from NAD H is A-specific,
Ž .whereas hydride transfer to and from NADP H is

w x qB-specific 6 . Therefore, if the NADH™AcPdAD
reaction results from nucleotides entering the ‘wrong’

Žsites either the NADH entering domain III and being
oxidized by AcPdADq in domain I, or AcPdADq
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Fig. 2. The dependence on MgSO concentration of the rate of reduction of AcPdADq by NADH in the absence, and in the presence of4

NADPH, by E. coli transhydrogenase. Experiments were performed on a dual-wavelength spectrophotometer in a medium containing 20
mM Mes, 0.5 mgPmly1 lysophosphatidyl choline, 0.05% Brij, 1 mM dithiothreitol, 0.25 mM EDTA, 1.3 mgPmly1 purified E. coli
transhydrogenase at 308C, pH 6.0, and at the MgSO concentration shown. v, 200 mM NADH and 200 mM AcPdADq; `, 200 mM4

NADH, 200 mM AcPdADq and 10 mM NADPH.

entering domain III and being reduced by NADH in
.domain I , and if, as expected, it is the binding-site

pocket which determines the stereospecificity, then
Ž .the hydride transfer would be AB or BA . The

results described in Table 1 show that this is not the
case; the hydride is transfer is AA. In the first set of

Table 1
Stereospecificity of hydride transfer during the reduction of

q ŽAcPdAD by NADH by purified E. coli transhydrogenase see
.Section 2

q 3 aw xReduction of AcPdAD by 4A H NADH : Specific activity
y1Ž .CiPmol

Initial NADH 11.3
Resultant AcPdADH 11.2

qAcPdAD after treatment of resultant 0.07
bAcPdADH with ADH

q 3 cw xReduction of AcPdAD by 4B H NADH :

Initial NADH 0.77
Resultant AcPdADH 0.01

a The experiment was performed three times, and the results
averaged.
b Ž .ADH, alcohol dehydrogenase see Section 2 .
c Each specific activity is the mean of three measurements from
one experiment.

experiments, AcPdADq was reduced with NADH
tritiated at the 4 A position of the nicotinamide ring.
At the end of the experiment the specific activity of
the product AcPdADH was similar to that of the
starting activity of the NADH. This indicates that
hydride transfer was from the A position of the
latter. When a sample of the product AcPdADH was
treated with 4 A-specific yeast alcohol dehydroge-
nase, the nucleotide lost its radioactivity, showing
that hydride transfer had been into the A position of
the AcPdADq.

In separate experiments, AcPdADq was reduced
with NADH tritiated in the 4B position of the
nicotinamide ring. In this case, the resulting AcP-

Ž .dADH was not significantly labelled Table 1 , again
indicating that hydride transfer is from the 4 A posi-
tion of NADH.

3.3. If the reduction of AcPdADq by NADH by
purified transhydrogenase from E. coli is a cyclic
reaction inÕolÕing bound NADP qrNADPH, what is
the source of that NADP qrNADPH?

The stereospecificity of hydride transfer revealed
w xby these experiments is consistent with the idea 11
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that the reduction of AcPdADq by NADH is a
consequence of a cyclic transhydrogenation reaction,
in which contaminating levels of NADPq or NADPH
bind tightly to domain III of the enzyme, and are
alternately reduced and oxidized by NADH and
AcPdADq, respectively, on domain I. It was ob-
served that, at pH 6.0, extremely low concentrations
Ž . q-0.1 mM of either NADP or NADPH can pro-

w xmote the cyclic reaction 11 . Thus, contamination of
the commercial solutions of NADHrAcPdADq, by
either NADPq or NADPH even at levels of -0.1%,
would be enough to support substantial rates of the
cyclic reaction. However, this possibility was elimi-
nated by experiments in which the commercial stock
solutions of NADH and AcPdADq were subjected to
ion exchange chromatography under conditions that
led to good separation from any contaminating
NADPq or NADPH. The rates of NADH ™
AcPdADq catalysed by E. coli transhydrogenase
using the purified nucleotides were not significantly

