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Motivated by the reported discovery of inflationary gravity waves by the Bicep2 experiment, we propose 
an inflationary scenario in supergravity, based on the standard superpotential used in hybrid inflation. 
The new model yields a tensor-to-scalar ratio r � 0.14 and scalar spectral index ns � 0.964, corresponding 
to quadratic (chaotic) inflation. The important new ingredients are the high-scale, (1.6–10) ·1013 GeV, soft 
supersymmetry breaking mass for the gauge singlet inflaton field and a shift symmetry imposed on the 
Kähler potential. The end of inflation is accompanied, as in the earlier hybrid inflation models, by the 
breaking of a gauge symmetry at (1.2–7.1) · 1016 GeV, comparable to the grand-unification scale.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The discovery of B-modes in the polarization of the cosmic mi-
crowave background radiation at large angular scales by the Bicep2

experiment [1] has created much excitement among inflationary 
model builders, since this effect can be caused by an early infla-
tionary era with a large tensor-to-scalar ratio r = 0.16+0.06

−0.05 – after 
substraction of a dust foreground. Although other interpretations 
[2,3] of this result are possible, it motivates us to explore how re-
alistic supersymmetric (SUSY) inflation models can accommodate 
such large r values.

The textbook quadratic inflationary model [4] predicting r =
0.13 − 0.16, and a (scalar) spectral index ns = 0.96 − 0.967, seems 
to be in good agreement with Bicep2 (r) and the WMAP [5] and 
Planck [6] measurements (ns). Quadratic inflation can be accom-
panied by a Grand Unified Theory (GUT) phase transition in non-
supersymmetric inflation models, based either on the Coleman–
Weinberg or Higgs [7] potential, which yield predictions for ns that 
more or less overlap with the prediction of the quadratic model [8,
9]. However, significant differences appear between the predictions 
of r in these models which can be settled through precision mea-
surements. The consistent supersymmetrization of these models is 
a highly non-trivial task due to the trans-Planckian values of the 
inflaton field which aggravate the well-known η-problem within 
supergravity (SUGRA).

One of the more elegant SUSY models which nicely combines 
inflation with a GUT phase transition is the model of F-term hybrid 
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inflation [10,11] – referred to as FHI. It is based on a unique renor-
malizable superpotential, dictated by a U (1) R-symmetry, employs 
sub-Planckian values for the inflaton field and can be naturally 
followed by the breaking of a GUT gauge symmetry, G , such as 
G B−L = GSM × U (1)B−L [12] – where GSM = SU(3)C × SU (2)L ×
U (1)Y is the gauge group of the Standard Model (SM) – GLR =
SU(3)C × SU(2)L × SU (2)R × U (1)B−L [13], and flipped SU(5) [14], 
with gauge symmetry G5X = SU(5) × U (1)X . The embedding of the 
simplest model of FHI within a GUT based on a higher gauge group 
may suffer from the production of disastrous cosmic defects which 
can be evaded, though, by using shifted [15] or smooth [16] FHI.

In the simplest realization of FHI the standard [10] superpoten-
tial is accompanied by a minimal (or canonical) Kähler potential. 
The resulting ns is found to be in good agreement with the WMAP 
and Planck data after including in the inflationary potential radia-
tive corrections (RCs) [10] and the soft SUSY breaking (SSB) linear 
term [12,18] – with a mass parameter in the TeV range – an SSB 
mass term for the inflaton in the same energy region can be ig-
nored in this analysis. This scenario yields [12] r values which lie 
many orders of magnitude below the measurement reported [1] by 
Bicep2. A more elaborate extension of this standard FHI scenario 
exploits non-minimal, quasi-canonical Kähler potentials [19,21] or 
SSB mass of magnitude as large as 1010 GeV for the inflaton field 
[20]. Depending on the underlying assumptions, the predictions for 
r are considerably enhanced compared to the minimal scenario of 
Refs. [12,18]. Thus, r values as large as 0.01 to 0.03 have been re-
ported [20,21]; this fact certainly puts r in the observable range, 
but it still remains an order of magnitude below the Bicep2 mea-
surement – however, see Ref. [22] for models of FHI with Kähler 
potential not-respecting the R-symmetry.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Motivated by this apparent discrepancy between the large r
values reported by Bicep2 and the predictions of FHI models, we 
present here a modified scenario of F-term inflation in which a 
quadratic potential dictates the inflationary phase, thus replicating 
the predictions of quadratic inflation, employing the well-studied 
standard superpotential of FHI. The two key elements for success-
fully implementing this scenario include a judicious choice of the 
Kähler potential and a high-scale SUSY breaking. In particular, fol-
lowing earlier similar attempts [23] a shift symmetry is imposed 
on the Kähler potential to protect the inflationary potential from 
SUGRA corrections which are dangerous due to trans-Planckian in-
flaton field values. Moreover, we assume that SUSY is broken at 
an intermediate scale, m̃ ∼ 1013 GeV, which can be identified with 
the SSB mass of the inflaton. In the context of high-scale SUSY 
[24,25], such a large SSB scale can become consistent with the 
LHC results [26] on the mass, mh � 126 GeV, of the SM Higgs bo-
son, h. The end of inflation can be accompanied by the breaking of 
some gauge symmetry such as GLR or G5X with the gauge symme-
try breaking scale M assuming values close to the SUSY GUT scale 
MGUT � 2.86 · 1016 GeV.

