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1. I N T R O D U C T I O N  

To solve complicated problems in economics, engineering, and environment,  we cannot success- 
fully use classical methods because of various uncertainties typical for those problems. There are 
three theories: theory of probability, theory of fuzzy sets, and the interval mathemat ics  which 
we can consider as mathemat ica l  tools for dealing with uncertainties. But  all these theories have 
their own difficulties. 

Theory  of probabilities can deal only with stochastically stable phenomena. Without  going 
into mathemat ica l  details, we can say, e.g., tha t  for a stochastically stable phenomenon there 
should exist a limit of the sample mean #n in a long series of trials. The sample mean #n is 

defined by 
1 n 

IZn = -- ~ Xi ,  
n 

i = l  

where x~ is equal to 1 if the phenomenon occurs in the trial, and x~ is equal to 0 if the phenomenon 
does not occur. To test  the existence of the limit, we must perform a large number of trials. We 
can do it in engineering, but  we cannot do it in many economic, environmental,  or social problems. 

Interval mathemat ics  have arisen as a method of taking into account the errors of calculations 
by constructing an interval est imate for the exact solution of a problem. This is useful in many  
cases, but  the methods of interval mathemat ics  are not sufficiently adaptable  for problems with 
different uncertainties. They  cannot appropriately describe a smooth changing of information, 

unreliable, not adequate, and defective information, partially contradicting aims, and so on. 

The most  appropriate  theory, for dealing with uncertainties is the theory of fuzzy sets developed 
by Zadeh [1]. We recall the definition of the notion of f u z z y  set. 

For every set A C X,  define its indicator function ~A 

1, if x E A,  

I~A(X)  = O, if x tg A. 
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This correspondence between a set and its indicator function is obviously one-to-one corre- 
spondence. 

A fuzzy set F is described by its membership function #F. To every point x E X, this function 
associates a real number #F(X) in the interval [0, 1]. The number #F(X) is interpreted for the 
point as a degree of belonging x to the fuzzy set F.  

The theory of fuzzy sets offers natural, from the first glance, operations for fuzzy sets. Let F 
and G be fuzzy sets, and #F,  #G be their membership functions. Then, the complement CF is 
defined by its membership function 

, c F ( x )  = 1 - , F ( ~ ) .  

The intersection F N G can be defined by one of the following membership functions 

#FnV(X) = rain {pF(X), #G(X) } , 

~FNG(X) = pF(X) " ]2G(Z), 

~FnG(X) = m~x{0, ~F(X)+ ~,o(x) - 1}. 

There are three possibilities of membership functions for the union F U G 

PFuG(X) = m a x { # F ( X ) ,  #G(X)} ,  

,FuG(X)  = , F ( X )  + , G ( X )  -- , F ( X )  " , G ( ~ ) ,  

~FuG(X) = min{1, #F(X), #G(X)}- 

At the present time, the theory of fuzzy sets is progressing rapidly. But there exists a difficulty: 
how to set the membership function in each particular case. 

We should not impose only one way to set the membership function. The nature of the 
membership function is extremely individual. Everyone may understand the notation #F(X) = 
0.7 in his own manner. So, the fuzzy set operations based on the arithmetic operations with 
membership functions do not look natural. It  may occur tha t  these operations are similar to the 
addition of weights and lengths. 

The reason for these difficulties is, possibly, the inadequacy of the parametrization tool of the 
theory. In the next section, we propose a mathematical tool for dealing with uncertainties which 
is free of the difficulties mentioned above. 

2.  M A I N  N O T I O N S  O F  S O F T  S E T  T H E O R Y  

2.1. Def in i t ion  of  the  Soft  Set  

To avoid difficulties, one must use an adequate parametrization. Let U be an initial universe 
set and let E be a set of parameters. 

DEFINITION 2.1. A pair (F,E) is called a soft set (over U) if and only if F is a mapping o rE  
into the set of aft subsets of the set U. 

In other words, the soft set is a parametrized family of subsets of the set U. Every set F(e) ,  
e E E, from this family may be considered as the set of ~-elements of the soft set (F, E),  or as 
the set of e-approximate elements of the soft set. 

As an illustration, let us consider the following examples. 