Ž .decreased data not shown .
There remains the possibility that, even after ex-

tensive purification, the E. coli transhydrogenase
might still possess tightly bound NADPqrNADPH.
Certainly, some mutant transhydrogenases in mem-
brane vesicles of E. coli appear to be associated with

q w xbound NADP 17 , and, even after ion exchange
and size exclusion chromatography, wild-type recom-
binant domain III protein of R. rubrum transhydro-
genase retains substantial levels of tightly bound
NADPq and NADPH, which can participate in a
cyclic reaction with NADH, AcPdADq and recombi-

Žw xnant domain I protein 10 , and see the results of
experiments described below on R. rubrum mem-

. qbranes . The rate of the NADH™AcPdAD reac-
tion catalysed by our purified E. coli transhydro-
genase is less than 5% of that of the cyclic reaction
Ž .see Fig. 2 , and the detection of such low levels of
bound NADPq and NADPH was below the resolu-

Ž w x.tion of our analysis for example, see 10 . We
therefore attempted to remove any residual
NADPqrNADPH by extensively washing the trans-
hydrogenase while it was bound to an ion exchange
column, but this failed to lower the rate of the
NADH™AcPdADq reaction by the subsequently
eluted enzyme. In further separate experiments, the

Ž .washing procedure was performed at high pH 8.0
Ž .and at elevated concentrations of MgSO 10 mM in4

Ž . Ž w xan attempt to displace bound NADP H see 11 and
.below , but still there was no decrease in the rate of

the NADH™AcPdADq reaction. On the basis that
NADPq might have a greater ‘off’ rate from the

w xdetergent-dispersed enzyme than NADPH 11,12 , we
preincubated purified E. coli transhydrogenase with
AcPdADq with the view to oxidizing any bound
NADPH to NADPq before subjecting it to column
washing, but again this treatment did not lower the
rate of the subsequently measured NADH ™

q Ž .AcPdAD reaction data not shown .

3.4. Comparison of the properties of the NADH™
AcPdADq reaction catalysed by E. coli transhydro-
genase with the cyclic reaction

Although proof could not be obtained, the above
experiments are consistent with the possibility that
the NADH™AcPdADq reaction is in reality the
cyclic reaction operating with a low level of NADPq

or NADPH tightly bound to the enzyme. We there-
fore carried out a series of experiments to compare
the properties of the two reactions: if they are essen-

Žtially the same process only differing in the effective
q .NADP rNADPH concentration , they should have

similar properties.
Fig. 3 shows that, when measured under identical

conditions, the pH dependence of the NADH™
AcPdADq reaction is similar to that of the cyclic
reaction. Note that the latter was measured at a

Ž .suboptimal concentration of NADPH 1.0 mM , but
that the data had a similar profile to that shown
previously at a higher concentration of the nucleotide
w x11 . In all cases the rates of reaction were at a
maximum at pH-6.0, and fell monotonically as the
pH of the medium was increased. The results are in
marked contrast to the pH dependence of simple,
reverse transhydrogenation, NADPH ™ AcPdADq

and simple, forward transhydrogenation, NADH™
thio-NADPq, which both have bell-shaped profiles

w xwith optima at approximately pH 7.3 11 .
Fig. 2 shows that the dependences of the NADH