Below, we describe in Section 2 the basic ingredients of our in-
flationary scenario. Employing a number of constraints presented 
in Section 3, we provide restrictions on the model parameters in 
Section 4. Our conclusions are summarized in Section 5. Hence-
forth we use units where the reduced Planck scale mP = 2.44 ·
1018 GeV is taken equal to unity.

2. The inflationary scenario

2.1. The GUT symmetry breaking

In the standard FHI we adopt the superpotential

W = κ S
(
Φ̄Φ − M2), (1)

which is the most general renormalizable superpotential consistent 
with a continuous R-symmetry [10] under which

S → eiϕ S, Φ̄Φ → Φ̄Φ, W → eiϕ W . (2)

Here S is a G-singlet left-handed superfield, and the parameters κ
and M are made positive by field redefinitions. In our approach Φ̄ , 
Φ are identified with a pair of left-handed superfields conjugate 
under G which break G down to GSM. Indeed, along the D-flat 
direction |Φ̄| = |Φ| the SUSY potential, V SUSY, extracted – see e.g. 
Ref. [28] – from W in Eq. (1), reads

V SUSY = κ2((|Φ|2 − M2)2 + 2|S|2|Φ|2). (3)

From V SUSY in Eq. (3) we find that the SUSY vacuum lies at∣∣〈S〉∣∣ = 0 and
∣∣〈Φ〉∣∣ = ∣∣〈Φ̄〉∣∣ = M, (4)

where the vacuum expectation values of Φ and Φ̄ lie along their 
SM singlet components. As a consequence, W leads to the sponta-
neous breaking of G to GSM.

2.2. The inflationary set-up

It is well-known [10] that W also gives rise to FHI since, for 
values of |S| � M , there exist a flat direction

s ≡ √
2 Im[S] = 0 and Φ̄ = Φ = 0, (5)

which provides us with a constant potential energy κ2 M4 suitable 
for supporting FHI. The inclusion of SUGRA corrections with canon-
ical (minimal) Kähler potential does not affect this result at the 
lowest order in the expansion of S – due to a miraculous cancella-
tion occurring. The SUGRA corrections with quasi-canonical Kähler 
potential [19,21] can be kept under control by mildly tuning the 
relevant coefficients thanks to sub-Planckian S values required by 
FHI. The resulting ns values can be fully compatible with the data 
[5,6] but the predicted r [20,21] remains well below the purported 
measurement reported by Bicep2.

In order to safely implement quadratic inflation, favored by 
Bicep2, within SUGRA and employing W in Eq. (1), we have to 
tame the η problem which is more challenging due to the trans-
Planckian values needed for the inflaton superfield, S . To this end, 
we exploit a Kähler potential which respects the following symme-
tries:

S → S + c and S → −S, (6)

where c is a real number – cf. Ref. [23]. Namely we take

K = −1

2

(
S − S∗)2 + |Φ|2 + |Φ̄|2

+ (S − S∗)2

2Λ2

(
kS

(
S − S∗)2 + kSΦ |Φ|2 + kSΦ̄ |Φ̄|2)

+ 1

Λ2

(
kΦ |Φ|4 + kΦ̄ |Φ̄|4) + · · · . (7)

Here kS , kΦ, kΦ̄ , kSΦ and kSΦ̄ are positive or negative constants of 
order unity – for simplicity we take kSΦ = kSΦ̄ – and Λ is a cutoff 
scale determined below. Although K is not invariant under the R
symmetry of Eq. (2), the fields Φα = S, Φ, Φ̄ are canonically nor-
malized, i.e., Kαβ̄ = δαβ̄ – note that the complex scalar components 
of the various superfields are denoted by the same symbol.