(1) A soft set (F, E) describes the attractiveness of the houses which Mr. X is going to buy. 
U - is the set of houses under consideration. 
E - is the set of parameters. Each parameter is a word or a sentence. 
E = {expensive; beautiful; wooden; cheap; in the green surroundings; modern; in good 
repair; in bad repair}. 
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In this case, to define a soft set means to point out expensive houses, beautiful houses, and so 
o n .  

It is worth noting that  the sets F(e) may be arbitrary. Some of them may be empty, some 
may have nonempty intersection. 

(2) Zadeh's fuzzy set may be considered as a special case of the soft set. Let A be a fuzzy 
set, and #A be the membership function of the fuzzy set A, that  is ~A is a mapping of U 
into [0, 1]. 

Let us consider the family of c~-level sets for function ~t A 

F(c~) = {x E U[#A(x)  >_ a}, c~ e [0,1]. 

If we know the family F,  we can find the functions #A(X) by means of the following formulae: 

~A(x)= sup a. 

~e[0,1] 
xEF(ct) 

Thus, every Zadeh's fuzzy set A may be considered as the soft set (F, [0, 1]). 

(3) Let (X, r)  - be a topological space, that  is, X is a set and ~ is a topology, in other words, 
r is a family of subsets of X, called the open sets of X. 

Then, the family of open neighborhoods T(x) of point x, where T(x) = {V e r I x E V}, may 
be considered as the soft set (T(x), r). 

The way of setting (or describing) any object in the soft set theory principally differs from the 
way in which we use classical mathematics. 

In classical mathematics, we construct a mathematical model of an object and define the notion 
of the exact solution of this model. Usually the mathematical model is too complicated and we 
cannot find the exact solution. So, in the second step, we introduce the notion of approximate 
solution and calculate tha t  solution. 

In the soft set theory, we have the opposite approach to this problem. The initial description 
of the object has an approximate nature, and we do not need to introduce the notion of exact 
solution. 

The absence of any restrictions on the approximate description in soft set theory makes this 
theory very convenient and easily applicable in practice. We can use any parametrization we 
prefer: with the help of words and sentences, real numbers, functions, mappings, and so on. 

It means tha t  the problem of setting the membership function or any similar problem does not 
arise in the soft set theory. 

2.2. Operations with Soft Sets 

Assume that  we have a binary operation, denoted by *, for subsets of the set U. Let (F, A) 
and (G, B) be soft sets over U. Then, the operation * for soft sets is defined in the following way: 

(F, A) * (G, B) = (H, A × B), 

where H(~, ~) = F(a) • G(~), c~ 6 A,/3 6 B, and A x B is the Cartesian product of the sets A 

and B. 
This definition takes into account the individual nature of any soft set. 

If we produce a lot of operations with soft sets, the result will be a soft set with a very wide 

set of parameters. Sometimes such expansion of the set of parameters may be useful. So, the 

intersection of the soft set from Example 1 with itself gives the soft set with more detailed 

description. The resulting soft set points out the houses which are expensive and beautiful, 
modern and cheap, and so on. 
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In cases when such expansion of the set of parameters is not convenient, we may use a lot of 
cutting operations. Of course, the acceptance of these cutting operations depends on the special 
case and on the problem under consideration. 

If we want to construct a general mathematical tool, we do not introduce a universal cutting 
operation for the set of parameters. If we look at the operations with fuzzy sets from the point 
of view of the soft set theory, we will figure out that  all binary operations with fuzzy sets include 
the universal cutting operation. Let us consider, for example, the first version of the intersection 
of two fuzzy sets A and B, 

#AnB(X) = min{#A(X), #B(X)}. 

To three fuzzy sets A, B, and A N B, three soft sets correspond to (FA, [0, 1]), (FB, [0, 1]), 
(FAnB, [0, 1]), where 

FB(a) = {x • U I .B(x) _> 

a},  E [0, 1], 
• [0, 1], 

, . ( x )  > • [0, 1]. 

The intersection of soft sets (FA, [0, 1]) and (FB, [0, 1]) is denoted by (H, [0, 1]) x [0, 1]. Then, we 
have 

H(a,~) = FA((~) n FB(~) = {x E V ] #A(x) >_ O~, ~S(x) >_ ~}. 

Comparing H(~,/3) and FAns(oO, we can see that,  in this case, the cutting operation means 
the changing of the Cartesian product [0, 1] x [0, 1] to its diagonal. 