™AcPdADq reaction, and of the cyclic reaction, on
MgSO concentration are also very similar. In both4

cases, the reactions proceeded at substantial rates in
the absence of added MgSO , and were strongly4

inhibited in the range 1–10 mM salt. Note that a
slight stimulation of the cyclic reaction seen under
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Fig. 3. The dependence on pH of the rate of reduction of
AcPdADq by NADH in the absence, and in the presence of
NADPH, by E. coli transhydrogenase. Experiments were per-
formed on a dual-wavelength spectrophotometer in a medium
containing 12 mM Mes, 12 mM Mops, 12 mM Ches, 12 mM
Tricine, 0.5 mgPmly1 lysophosphatidyl choline, 0.05% Brij, 1
mM dithiothreitol, 0.25 mM EDTA, 0.5 mgPmly1 purified E.
coli transhydrogenase at 308C and at the pH shown. v, 200 mM
NADH and 200 mM AcPdADq; `, 200 mM NADH, 200 mM
AcPdADq and 1.0 mM NADPH.

w xdifferent solution conditions 11 was barely evident
in Fig. 2. As with the pH dependences, these results
are also in marked contrast to those obtained for
simple, reverse and simple, forward transhydrogena-
tion; those reactions at pH 6.0 are stimulated by

w xMgSO across the entire concentration range 11 .4
Ž .As part of the evidence that the NADP H -depen-

dent reduction of AcPdADq by NADH is indeed a
cyclic reaction, we showed that NADH and

q w xAcPdAD display ‘ping-pong’ kinetics 12 . Thus,
q w xAcPdAD reacts with the enzyme-NADPH binary

w qxcomplex and generates enzyme-NADP and AcP-
dADH. In a subsequent step, NADH reacts with the
w qx wenzyme-NADP intermediate and regenerates en-

xzyme-NADPH – see Fig. 1. As in a classical ping-
pong mechanism, the NADH and the AcPdADq

interact at the same site on the enzyme, whereas the
w qx w xenzyme-NADP and enzyme-NADPH binary

complexes behave as the alternate, modified forms of
the enzyme. Fig. 4 shows that, in the NADH™
AcPdADq reaction, the NADH and the AcPdADq

Ž .also show ping-pong kinetics. Notably, a at low
nucleotide concentrations the srÕ against s curves

Ž .converge on the srÕ axis, and b at high concentra-
tions of NADH, there is a distinct upward curvature,

Žwhich indicates substrate inhibition the NADH and
the AcPdADq compete for the domain I site. The
data are similar to those previously described for the
cyclic reaction, and again, this behaviour contrasts
with that of simple, reverse transhydrogenation, which
shows that that reaction proceeds through a random

w xorder ternary complex mechanism 2–5 ; at low pH
the reduction of AcPdADq by NADPH has
Michaelis–Menten kinetics with a K for NADPHm

of approximately 0.8 mM, and a K for AcPdADq
m

w xof approximately 1.0 mM 12 .

3.5. The reduction of AcPdADq by NADH by trans-
hydrogenase on R. rubrum chromatophores.

The ability of chromatophore membranes to catal-
q Žyse the reduction of AcPdAD by NADPH ‘re-

.verse’ transhydrogenation , and the reduction of
AcPdADq by NADH was established many years

w xago 15,16 . Like the equivalent reactions in purified
E. coli transhydrogenase, the former is an AB trans-

w xfer, and the latter AA 16 . Fisher and colleagues
argued that both reactions are due to transhydro-
genase by performing experiments in which domain I
Žthe ‘soluble transhydrogenase factor’, as it was then

.known was removed by washing, was partially puri-
fied, and then reconstituted with the depleted mem-

w x qbranes 15,16 . Restoration of AcPdAD reduction
by NADH took place in parallel with AcPdADq

reduction by NADPH. However, a problem in inter-
preting those data was that the impure ‘soluble fac-
tor’ itself has the capacity to perform AcPdADq

reduction by NADH, probably the result of contami-
nation by other extrinsic chromatophore enzymes

w xsuch as lipoamide dehydrogenase 5 .
With the development of a procedure to prepare

w xhighly purified, recombinant domain I protein 8 ,
that controversy can now be settled. Chromatophores
were isolated from a strain of R. rubrum which