The F-term (tree level) SUGRA scalar potential, V I0, of our 
model is obtained from W in Eq. (1) and K in Eq. (7) by applying 
the standard formula:

V I0 = eK (
K αβ̄FαFβ̄ − 3|W |2), (8)

with Kαβ̄ = K
,ΦαΦ∗β̄ , K β̄α Kαγ̄ = δ

β̄

γ̄ and Fα = W ,Φα + K,Φα W . We 
explicitly verify that the SUSY vacuum of Eq. (4) remains intact for 
the choice of K in Eq. (7). Along the field direction in Eq. (5) the 
only surviving terms of V I0 are

V I0 = eK (
K S S∗ |W ,S |2 − 3|W |2) = κ2M4

(
1 − 3

2
σ 2

)
, (9)

where the canonically normalized inflaton, σ , is defined by

S = (σ + is)/
√

2. (10)

As shown from Eq. (9), V I0 is not suitable to drive inflation mainly 
due to the minus sign which renders V I0 unbounded from below 
for large σ ’s – cf. Ref. [17]. On the other hand, the symmetries in 
Eq. (6) ensure a complete disappearance of the exponential prefac-
tor in Eq. (9), which could ruin any inflationary solution for large 
σ ’s.

A satisfactory solution can be achieved, if we consider an 
intermediate-scale SSB mass parameter m̃, whose contribution can 
exceed the negative contribution to V I0 for conveniently selected 
κ and M . Such a heavy mass parameter is normally generated fol-
lowing the usual SUSY breaking procedures – see e.g. Ref. [27] – 
provided that the gravitino mass is of similar size and the Polonyi 
field has canonical Kähler potential. The contributions to the infla-
tionary potential from the SSB effects [12,18] can be parameterized 
as follows:

V IS = m̃2
∑∣∣Φα

∣∣2 − (
aSκM2 S − κ Aκ SΦΦ̄ + c.c.

)
, (11a)
α
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Table 1
The mass spectrum of the model along the path in Eq. (5).

Fields Eigenstates Masses squared

Bosons
1 real scalar σ m2

σ = m̃2 − 3κ2 M4

1 real scalar s m2
s = m̃2 + κ2 M4

· ((3 −σ 2) − 24kS /Λ2)

2N complex scalars φi± = φ̄i±φi√
2

(i = 1, 2)

m2
φ± � kSΦκ2 M4

Λ2 ∓ κ |Aκ |σ√
2

+ m̃2 + κ2(
(1±M2)σ 2

2 ∓ M2)

Fermions
1 Weyl spinor ψS m2

ψS
= κ2 M2σ 2/2

2N Weyl spinors ψ± = ψΦ̄±ψΦ√
2

m2
ψ± = κ2σ 2/2

where we assume for simplicity that there is a universal SSB mass 
m̃ for all the superfields Φα = S, Φ, Φ̄ of our model. Also aS and 
Aκ are mass parameters comparable to m̃. Along the field configu-
ration in Eq. (5), V IS reads

V IS = m̃2σ 2/2 − √
2aSκM2σ . (11b)

We note in passing that, due to Eq. (11a), |〈S〉| is shifted [13] from 
its value in Eq. (4) to∣∣〈S〉∣∣ � (|Aκ | − |aS |

)
/2κ

(
1 + m̃2/2κ2M2), (12)

where we selected conveniently the phases of Aκ and aS so that 
〈V SUSY + V IS〉 is minimized.

2.3. Beyond the tree-level potential

Expanding the various fields, besides S – see Eq. (10) – in real 
and imaginary parts according to the prescription

X = (x1 + ix2)/
√

2 (13)

where X = Φ, Φ̄ and x = φ, φ̄ respectively, we are able to check 
the stability of the field directions in Eq. (5). Namely, we check the 
validity of the conditions

∂V tr/∂χ
α = 0 and m2

χα > 0, (14a)

where χα = σ , s, φi and φ̄i with i = 1, 2 and V tr stands for the 
tree-level inflationary potential