The individual nature of a fuzzy set contradicts to the universal cutting operation. It causes 
many difficulties in application areas of the theory. 

3. SOME A P P L I C A T I O N S  OF THE SOFT SET T H E O R Y  

3.1. Stability and Regularization 

Let (M, p) be a metric space, where p is a metric. We shall call space (M, p) a model space. 
Let U be a set and for every m E M, we have a soft set (F(m),  E) over U. Such a pair (F, E) is 
said to be an s-function (soft function) and we shall use the notation (F, E) : M --* U. 

Now, we need to introduce the notion of "smoothness" for s-functions which is similar to 
"continuity" in the classical case. We understand smoothness as the proximity of two soft function 
values under the condition that  their models are close, too. 

To give a formal definition, we have to make more exact the notions of proximity for models m, n 
and for s-function values F(m, a) and F(n, ~). To measure model proximity, we shall use the 
metric p, and for s-function values we shall define the closeness as inclusion for sets F(m, a) and 
F(n,/~). 

DEFINITION 3.1.1. The s-function (F, E) is said to be internally smooth from above on the 
pair (m,~)  if and only if there exist such parameter • E E and positive number 6 that for every 
model n E M, for which p(m, n) < 6, the following inclusion holds: 

0 # F(n, ~) C F(m, a). 

DEFINITION 3.1.2. The s-function (F ,E)  is said to be internally smooth from below on the 
pair (m, a) if and only if there exist a parameter 1~ E E and a positive number 6 such that for 
every model n E M, for which p(m, n) <_ 5, the following inclusion holds: 

0 # F(m, ~) C F(n, a). 
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We say that  s-function (F, E) is internally smooth from above (from below) on the subset K 
of the set M x E if for every pair (m, a) • K,  the s-function (F, E) is internally smooth from 
above (from below) on the pair (m, a).  

The words "from above" and "from below" in the Definitions 3.1.1 and 3.1.2 express the 
connection with the classical notions of continuity from above and continuity from below for 
point-set mapping. To prove it, let us consider the s-function (G, P),  

(G, P) : M ~ T, 

where (M, p), (T, r)  are metric spaces, P is the set of all positive numbers, and G has the following 
form: 

G(m,a) = {t • T [ r(t,g(m)) < ~}, 

and g is a point-set mapping from M into the family of all subsets of the set T, a • P.  
Let (G, P) be an internally smooth from above s-function on the set m x P. What  does it 

mean for the point-set mapping g? 
It is clear from Definition 3.1.1, for every positive number a,  there exists a positive number 6, 

such that  for every model n • M, such that  r(m, n) < ~f, the following inclusion holds: 

g(n) c {t  • T I ,-(t, g(m)) _< 

It simply means that  mapping g is semicontinuous from above on the model m. 
Now, let (G, P)  be an s-function internally smooth from below on the set m x P. From 

Definition 3.1.2, it follows that  for every positive number a,  there exists a positive number ~i such 
that  for every model n • M, such that  r(m, n) < 6, the following inclusion, 

g(m) c {t • T I r(t, g(n)) < 

is valid. It simply means that  mapping g is semicontinuous from below on the model m. 
Both types of smoothness for s-functions can be applied in practice. At first, let us consider 

the possible application of smoothness from above. 
Assume that  the s-function (F, E) is internally smooth from above on the pair (m, a) and we 

want to find a point from the set F(m, a). 
Often, to solve this problem, we use an approximation of the model m. It may appear in 

discretization, computer calculation errors, and so on. So, instead of the model m, our computer 
will deal with a close model n and we can control only the level of proximity 6, ~ _> p(m, n), but 
not the model n. 

But, due to the smoothness of the s-function (F, E), we can solve the initial problem, in spite 
of perturbations of the model m. To do it, we have to change the parameter a in the initial 
setting of the problem to the appropriate parameter/3. 

Then, the computer will find a point x from the set F(n, a). If a model n is sufficiently close 
to the model m, then the smoothness from above guarantees that  x is a solution of the initial 
problem, i.e., x • F(m, ~). 

Now, assume that  the s-function (F, E) is internally smooth from below on the pair (m, a). 
The initial problem is to find a point from the set F(n, a) under the condition that  n is an 
uncertain factor. We know only the model m and the fact that  p(n, m) <_ 6. 