w xover-expresses transhydrogenase 1 . These chro-
Ž .matophores catalysed: a reverse transhydrogenation
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Fig. 4. A kinetic analysis of the rate of AcPdADq reduction by NADH in the absence of NADPH, by E. coli transhydrogenase.
Experiments were performed on a double-beam spectrophotometer in a medium containing 10 mM Mes, 0.5 mgPmly1 lysophosphatidyl-

y1 Ž . y1 Ž .choline, 0.05% Brij, 1 mM dithiothreitol, 0.25 mM EDTA, and either 11.5 mgPml A , or 5.0 mgPml B , purified E. coli
Ž . q Ž .transhydrogenase at 308C, pH 6.0. In A the fixed concentrations of AcPdAD were: B, 50 mM; `, 200 mM; ', 500 mM, and in B

the fixed NADH concentrations were: B, 50 mM; `, 100 mM; v, 200 mM.

Ž q. Ž .NADPH ™ AcPdAD ; b the reduction of
AcPdADq by NADH in the absence of NADPH; and
Ž . qc at an enhanced rate, the reduction of AcPdAD

Ž .by NADH in the presence of NADPH Table 2 . It
may be noted that the addition of purified recombi-
nant domain I protein led to a small increase in each
of these rates – as previously explained the chro-

matophore preparation procedure results in a small
loss of the native domain I protein from transhydro-

w xgenase 23 . The chromatophores were subsequently
Ž .washed in concentrated salt solution wash 1 , and

this led to a large decrease in the rates of all three of
the test reactions. However, each of the reactions was
recovered when the assay media were supplemented

Table 2
Evidence that the reduction of AcPdADq by NADH by transhydrogenase of R. rubrum membranes is the cyclic reaction operating by

Ž . Ž .way of tightly bound NADP H see text
q q qNADPH™AcPdAD NADH™AcPdAD NADH™AcPdAD

Ž . Ž .minus NADPH plus NADPH

yDI qDI yDI qDI yDI qDI

Chromatophores 3.9 4.4 10.1 13.4 18.9 26.4
After wash 1 0.3 5.5 0.2 4.2 1.8 25.3
After wash 2 0.0 4.2 0.0 1.5 0.0 26.2

Wash 1 was in a medium containing 2 M NaCl, 20 mM Tris-Cl, pH 8.0, at a bacteriochlorophyll concentration of 30 mM. Wash 2 was in
a medium of 100 mM TrisCl, pH 8.0, 10% sucrose, 1 mM dithiothreitol at a bacteriochlorophyll concentration of 30 mM. During each

Ž .wash the membranes from the over-expressing strain were sedimented by centrifugation at 100 000 g for 120 min, and then resuspended
in the medium used in the wash. The assay conditions were 50 mM Tris-HCl, pH 8.0, 50 mM KCl. AcPdADq was present at 200 mM

Ž . qthroughout, and NADH where shown was 100 mM. In the measurement of the NADPH™AcPdAD activity, the NADPH
q Ž . qconcentration was 200 mM, and for the NADH™AcPdAD plus NADPH reaction, it was 20 mM. Rates are given as mmol AcPdAD

reducedPmmoly1 bacterichlorophyllPminy1.
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Žwith purified recombinant domain I protein the do-
.main I protein had no transhydrogenation activity .

This is completely in accordance with the experi-
ments and conclusions of Fisher and colleagues using
‘soluble transhydrogenase factor’. Thus, the washing
process removes native domain I from the mem-
branes, but added recombinant domain I readily re-
associates with the membrane-located domain IIrIII
components to restore transhydrogenation. Impor-
tantly from the present perspective, it shows that all
three of the test reactions are indeed transhydro-
genase related. It is evident, however, that whereas
reverse transhydrogenation, and the reduction of
AcPdADq by NADH in the presence of NADPH,
recovered completely after wash 1 upon addition of
domain I protein, the reduction of AcPdADq by
NADH in the absence of NADPH recovered only
partly. This was even clearer after a further wash, this
time in a low ionic strength buffer. The rates of all
three reactions decreased to zero in the absence of
supplementary domain I. In the presence of domain I
there was almost complete recovery of reverse trans-
hydrogenation, and of the reduction of AcPdADq by
NADH in the presence of NADPH, but the reduction
of AcPdADq by NADH in the absence of NADPH

