diseases. But its underlying mechanism needs to be further elaborated. The purpose of this study was to identify the protective and antiapoptotic effects of luteolin on oxidative injury in H9C2 cardiomyocytes and to clarify the underlying mechanism.

METHODS A model of hydrogen peroxide (H$_2$O$_2$)-induced H9C2 cells oxidative injury was established in vitro. The changes in cell viability were examined with an MTT assay to determine the available concentration of H$_2$O$_2$ and luteolin. 2', 7'-Dichlorofluorescin diacetate (DCFH-DA) and flow cytometry were used to detect the effect of luteolin on ROS level and apoptosis degree respectively. We also used real time fluorescent quantitative PCR to examine the effect of luteolin on the regulation of caspase-3, bcl-2, bax and the ratio of the latter two.

RESULTS We found that incubation with various concentrations of H$_2$O$_2$ (0.25, 50, 100, 200) for 1h caused dose-dependent loss of cell viability and 100M H$_2$O$_2$ approximately reduced the cell viability to 50%. Treatment with 10ug/ml luteolin effectively decreased the level of H$_2$O$_2$-induced injury. Result of DCFH-DA indicated that 100M H$_2$O$_2$ also increased the ROS level in H9C2 cells, while luteolin obviously reversed this increase. Moreover, the flow cytometry result suggested that luteolin could effectively inhibit apoptosis induced by H$_2$O$_2$ in H9C2 cells. PCR results further verified that luteolin downregulated the expression on caspase-3 caused by H$_2$O$_2$ and upregulated the ratio of bcl-2 and bax.

CONCLUSIONS Luteolin protects H9C2 cells from H$_2$O$_2$-induced oxidative injury by reducing intracellular ROS level and decreasing apoptosis. The protective and antiapoptotic effects of luteolin may be related to its regulation on decreasing caspase-3 and increasing the ratio of bcl-2 and bax.

GW26-e0461 Exosomes secreted from dendritic cells induce angiogenesis by cardiac microvascular endothelial cells after myocardial infarction

Haibo Liu, 1, *Wangjun Yu, 2 Chunming Wang, 3 Xiaofang Guo, 3 Kang Yao, 4 Je Yuan, 5 Yunzeng Zou, 5 Junbo Ge 5
1Department of Cardiology, Yinzhou People’s Hospital, Ningbo University; 2Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; 3Department of Clinical Laboratory Center, Yinzhou People’s Hospital Affiliated to Medical school of Ningbo University

OBJECTIVES It has been reported that the infiltration of dendritic cells (DCs) significantly increased in infarcted myocardium after myocardial infarction (MI) and DCs ablation impaired angiogenesis post-MI in mice. However, the mechanism of how DCs exert effects on MI is still not completely understood. Exosomes (EX) have been known as the messenger between cells, this study was aimed to clarify whether EXs derived from DCs induce angiogenesis by cardiac microvascular endothelial cells via paracrine signaling post-MI.

METHODS DCs were derived from mouse bone marrow-derived DCs (BMDCs) and primary cultured rat cardiac microvascular endothelial cells (CMECs) were used to form vasculatures. BMDCs suspensions were incubated with the supernatant of necrotic or normal cultured cells (CMECs) were used to form vasculatures. BMDCs suspensions were incubated with the supernatant of BMDCs (DC-Exosomes, DCs) and identified by electron micrograph and Western blotting using the exosomal marker. DCs were added to CMECs and the angiogenesis was evaluated by measuring the tube formation and VEGF expression. Finally, the expression profiling of miRNA in splenic DCs of MI mice was analyzed by Affymetrix miRNA 4.0 chip assays and the significantly up-expressed and highly enriched miRNAs were certified both in DCs and DEXs by quantitative RT-PCR.

RESULTS Confocal imaging showed DEXs could be uptake by CMECs. Compared to the control group DEXs, DEXs from necrosis group significantly up-regulated the expression of VEGF in CMECs and enhanced the tube formation by CMECs. Some miRNAs including miR-16-5p, 23a-3p, 150-5p, and 126-3p which are associated with angiogenesis were significantly up-regulated and highly enriched in DEXs from necrosis group compared to the control group.

CONCLUSIONS These results suggest that exosomal miRNAs especially angiogenic miRNAs could be secreted from DCs and promote angiogenesis by CMECs post-MI. Our study may present a potent and novel DEXs-based therapeutic approach for MI treatment.

GW26-e0470 mir-124 regulation of NFATC1 and atherosclerosis in apolipoprotein E-deficient mice

Xiaolan Zhu, 1 Yuefeng Li 1
1The Fourth Affiliated Hospital of Jiangsu University; 2The Affiliated Hospital of Jiangsu University

OBJECTIVES Atherosclerosis, a chronic inflammatory disease, is the leading cause of death and disability worldwide. Evidence supports a role for microRNAs (miRNAs) in cardiovascular pathophysiology and atherosclerosis development. Herein, we explore the effects of miR-124 on atherosclerosis in apolipoprotein E(-/-) (ApoE/-) mice.

METHODS A constrictive collar was placed around the right carotid arteries of that were fed a high-fat diet to induce atherosclerotic plaque formation, miR124a-expressing lentiviral vectors (LV) in the presence or absence of recombinant LVTHM-NFATC1 or pGC-FU-NFATC1 was transfected into right carotid plaques respectively.

RESULTS Up to 3-fold downregulation of miR-124 and about 2-fold enrichment of NFATC1 were detected in the models. Consistently, miR-124-expressing resulted in decreased aortic atherosclerosis, impaired pro-inflammatory burden, as evidenced by reduced blood monocytes, endothelial inactivation- and inflammatory markers in aorta, and pro-inflammatory cytokines, chemokines in plasma of ApoE/- mice compared with the control group. Not surprisingly, silencing NFATC1 mimicked these effects. However, restoration of NFATC1 effectively and consistently attenuated the atherosclerotic suppression phenotypes elicited by the miR-124. Further analysis identified NFATC1 as a direct target of miR-124.

CONCLUSIONS Taken together, the current results reveal, for the first time, a potential molecular regulation of miR124 on NFATC1, offering a possible therapeutic approach for atherosclerosis.