This is a typical case from real life where almost all measurements have approximate character. 
Let us consider the auxiliary problem: find a point from the set F(m, ;3), where ;3 and 6 satisfy 
Definition 3.1.2. This is a problem without any uncertain factors. It is easy to show that  every 
solution of the auxiliary problem is a solution of the initial one. So, the notion of internal 
smoothness from below serves in solving problems with uncertain factors. 
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We gave new definitions of smoothness (an analogy of continuity) but it is natural to ask: 
why introduce these new definitions? Why can't  we apply the classical notions of continuity to 
s-functions? 

Avoiding mathematical details, we may say that  the family of sets which appears when we 
define the soft set plays the role of topology in the smoothness notions. From this point of view, 
the essential difference between soft set theory and classical theories consists of the fact that  in 
the classical theory, every notion of continuity has only one topology for all functions, but in the 
soft set theory every function has its own topology. 

A topology from the point of view of soft set theory defines the structure of the soft set and if 
we use only one topology, we must consider soft sets with only one structure. 

We do not need such limitation in our theory. So, the classical notion of continuity is not 
appropriate for this theory. 

The new notions of smoothness are very effective tools in the "struggle" with the instability 
of ill-posed problems. Often, when we deal with an unstable problem, we can choose a natural 
s-function for setting the problem and it makes the problem a stable one. 

Let us consider one example. Let W be a closed bounded subset of the n-dimensional Euclidean 
space E n. 

The Pareto set rI(W) of the set W is the set of all points from W which cannot be dominated by 
any point from W. The domination is understood in the following way: a vector u = ( u l , . . . ,  u~) 
dominates vector v = (Vx,. . . ,  vn), if and only if ui _> vi for every i, and there exists an index j 
such that  uj > vj 

It is well known that  arbitrarily small variations of the set W may cause big changes in the 
Pareto set. There are simple examples of a set W such that  there exists a neighborhood O(H(W)) 
of the Pareto set H(W) such that  for every neighborhood U(W) of the set W, there exists a set 
W' C U(W), such that  H(W')  \ O(II(W)) # 0. It means that  the mapping H(W) is not upper 
semicontinuous. Often, in practice, we can find only a set W'  which approximates the set W, 
but II(W') is not close to II(W). 

Let us introduce a new notion of domination which can be considered as a variation of the initial 
one. Let a and j3 be positive numbers  We say that  vector u = ( U l , . . . , u n )  (a ,~)-dominates 
vector v = (v l , . . .  ,vn), if and only if ui > vi - a for every i, and there exists an index j such 
that  uj > vj + j3. 

The (a, ~)-Pareto set H(W, a,  8) of the set W is the set of all points from W which cannot 
be (a, j3)-dominated by any point from W. The s-function (H, p2), where P is a set of positive 
numbers, will be called soft Pareto function. In [2], it was shown that  soft Pareto function is 
internally smooth from below and from above under very weak assumptions. 

In [2], natural s-functions were introduced describing the notion of solution for linear and 
nonlinear optimization, for multi max-rain problems, and for multicriteria optimization. All these 
s-functions are also internally smooth from below and from above under very weak assumptions. 
In addition, these s-functions approximate classical solutions for problems mentioned above. 
There were also introduced new notions of smoothness for soft functions. Some of them can be 
considered as analogues of the classical notions of continuity. 

When the problem under consideration is not continuous (or not smooth) and any modification 
of the solution notion is not allowed, there arises the question: how do we solve these problems 
with the help of approximate numerical methods? 

The notions of regularization and approximation for s-function are very useful in this case. 
There are formal definitions for interval approximation and regularization. Let (F, A) and (G, B) 
be soft functions, 

(F, A), (G, B ) :  M --* U, 

and H be a subset of the Cartesian product of the sets M, B. 
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DEFINITION 3.1.3. The s-function (F,A) internally approximates the s-function (G,B) on the 
set H if and only if for every pair (m, 8) E H there exists parameter a E A such that the inclusion 

0 ~ F(m, c~) C G(m, ~), 

is valid. 

DEFINITION 3.1.4. The s-function (F, E) is said to be internal regularization from above for the 
s-function (G, B) on the set H if and only ff for every pair (m, 8) E H, there ex/st parameter 
a E E and positive number 5 for which for every model n E M such that p(m,n)  <_ 5, the 
inclusion 

0 # F(n, c C(m, 8) 

is valid. 