Žremained at a very low rate. The washings super-
.natant obtained after centrifugation also partly re-

stored the rate of AcPdADq reduction by NADH
Ž .not shown . These experiments show that the capac-
ity of domain IIrIII in the membranes to re-assemble
with domain I protein into a complete transhydro-
genase was not influenced by the washing procedure,
but that some other component, that is additionally
responsible for the reduction of AcPdADq by NADH
in the absence of added NADPH, is lost during
washing. It is very likely that the lost component is

Ž q.NADPH or NADP . The simple interpretation is
that chromatophore domain III is associated with

Ž .tightly bound NADP H , which can support the cyclic
reduction of AcPdADq by NADH, even in the ab-

Ž .sence of added NADP H . The tightly bound nu-
cleotide is progressively displaced during the wash-
ing steps, and therefore the chromatophores lose their
ability to catalyse AcPdADq by NADH, unless sup-

Ž .plementary NADP H is added.
To establish that this has the same character as the

cyclic reaction catalysed by detergent-dispersed E.
w x Žcoli transhydrogenase 11 i.e., NADPH-dependent

q .reduction of AcPdAD by NADH , it was subse-
Ž .quently shown Fig. 5, top that the extent of

AcPdADq reduction by domain I-reconstituted
Žwashed chromatophore membranes in the presence

.of NADPH was equivalent to the amount of NADH
added; evidently the hydride ion equivalents required
for the reduction are derived from the latter nu-
cleotide. Note that, as the NADH was exhausted, the
rate of reduction of AcPdADq subsided back to the

Žslower rate of reduction by NADPH i.e., simple,
.reverse transhydrogenation . As with the E. coli en-

zyme, the fact that only extremely low concentrations
of NADPH were needed to support the reaction
Ž .approximately 10 nM, data not shown , reflects the
high affinity between nucleotide and enzyme.

w xAgain, as observed for the E. coli enzyme 11 , the
domain I-reconstituted, washed chromatophore mem-
branes also catalysed the complementary, NADPq-

q Ždependent reduction of AcPdAD by NADH Fig. 5,
.bottom . Each burst of reduction corresponded ap-

Fig. 5. The reduction of AcPdADq by NADH by R. rubrum
transhydrogenase. Experiments were performed on a double-beam
spectrophotometer in 50 mM KCl, 50 mM Mes, pH 6.0, chro-

Ž .matophores from the over-expressing strain , washed twice as
described in Section 2, at a bacteriochlorophyll concentration of

Ž .0.6 mM, and purified recombinant domain I 25 nM . In the top
q Ž . Ž .trace, AcPdAD 200 mM and NADPH 50 mM were present

Ž .at the start, and NADH 8.6 mM was added twice, where shown.
q Ž . Ž .In the bottom trace, AcPdAD 200 mM and NADH 8.6 mM

q Ž .were present at the start. Then NADP 100 mM and more
Ž .NADH 8.6 mM, twice were added where shown. In both traces

the extents of the bursts of AcPdADq reduction were approxi-
mately equivalent to the amount of NADH added. Note that on
this instrument the recording goes off-scale during an addition.
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proximately to the amount of NADH added. The rate
was similar to that of the NADPH-dependent reac-
tion. Only very low concentrations of NADPq were

Žrequired to support the reaction approximately 100
.nM, data not shown , reflecting the high affinity of

the enzyme also for that nucleotide.