V tr = V I0 + V IS (14b)

with V I0 and V IS given in Eqs. (9) and (11b). Note that the imposed 
Z2 symmetry on K – see Eq. (6) – excludes the terms (S − S∗) or 
(S − S∗)3 which could violate the first condition in Eq. (14a) for 
χα = s. Moreover, in Eq. (14a), m2

χα are the eigenvalues of the 
mass squared matrix M2

αβ = ∂2 V tr/∂χ
α∂χβ which are presented 

in Table 1. Setting

m̃ ≥ √
3κM2, Λ ≤ 2

√
3|kS |√

2N� − 3
(15a)

(where we employ Eq. (21a) and set aS � 1 for the derivation of 
the latter expression above) and, neglecting M4 terms,

σ ≥ σc �
√

2
√

κ2M2 − m̃2

κ
√

1 + M2
with M >

m̃

κ
(15b)

assists us to achieve the positivity of m2
σ , m2

s and m2
φ+ , respec-

tively. Note that the two first terms in the expression for m2
φ± are 

neglected in the derivation of Eq. (15b), since their contribution is 
suppressed for kSΦ ∼ 1 and |Aκ | � 10−6 −10−5. In Table 1 we also 
present the masses squared of the chiral fermions of the model 
along the trajectory in Eq. (5). We remark that the fermionic and 
bosonic degrees of freedom are equal to 2(1 + 2N). Inserting these 
masses into the well-known Coleman–Weinberg formula, we can 
find the one-loop RCs, �V , which can be written as

�V = 1

64π2

(
m4

σ ln
m2

σ

Q 2
+ m4

s ln
m2

s

Q 2
− 2m4

ψS
ln

m2
ψS

Q 2

+ 2N

(∑
i=±

m4
φi

ln
m2

φi

Q 2
− 2m4

ψ± ln
m2

ψ±
Q 2

))
. (16)

Here Q is a renormalization group mass scale and N is the dimen-
sionality of the representations to which Φ̄ and Φ belong – we 
have [12,21] N = 1, 2, 10 for G = G B−L, GLR and G5X , correspond-
ingly.

All in all, the full potential of our model is

V I = V tr + �V , (17)

with V tr and �V given in Eqs. (14b) and (16) respectively.

3. Constraining the model parameters

Based on V I in Eq. (17) we proceed to explore the allowed 
parameter space of our model employing the standard slow-roll 
approximation [28]. The free parameters are

κ, M,kS ,kSΦ,Λ,m̃,aS , |Aκ | and N.

The parameters kS , kSΦ and |Aκ | exclusively influence the values 
of m2

s and m2
φ± – see Table 1 – and so, we take for them a con-

venient value, close to unity, which can assist us to achieve the 
positivity and heaviness – see below – of these masses squared, 
e.g., kS = −kSΦ = −5 and |Aκ | = 10−6. The remaining parameters 
can be restricted by imposing a number of observational (1, 3) and 
theoretical (2) restrictions specified below.

3.1. Inflationary observables

The number of e-foldings, N� , that the pivot scale k� =
0.05/Mpc undergoes during inflation, and the amplitude As of the 
power spectrum of the curvature perturbation can be calculated 
using the standard formulae

N� =
σ�∫

σf

dσ
V I

V ′
I

and
√

As = 1

2
√

3π

V 3/2
I (σ�)

|V ′
I (σ�)| (18)

where the prime denotes derivation with respect to σ , σ� is the 
value of σ when k� crosses outside the horizon of inflation, and 
σf is the value of σ at the end of inflation which coincides with 
σc, Eq. (15b), if ε(σc) ≤ 1 and η(σc) ≤ 1 or is determined by the 
condition:

max
{
ε(σ ),η(σ )

} = 1 for σ ≥ σc. (19a)

Here ε and η are the well-known [28] slow-roll parameters de-
fined as follows:

ε = (
V ′

I/
√

2V I
)2

and η = V ′′
I /V I. (19b)

Agreement with the observations [5,6] requires

N� � 55 and
√

As � 4.686 · 10−5, (20)

which allow us to restrict σ� and m̃. Neglecting �V in Eq. (17)
and assuming that aS is adequately suppressed we approach the 
quadratic inflationary model with
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ε = η = 2/σ 2, σf � √
2 and σ� � 2

√
N�. (21a)

Hence, inflation takes place for σ � 1 with σf ∼ 1 and σc � 1 – 
see Eq. (15b). Employing the last equalities in Eqs. (18) and (21a)
we find

m̃ � √
3
√

κ2M4N2
� + 2Asπ2/N� = (6–40) · 10−6, (21b)

for the values of Eq. (20) and κ and M of order 0.01. Therefore, 
the range of the m̃ values is somehow extended compared to those 
obtained in the quadratic model.