DEFINITION 3.1.5. The s-function ( F, E) is sa/d to be internal regularization from below for the 
s-function (G, B) on the set H if and only if for every pair (m, 8) E H, there exist parameter 
a E E and positive number 5 such that for every model n E M for which p(m, n) <_ 5, the 
inclusion 

0 # F(m, c C(n, 8) 

is valid. 

The notions of external approximation and regularization have similar structure but they are 
based on the inverse inclusion 

y(m, C(m, 8) # 

If we know the s-function (F, A) which is internal regularization from above for the s-function 
(G, B) on the pair (m,/3), it helps to find a point of the set G(m,/3), in spite of calculation errors. 

In the theory of ill-posed problems [3], we do not have any universal method of constructing 
a regnlarization. There are a lot of methods which present a regularization for particular classes 
of problems. 

In the soft set theory, we have a simple universal method for constructing a regularization of 
s-function (F, A). To construct the internal regularization of any type, we have to find a soft 
function which is the internal approximation of the s-function (int F, A x E+). To construct the 
external regularization of any type for s-function (F, A), we have to find a soft function which is 
the external approximation of the s-function (ext F, A x IV.+). 

The definitions of the s-function (int F, A x E+) and s-function (ext F, A x E+) are very clear, 

int = N 
hEM 

p(m,n)<6 

extF(m, ,5) = F(n,a), 
hEM 

p(m,rO<6 

here E+ is a set of positive real numbers. 
It is significant that we cannot improve the regularizing s-functions (intF, A x E+) and 

(ext F, A x E+). It means that the general problem of regularization in the soft set theory is 
closed. Furthermore, the regularizing s-functions are constructed for particular classes of prob- 
lems: linear and nonlinear optimization, multi max-rain problems, multicriteria optimization, 
and the computation of the derivative and integral. 

In particular, the soft Pareto function which was mentioned above is the internal and external 
regnlarization for the classical Pareto set. 
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3.2. G a m e  Theory  and Operat ions  Research 

At present, the generally accepted model of human behaviour in game theory and operations 
research is described as aspiration for maximization of the pay function. Usually, the construc- 
tion of the pay function in practice is a difficult problem. It is much easier to describe a human 
behaviour directly showing the set of strategies which a person may choose in a particular situa- 
tion. A mapping which associates a set of such strategies with a given situation is called choice 
function. At first glance, the notion of choice function seems promising and useful for applica- 
tions in cases with many players and with various uncertain parameters. In fact, it is not so. 
The choice function cannot give appropriate description of various compromises and concessions 
which are typical for such problems. The soft set theory gives an opportuni ty to construct a new 
mathematical tool which keeps all good sides of choice function and eliminates its drawbacks. 

So, we will describe the person's behaviour with the help of the s-function which for any set of 
strategies indicates the set of ~-optimal choices. Now, the principal question is: which s-function 
has to be chosen for describing the person's behaviour under uncertainty? 

We will present some approaches to this problem for different types of uncertainties. At first, 
we consider a formal description of the game with s-function modelling the person's behaviour. 

Let us introduce some notations: 

n 

Si 

E~ 

S = S l  x . . .  x Sn 

~(s) 
(F~, E , ) :  .hi(S) ~ S, (F,,, E~) 

is the number of players, 

is a set of strategies of player i, 

is a set of parameters of player i, 

is a set of situations, 

is a set of all subsets of the set S, 

is a soft choice function of player i. 

If P C S, tha t  is, P is a subset of admissible strategies, and e is a parameter,  e 6 Ei, then 
Fi(P, e) is a set of c-optimal situations for player 4. 

We will call such a game a soft game in a normal form with the following notation: 

((F,,Ei),S~, i = I,... ,n). 

For a soft game given in normal form, the analogue of the Nash equilibrium is the following 
construction. 

DEFINITION 3.2.1. Situation s 6 S is called a situation o£so~ c-equilibrium, e = (es , . . .  ,~,~), 
ei • Ei, i f  and only i f  

s E Fi(sl  x . . .  x s~-1 x S i x  s~+1 x .- .  x sn,ei) ,  

for every i = 1 , . . . ,  n. 