4. Discussion

There seems little doubt that the NADH ™
AcPdADq reaction catalysed by everted membrane
vesicles from R. rubrum is actually the ‘cyclic’
reaction operating with tightly bound NADPq or

ŽNADPH on domain III of transhydrogenase Table 2,
.and see above . We can be less certain about the

NADH™AcPdADq reaction catalysed by purified
E. coli transhydrogenase. A number of lines of evi-
dence point to the conclusion that, also in the E. coli

Ž .enzyme, it results from the cyclic reaction. 1 The
pH and the MgSO concentration dependences of the4

NADH™AcPdADq reaction are very similar to
Ž .those for the cyclic reaction Fig. 2 and Fig. 3 , and

are distinctly different to those of the simple forward
w x Ž .and reverse reactions 11,12 . 2 Both reactions have

Žw x . Ž .ping-pong kinetics 12 and Fig. 4 . 3 The hydride
transfer of the NADH™AcPdADq reaction is AA

Ž .specific Table 1 , as expected for the cyclic reaction.
The last two observations tend to rule out another,

otherwise plausible, explanation for the NADH™
AcPdADq reaction in E. coli transhydrogenase, that
it results from nucleotide binding into the ‘wrong’
site – either AcPdADq or NADH into domain III.
Certainly the nucleotide-binding sites of the enzyme
are not absolutely specific, for example it is clear
from NMR and equilibrium dialysis experiments that

ŽNADPH can bind into recombinant domain I prob-
ably K )1 mM, whereas for NADH K f30 mMd d
w x.9,31 . However, it is to be expected, if a nucleotide
does enter the wrong site, and is then capable of
donating or accepting a hydride equivalent, that it
will do so with the stereospecificity dictated by that
site. Therefore, this hypothesis predicts, in contradic-

Ž .tion with the experimental result Table 1 , an AB
transfer.

A weakness in our suggestion that the NADH™
AcPdADq reaction in E. coli transhydrogenase re-
sults from a cyclic reaction operating in a small

Ž . qfraction -5% of the enzyme having bound NADP
or NADPH is that we were unable, by washing, to

Ž .remove this nucleotide see Section 3 . Certainly the
rate of release of NADPH and NADPq from trans-
hydrogenase can be extremely slow, and can limit the
rates of forward and reverse transhydrogenation
w x11,12 . But, on the basis that the rate of nucleotide
release must be at least as fast as the k for thecat

overall reaction, we calculated that, in the conditions
used for washing, a substantial part of the residual
bound nucleotide should have been released.

We offer two suggestions to resolve this problem.
Ž . Ž .i A subpopulation -5% of the enzyme exists in a
state in which rapid release of NADPqrNADPH

Žfrom domain III is blocked. This state an ‘occluded’
w x.state 10,32 would be similar to that adopted by the

isolated recombinant domain III of R. rubrum trans-
Žhydrogenase we believe that it is an intermediate

conformation in the turnover of the enzyme under
w x.physiological conditions 10,32 . Thus, it was shown

that the rates of release of NADPq and NADPH from
R. rubrum recombinant domain III are about three
orders of magnitude slower than from the complete
enzyme, and that the tightly bound NADPq and
NADPH are not removed from the recombinant pro-

w xtein by column chromatography 10 . Why a small
fraction of the isolated E. coli enzyme should be
locked in this configuration is not known, but it
might result from damage at the interface between

Ždomains II and III presumably, it is the absence of
interactions with domain II that leads to the tight
binding of NADPq and NADPH to recombinant R.

w x. Ž .rubrum domain III 10 . ii Another possibility is
that AcPdADq or NADH can enter the domain III
site and serve instead of NADPqrNADPH to support
the cyclic reaction. Even though the affinity of the

Ž . Ž .domain III site for AcPdAD H and NAD H might
Ž .be very low, once they were bound, like NADP H ,

they would be occluded during a subsequent confor-
mational change of the binding site, and then released

Žat only a low rate. The bound nucleotide either
q .AcPdAD or NADH on domain III could therefore

catalyse multiple turns of the cyclic oxidation of
NADH and reduction of AcPdADq at the domain I
site. Note that this would give predominantly an AA

q Žtransfer for NADH™AcPdAD depending on how
many turns of the cycle took place before nucleotide