We can finally calculate ns, its running, αs, and r, via the rela-
tions:

ns = 1 − 6ε� + 2η� � 1 − 2/N� = 0.964, (22a)

αs = 2

3

(
4η2

� − (ns − 1)2) − 2ξ� � −2

N2
�

= −6 · 10−4, (22b)

r = 16ε� � 8/N� = 0.14, (22c)

where ξ � m4
P V ′

I V ′′′
I /V 2

I and all the variables with the subscript �
are evaluated at σ = σ� . These results are in agreement with the 
observational data [1,5,6] derived in the framework of the ΛCDM 
model.

Since there is no observational hint [6] for large non-Gaussianity 
in the cosmic microwave background, we should make sure that 
the masses squared of the scalar excitations in Table 1, besides 
m2

σ , are greater than the Hubble parameter squared, H2
I = V I/3m2

P, 
during the last 50–60 e-foldings of inflation, so that the observed 
curvature perturbation is generated wholly by σ as assumed in 
Eq. (20). The lowest m2

χα in Table 1, by far, is the one for χα = s

and its ratio to H2
I is estimated to be

m2
s

H2
I

(σ�) � κ2M4N�(Λ
2(3 − 2N�) − 12kS)

2AsΛ2π2
+ 3

2N�

, (23a)

employing Eq. (21b) and under the assumptions made above. 
Given that m2

s /H2
I increases as σ drops, we end up with the fol-

lowing condition:

m2
s /H2

I (σ�) ≥ 1, (23b)

from which we can derive an upper bound, more restrictive than 
that of Eq. (15a), on Λ

Λ �
√

6|kS |N�κM2√
κ2M4N�

2 + Asπ2
(23c)

ranging from 0.74 to 0.3 as κ and M vary from 0.1 to 0.01 – recall 
that we use kS < 0, as dictated by Eq. (23a). The most natural scale 
close to these Λ values is the string scale, i.e., Λ = 0.1 · (5/2.44) �
0.2; we thus confine ourselves to this choice for Λ onwards and 
restrict κ or M – with given Λ. E.g., Eq. (23b) implies:

M �
√

Λπ

κ
4

√
2As

N�(Λ2(3 − 2N�) − 12kS)
, (23d)

which turns out to be more restrictive than that of Eq. (15b) if we 
make use of Eq. (21b).

3.2. The GUT phase transition

One outstanding feature of our proposal is that the inflationary 
scenario is followed by a GUT phase transition, in sharp contrast 
to the original quadratic inflation [4]. We should note, however, 
that V tr, Eq. (14b), develops along the track of Eq. (5) an absolute 
minimum at
σ0 =
√

2κaS M2

m̃2 − 3κ2M4
, (24)

which has the sign of aS and a possible complication may be that 
σ gets trapped in this false vacuum and consequently no GUT 
phase transition takes place if σc ≤ σ0 for σ� > 0, or σc ≥ σ0 for 
σ� < 0. Note that the inflationary observables remain unchanged 
under the replacements

aS → −aS and σ → −σ , (25)

since V tr remains invariant. To assure a timely destabilization of 
Φ̄–Φ system – in the φ1+ or φ2− direction – we impose the con-
dition

σc ≥ σ0 for σ� > 0, or σc ≤ σ0 for σ� < 0. (26)

The structure of V tr for σ� > 0 [σ� < 0] is visualized in Fig. 1(a) 
[Fig. 1(b)], where we present V tr – conveniently normalized such 
that V tr(σ0) = 0 – as a function of σ for the same κ and M
(κ = 0.01 and M = 0.012) and two different aS values with con-
stant |aS | taking into account Eq. (20). Namely, in Fig. 1(a), we 
take aS = −[+]2 · 10−5 – gray [light gray] line – corresponding to 
σ� = 13.95 [15.9] and σf = 0.44 [2.4]. As anticipated from Eqs. (26)
and (15b), V tr develops minima at the points |σ0| � 0.97, whereas 
σc � 0.017 is constant in all cases since it is independent of aS . 
We observe that for aS < 0, we obtain σ0 < σc and so the GUT 
phase transition can proceed without doubt, whereas for aS > 0
we have σ0 > σc, making the destabilization of the φ+ direction – 
see Table 1 – rather uncertain. In Fig. 1(b), we present V tr versus 
σ changing the signs of aS and σ� according Eq. (25), i.e., we set 
aS = +[−]2 · 10−5 with σ� = −13.95 [−15.9] – gray [light gray] 
line. We remark that the case with aS < 0 remains problematic 
since σ meets first σ0 = −0.97 < σc = 0.017 and its trapping in 
the minimum is possible, whereas the case with aS > 0 is free 
from such a problem, since σ0 = 0.97 > σc = 0.017. Given this sit-
uation we henceforth concentrate on the case with σ� > 0. The 
results for the case with σ� < 0 are obtained by flipping the sign 
of aS as suggested by the symmetry of V tr , Eq. (25).