We denote the set of all situations of soft c-equilibrium by N(e).  Then, it is natural to call the 
soft set 

(N, E1 x . . .  x En),  

a soft equilibrium. 
Now, we will suggest the soft guarantee concept. 
Suppose, we have only one player and 

X 

E 

S 

(F, E): A4(S) -4 S 

is the set of strategies of the player, 

is the set of parameters of the player, 

is the set of situations, 

is a soft choice function of the player. 
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Let 7r be a point-set mapping 

: x  -~ ~ ( S ) .  

The player knows that  if he chooses the strategy x • X, then he will get one of the situations 

s, s • .(x). 
We suggest to consider the soft set (Gar F, E),  where 

G a r F ( X , e )  = {x • X [ It(x) C F(Tr(x),e)}, . ( x )  = U . (x ) ,  
x E X  

as a soft guarantee concept. 
Let us apply the soft sets to the notion of Stackelberg solution. Suppose we have a soft game 

of two players in normal form 

<(Fi,Ei),Si,  i = 1,2). 

Player 1 makes the first move. He chooses a strategy sl • S1 and informs Player 2 about his 
choice. Since Player 2 knows the strategy Sl, he chooses his strategy s2 • $2 so that  (s l ,s2)  • 
F2(sl x $2, e2). We assume that  Player 1 knows the value of the parameter e2 • E2. 

Player 1 considers uncertain the possible choices of Player 2. Applying the guarantee concept, 
described above, we come to the soft Stackelberg set (St1, E1 x E2) for Player 1, where 

S~l(S1 x S2,g1,g2) : {81 • S 1 [ F2(81 × S2,g2) c FI(S1 x S2,gl)  }. 

In [4,5], more details can be found and a number of examples for other games. 

3.3. Soft Analysis 

As it was mentioned above, a soft set is the collection of approximate descriptions of an object. 

The exact description is not necessary. If we want to keep this spirit of approximate descriptions, 

we should not base the soft set analysis on the classical notion of the limit. 

We suggest the notion of "soft limit" for real function, it is based on the following treatment: 

a number A is a soft limit of the function f at a point a, if from the fact tha t  x is close to a, it 
follows that  f ( x )  is close to A. To give a formal definition, we have to define exactly the notion 
of proximity. We will assume that  for every point x • E, we have the set T(x) C 1E which is 
defined as a set of T-close points to the point x. Let c~, f~, s be positive numbers, too. 

DEFINITION 3.3.1. The upper (e,~-)-softlimit of  function f at a point x is the following set: 

Softlimit [ f ,6 , r ] (x)  = {v e E [ f (y )  < v + e ,  Vy • T(X)}. 

The lower (e, r)-softl imit of  function f at  a point x is the following set: 

Softlimit [ f , e , r ] (x )  = {v e- E [ f ( y )  >_ v - e ,  Vy  e r (x)}.  

The set 

Softlimit [ f , a ,  f~,r](x) = {v E E Iv - a <_ f ( y )  <_ v + /~, Vy  e r (x)} ,  

is called (~, 13, T)-softlimit of  the function f at the point x. 

The collection of all these softlimits forms the notions of upper softlimit, lower softlimit, and 

softlimit of the function f ,  respectively. 
The reader can find more details on softlimits in [2]. Now, we will construct the notion of 

"soft approximator" which is the analogue of the classical differential. Let a and f~ be positive 

numbers. 
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DEFINITION 3.3.2. The set 

b [ f , ~ , ~ , r ] ( x )  = {v • ~ I f (Y) ~-- f ( x )  q- (v q- c~(x) )(y - x) q- ~(x), V y • ~r(x)} 

is cafled an upper (a, fl, r)-approximator of  [unction f at the point x. 
The set 

D[f,~,;~,r](X) = {V • E I f (Y) ~-- f (x) q- (v -- ~(X) )(y :- X) - ;3(X), Vy • 7"(X)}, 

is called a lower (a, f~, 7)-approximator of [unction f at the point x. 

The collection of upper and lower (a, ;3, r)-approximators forms upper and lower soft approx- 
imators. Under the soft approximator D we mean the intersection of upper and lower soft 
approximators 

D[f ,  a,  ~, 7, 6, r] (x) -- D [f, a, ~, r] (x) A D[f ,  7, 6, r] (x). 