.release from domain III . This is in contrast with



( )S.N. Stilwell et al.rBiochimica et Biophysica Acta 1320 1997 83–94 93

simple ‘wrong’ site transhydrogenation as defined in
Žthe Introduction either NADH on domain I™

AcPdADq on domain III, or NADH on domain
q .III™AcPdAD on domain I which predicts AB

Ž .transfer see above .
In summary, the evidence is consistent with the

NADH™AcPdADq reaction being a form of cyclic
transhydrogenation. It involves only a single pathway
for hydride transfer between the nucleotide bound on
domain I and the nucleotide bound on domain III
Ž Ž . Ž . Ž ..NADP H , or NAD H or AcPdAD H . It is unnec-
essary to propose, either another pathway for hydride

Ž w x.transfer e.g., from domain I to domain I 17 , or an
Ž .additional regulatory or catalytic nucleotide binding

site. Evidence for a third nucleotide binding site on
transhydrogenase in our opinion remains unconvinc-

Ž .ing. 1 Two regions identified in the amino-acid
sequences of domain III were only very weakly
homologous with the G-X-G-X-X-GrA motif of the

w xnucleotide-binding Rossman fold 19 , and more re-
cently published transhydrogenase sequences suggest

Ž .that homology is even less likely. 2 The results of
experiments with dicyclohexyl carbodiimide, which
were taken as an indication that there is a third,
regulatory nucleotide-binding site on transhydro-

w xgenase 18 , can be explained more simply on the
basis of a cyclic reaction involving a single site on

w x Ž .domain I and a single site on domain III 33 . 3 It is
yet to be established that the reported interaction
between NADq-agarose and the b-subunit of E. coli

w xtranshydrogenase 20 is only mediated by specific
interactions; it is well-documented that so-called
affinity ligands can bind proteins non-specifically
w x34 . On the contrary, the evidence for only two
nucleotide-binding sites on transhydrogenase is rather

Ž .strong. 1 Direct binding studies on the complete
mitochondrial enzyme have revealed only one class

Ž . Ž .of NAD H -binding site and one class of NADP H -
w x Ž . Ž .binding site 7 . 2 There is only one NAD H -

specific binding site on recombinant domain I from
w x Ž .R. rubrum and E. coli transhydrogenases 9,35 . 3

Recombinant domain III from the R. rubrum enzyme
q Žis associated with tightly bound NADP at a molar

. Žratio of 0.1–0.5 and NADPH molar ratio aproxi-
. q w x Ž .mately 0.5 , but not NAD or NADH 10 . 4

Extensive kinetic analyses of transhydrogenase indi-
Ž .cate only a single site for NAD H and a separate

Ž . w xsingle site for NADP H 2–5 .

Since submitting the first version of this
manuscript, a new paper by Bragg was published on
the mechanism of AcPdADq reduction by NADH by

w xE. coli transhydrogenase 36 . On the basis of Km

measurements he concludes that the reaction follows
as a consequence of AcPdADq entering what is

Ž . Žnormally the NADP H site the third alternative
.listed in our Section 1 . However, as we show above,

the stereospecificity of hydride transfer, and the
ping-pong kinetics, eliminate this possibility. Non-
linearity in the dependence of the rate of the reaction
on AcPdADq concentration, which was taken as an

w xindication of an extra nucleotide-binding site 36 ,
actually results from competition between AcPdADq

Žand NADH for the same site i.e., ‘substrate inhibi-
. w x Ž w x.tion’ 12 . We must also emphasize see 12 that

K values rarely reflect binding-site affinities. Thus,m

in forward and reverse transhydrogenation the rate
constants for release of NADPH and NADPq, respec-
tively, make a significant contribution to the expres-
sions for K , but not in the cyclic reaction, where them

domain III nucleotides remain bound during catalysis.
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