3.3. Compatibility with the formation of cosmic strings

If G = G B–L , B–L cosmic strings are produced during the GUT 
phase transition, at the end of inflation. The tension μcs of these 
defects has to respect the bound [12,29,30]:

μcs = 9.6π M2

ln(2/β)
≤ 8 · 10−6

⇒ M ≤ 0.001

(
ln(2/β)

1.2π

)1/2

, (27)

where β = κ2/8g2 ≤ 10−2 with g � 0.7 being the gauge cou-
pling constant close to MGUT. From Eq. (27), for κ = 0.1, 0.01 and 
0.001, we obtain 103 M ≤ 1.33, 1.7 and 2, whereas Eq. (23d) en-
tails 103 M ≥ 2.7, 8.7 and 27 respectively. As a consequence, our 
scheme is not compatible with the choice G = G B–L . This negative 
result can be, most probably, avoided if we invoke the superpoten-
tial employed in shifted [15] or smooth [16] FHI. In that cases, Φ
and Φ̄ are confined to some non-vanishing value during inflation; 
thus, the B–L strings can be easily inflated away.

4. Results

Following our previous discussion we henceforth concentrate 
our analysis on G = GLR or G5X . For both selected G ’s, M can be 
related to the GUT scale since the non-singlet under GSM gauge 
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Fig. 1. Tree level inflationary potential V tr as a function of σ for σ� > 0 and aS = −[+] 2 · 10−5 (a) for σ� < 0 and aS = +[−]2 · 10−5 (b) – gray [light gray] line. We set 
κ = 0.01, M = 0.012, kS = −5 and |Aκ | = 10−6. The values of σ�, σf, σ0 and σc are also depicted.

Fig. 2. Allowed (shaded [lined]) regions for σ� > 0 and aS < 0 [aS > 0] in the κ–|aS | plane with M = 0.012 (a) and in the M–|aS | plane with κ = 0.03 (b). Along the gray 
line we set aS = −m̃. We take kS = −kSΦ = −5, |Aκ | = 10−6 and Λ = 0.2.
bosons acquire mass equal to gM at the SUSY vacuum, Eq. (4)
– see Ref. [21]. However, in high-scale SUSY [24,25] the GUT 
scale is model dependent and so any M value between 0.001
and 0.1 is, in principle, acceptable. For reference we mention 
that the conventional SUSY GUT scale corresponds to the choice 
gM = (2/2.44) · 10−2, i.e., M � 0.012. Recall finally that we set 
kS = −kSΦ = −5 |Aκ | = 10−6 and Λ = 0.2 throughout.

In our numerical calculations, we use the complete formulae for 
V I , N� , As and the slow-roll parameters – see Eqs. (17), (18) and 
(19b) – and not the approximate relations listed in Section 3 for 
the sake of presentation. As regards Q in Eq. (16), we determine 
it by requiring [31] �V (σ�) = 0. Note that Q is not well-defined 
if we impose the alternative condition [31] �V (σf) = 0 since mφ+
instantaneously vanishes when σf = σc. To reduce the possible [31,
32] dependence of our results on the choice of Q , we confine our-
selves to values of κ, M and aS which do not enhance �V . As a 
consequence, our findings are highly independent of the specific 
choice of G . For definiteness we mention that we take G = G5X .