The constructions used in Definition 3.3.2 are welt known in convex analysis [6]. 
Here, we present some of the simplest properties of the soft approximators 

/~[--f, OL, ;3, ~r](x) = -__D[f, oL, ]3, a-](x), 

= kZb[f,a,Z,r](x),  k > 0, 

L)[f, ~, f~, T] (X) q-/~[g, 7, 6, ~'] (X) C O i l  q- g, ~ -b % ]Y -b 6, r] (x), 

D [f, a,;3, 7, 6,v](x ) + D[g,a',;3',7', 6',r] (x) 

C D [ f + g , a + a ' , ; 3 + ~ ' , 7 + 7 ' , 6 + 6 ' , r ] ( x ) ,  

D [ f  + g , a + a ' , ~ + ~ ' , 7 + 7 ' , 6 + 6 ' , r ] ( x )  

C D[f ,a , ;3 ,7 ,6 ,v] (x)+ D[g,a ' ,~ ' ,7 ' ,6 ' ,r](x)  + [-X,X], 

where 

( sup ly-xl) -1  

Of course, these properties are not as simple as those for classical differential, but  in contrast to 
the classical differential, the soft approximators are smooth soft functionals. Moreover, the soft 
approximator is the regularization from above and from below for the classical differential [2]. 
Because of these properties of smoothness and regularization, the soft approximators are more 
convenient to deal with uncertain information and approximate calculation methods than the 
classical differentials. 

We have introduced the soft analogue of differential, and it naturally raised up the question 
on the soft analogue of the integral. Two approaches can be used to construct the soft integral. 
The first one, called Riemann approach, is based on the integral sums. 

Consider the interval [a, b] C E. For simplicity we will assume that  7(x) c x + E+, that  is, the 
v-close points of the point x lay on the right side of x. We will consider the sequences of points 
where every pair of neighbor points are close. 

Let us denote Pro[x, 9] the set of points which can be reached from the point x going only to 
the r-close points. 
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Here the formal definition is given, 

oo 

Pro[x, rI = U C ( x ) ,  r ° = {x}, 
k=0 

~k(: )  = ~ ( ~ k - l ( x ) ) ,  

For b E Pro[x, r], we introduce the set of admissible divisions for the interval [a, b], 

dis[a,b,r] = { ~ ( x 0 , . . . , x n ) [ x 0  = a, xn = b, Xi+l e T(Xi)}. 

Note, that  number n depends on the division. Let ¢ be a nonnegative real function. 

DEFINITION 3.3.3. The value 

n ( ~ ) - I  

i R ~ [ f , ~ , ~ ]  = sup ~ { f ( x , ) ( ~ , + l  - ~,)  - ~(~,)}, 
• Edis[a,b,r] i=0 

is called the upper Riemann (e, T)-integraJ of the function f between limits a and b. The value 

n(~)-I 

IR~ If, e, r] = inf ~ {f(x~)(x~+t - x~) + e(x~)} 
- -  . ~ E d i s [ a , b , r ]  i=0 

is ca//ed the lower Riemann (¢, T)-integral of the function f between limits a and b. 

The second approach of constructing a soft integral is based on the ideas of Perron. Denote 
rb(x) = ~(x)  n ( - ~ ,  b]. 

We say that  function F is (e, r)-subfunction of the function f between limits a and b, if and 
only if: 

(1) F is defined on the set Pro[a, b, r], 
(2) f ( a )  = O, 
(3) f ( x )  E D[F,O,¢,rb](x) for every x E Pro[a,b,r] \ {b}. 

We say that  function F is (¢, r)-superfunction of the function f between limits a and b, if and 
only if: 

(1) F is defined on the set Pro[a, b, r], 
(2) F(a) = O, 
(3) f ( x )  E D[F,O,e, Tb](Z) for every x E Pro[a,b,r] \ {b}. 

DEFINITION 3.3.4. We call the upper Perron (~, r)-integral of the function f be tween/ /mRs a 
and b the following value: 

iPba[f, e, T] = inf f ( b ) ,  

where the infimum is considered with respect to ali (¢, r )-superfunctions F for function f between 
limits a and b. 

We call the lower Perron (¢, r)-integral of the function f between limits a and b the following 
value: 

I_pb[f, e, r] = sup F(b), 

where the supremum is considered with respect to ali (e, r)-subfunctions F for function f between 
limits a and b. 