Confronting our model with the imposed constraints, we de-
pict the allowed (lightly gray shaded [lined]) regions for aS < 0
[aS > 0] in the κ–|aS | plane with M = 0.012 and in the M–|aS |
plane with κ = 0.03 – see Figs. 2(a) and 2(b) respectively. The left 
bounds in both plots come from the saturation of Eq. (23b). It is 
straightforward to show that the (simplified) analytical expression 
in Eq. (23d) is in accordance with the bound, 0.0057 [0.0051] de-
picted in Fig. 2(a) [Fig. 2(b)]. Had we used kS = −1, this bound in 
Fig. 2(a) [Fig. 2(b)] would have been moved to 0.014 [0.008] cut-
ting a minor slice of the allowed region. It is clear from Eq. (26)
that the allowed region for aS > 0 is considerably shrunk com-
pared to that for aS < 0, since aS < 0 implies σ0 < 0, and so 
Eq. (26) is automatically fulfilled thanks to the positivity of σc – 
see Eq. (15b). Indeed, the saturation of Eq. (26) gives the upper 
bound of the allowed (lined) regions for aS < 0. On the other hand, 
for aS < 0 no solution to Eq. (20) exists beyond the thin dashed 
line. In the shaded region between the thick and thin dashed lines 
the end of inflation is found by the condition σf = σc and not 
the one in Eq. (19a) which exclusively gives σf for aS > 0, and 
in the regions below the thick dashed lines for aS < 0. Note that 
for aS < 0 we have allowed parameters even for |aS | = m̃ which 
are depicted by the gray lines. Finally, beyond the (thin and thick) 
dotted lines, our results become unstable with respect to the vari-
ations of Q ; the model predictions are, thus, less trustable and we 
do not pursue it any further.

Summarizing our findings from Fig. 2 the parameters of W in 
Eq. (1) are bounded as follows:

0.57 � κ/10−2 � 7 and 0.51 � M/10−2 � 2.9. (28)

Moreover, the SSB mass parameters in Eq. (11b) are confined in 
the following ranges:

0.66 � m̃/10−5 � 4.4 and |aS |/10−5 � 5.3 [0.063] (29)

for aS < 0 [aS > 0]. The most natural framework of SSB in which 
our model can be embedded is that of high-scale SUSY since the m̃
values encountered here are roughly consistent with mh � 126 GeV
[24]. On the other hand, split SUSY cannot be directly combined 
with our proposal since requiring mh � 126 GeV implies [25]
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m̃ ≤ 108 GeV, which is rather low to drive inflation. However, a 
possible coupling of S with the electroweak higgses of the mini-
mal SUSY SM can modify this conclusion as outlined in Ref. [25].

It is worth noticing that, contrary to Ref. [20], κ and M are 
constrained so that the contribution to V I from Eq. (11b) exceeds 
that from Eq. (9). As a consequence, our model here shares iden-
tical predictions with the original quadratic inflationary model as 
regards ns, αs and r, and so it is consistent with Bicep2 findings 
[1]. Indeed, for N� = 55 we find 0.12 � r � 0.14 and

0.963 � ns � 0.969, 4.7 � −αs/10−4 � 6.8 (30)

which are consistent with WMAP [5] and Planck [6] results within 
the ΛCDM model. Contrary to quadratic model, however, our 
model implies a built-in mechanism for spontaneous breaking of 
G at the scale M , Eq. (28), compatible with the SUSY GUT scale, 
M � 0.012. The resulting mass of the inflaton at the SUSY vacuum 
takes values

6.5 � mσ /10−6 � 8.7, (31)

which allow for the decay of the inflaton to right-handed neutri-
nos, if the relevant couplings exist. Thus, a successful scenario of 
non-thermal leptogenesis, along the lines of Refs. [12,33], can be 
easily constructed.

5. Conclusions

We have presented a framework for implementing quadratic 
(chaotic) inflation in realistic SUSY models which have previously 
been used for FHI. Namely, we have retained a U (1) R-symmetry 
from earlier FHI which yields a unique superpotential, W , at renor-
malizable level, linear with respect the inflaton field. On the other 
hand, the Kähler potential, K , is judiciously chosen so that no 
extensive SUGRA corrections arise. Our model is thus protected 
against contributions from higher order terms in both K and W . 
We showed that the model displays a wide and natural range of 
the parameters κ, M and aS which allows quadratic inflation to be 
successfully implemented, provided that the SSB mass parameter 
m̃ lies at the intermediate energy scale motivated by high-scale (or, 
under some special circumstances, split) SUSY breaking. As a con-
sequence the inflationary observables are in excellent agreement 
with the combined analysis of the Planck, WMAP and Bicep2 mea-
surements.
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