It is well known, that  in the classical ca~e, Riemann's approach and Perron's approach give us 
two different notions of the integral. For our case, these two approaches give identical results, 
that  is 

iR~[ f ,e , r]  = iP•[ f ,e , r  l, IR~[f ,e ,r]  = IP:[ f , e , r ] .  
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Further, for upper and lower integrals, we will use the following notations: 

[/, [/, 7]. 

Let us introduce the notion of soft integral. Let u and v be the nonnegative real functions, 7 
and 5 be real numbers. The role of parameter for soft integral is played by the vector (u, v, 7, 5, T). 

We will call the soft (u, v, 7, 5, z)-integral of function f between limits a and b the following 
interval: 

It is easy to see that  the soft integral has the properties which are very close to the properties of 
convex positively homogeneous functions. 

Now, the study of the soft integral is at the beginning but some interesting results have been 
obtained. We have obtained the analogue of the Newton-Leibniz formula for soft integrals, 
sufficient conditions for the existence of soft integral, the correlation of the soft integral and 
the Riemann and Lebesgue integrals. We also have proved the stability of the soft integral [2]. 
The interval base of the soft integral was generalized and the general theory of abstract interval 
integrals was constructed in [7,8]. 

On this basis, a new theory of interval probability was proposed in [9-11]. In this theory, the 
probability of an event is not a number but a real subinterval of the interval [0,1]. This simple 
fact is very important in practice. It allows us to apply the interval probability theory to any 
series of events, whereas the classical probability theory may be applied only to the stochastically 
stable events. 

Although the soft set theory was a stimulator for constructing and developing the interval 
probability theory, the mathematical tool of the interval probability theory is more close to the 
convex analysis than to the theory of soft sets. Interested readers can find more details in [9-11]. 

4.  S O M E  P R O S P E C T S  O F  T H E  S O F T  S E T  T H E O R Y  

It is obvious, that  the soft set theory can be applied to a wide range of problems in economics, 
engineering, physics, and so on. Here, we want to show only some directions which are most 
interesting at the present time. It may be interesting to construct a theory of measurements 
based on the soft sets. We propose to consider the following model of measurement. 

For simplicity, we consider a set Y of real numbers which are the results of measurement, 

Y = { Y l , . . . , Y n } ,  Yi 6 E. 

With the set Y, we associate the soft set (S];  [0, 1]) over the set of closed intervals E = {[a, b] I 
a, b 6 E, a < b} as follows. 

Let a be a real number, a 6 [0, 1]. The set S Y ( a )  includes those and only those intervals [a, b], 
for which the number of points belonging to the set Y and to the interval [a, b] is greater or equal 
to an.  The real number a may be interpreted as a degree of trust of the interval [a, b] because 
at least a n  points of the measurement belong to the interval [a, b]. Note, that  the notion "degree 
of trust" has nothing common with classical probability, so this construction may be a basis of a 
new theory of probability. 

For example, let W be a space of elementary events and f be a bounded real valued function 
on the set W (an analogue of random variable). 

Denote w l , . . .  ,w,~, where wi 6 W, n realizations of the function f .  Let T be a subset of the 
set of natural numbers {1 , . . . ,  n}, and # T  be the number of elements of the set T. 

The following real number, 
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is called sample T-mean  for function f .  

We can choose some subsets T (for example, # T  _> m) and consider the set { (f ,  T) } of all these 
sample T-means  for function f .  The set {(f ,  T)} may be considered as the result of measurement,  

and we can apply to it the soft set construction mentioned above. We shall obtain the soft set 
(S{(f ,  T)}, [0, 1]) which may  be considered as an analogue of the expectation of f .  

If  the function f is an indicator function of the set A, tha t  is, 

1, if w E A, 

f (w)  = 0, if w tg A, 

then the soft set ( S { ( f ,  T)} ,  [0, 1]) can be considered as the soft probabil i ty of the set A. 
It  is impor tant  to emphasize some features of this approach to the soft probability. In contrast 

with the axiomatic approach in the classical probabili ty theory, the soft probabil i ty is directly 
based on measurements.  The soft probabili ty may be applied to any event, in contrast  to the 
classical probabil i ty which may be applied only to stochastically stable events. 

If  the event is stochastically stable, then the soft probabili ty will be a sufficiently narrow 

interval with a large t rust  degree if n is large enough. If  the event is not stochastically stable, 
then the soft probabil i ty may be a large interval. The proposed approach can also be applied to 
construct a theory of soft clusters. 
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