
2D Systems Feedback Compensation: 
An Approach Based on Commutative Linear Transformations 

M . Bisiacco 

Dipartimento di Matematica e Znformatica 

Universitci di Udine 

Udine, Ztaly 

and 

E. Fomasini and G. Marchesini 

Dipartimento di Elettronica e Znformatica 

Universitci di Padova 

Padova, Italy 

ABSTRACT 

Algebraic properties of a pair of commutative matrices associated with an ideal in 
R[ .~i, zz] are exploited for characterizing the closed loop polynomial variety of a 2D 
system. Also algorithms are given to find under what constraints the closed loop 
variety can be assigned and to compute the MFD of a compensator. 

1. INTRODUCTION 

Let N(z,, zs) and D(z,, zz) be given matrices of dimension p X m and 
m x m respectively, with elements in the polynomial ring R[ zl, z2]. Our first 
concern in this paper is to analyze the structure of the complex variety of the 
polynomial 

A=det(XN+YD), (1.1) 

where X( zr, zs) and Y( zr, zs) are arbitrary matrices of dimension m x p and 
m x m respectively, with elements in R[ zl, .zJ. Particular attention is given 
to the case when N and D are right factor coprime, which has useful 
applications in 2D systems theory (i.e. state feedback design, observer 
synthesis, etc.). 
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In the polynomial ring R[.z], this problem and the more general one of 
solving the B&out equation 

xN+YD=c, (1.2) 

where C is a polynomial matrix of dimension m X m, are well known, and 
there exists a satisfactory theory, which has a role in obtaining control 
algorithms for ID systems using the polynomial matrix approach. Bezout 
equations in R[z,, z2] have been considered by several authors (see, for 
instance, [2, 31) but at the moment the results available in the literature are 
not so strong as in R[z], and their application to control problems is 
sometimes questionable. 

The way in which we will proceed is to introduce a Grijbner basis in the 
polynomial ideal s(N, D) generated by the maximal order minors of 

D 

[ 1 N (1.3) 

When N and D are coprime, we shall introduce a pair of commutative 
matrices (M,, M,) with the property that a polynomial p in R[z,, .zz] is an 
element of $( N, D) if and only if p is an annihilating polynomial of the pair 

(M,, M,). 
The paper is divided into five sections. In Section 2 we define two 

commutative linear transformations on R[z,, z,]/%(N, D), and we investi- 
gate some properties of their matrix representations. In Section 3 internal and 
external representations of 2D systems are introduced, and the polynomial 
(1.1) is viewed as the characteristic polynomial of a feedback connection of 
2D systems. In Sections 4 and 5 the assignability of the characteristic 
polynomial variety is related to the structure of matrix fraction descriptions 
(MFDs) representing the transfer matrix and the state equations of the closed 
loop system. 

Throughout the paper we shall refer to right MFDs, right factors, and 
right coprimeness. Clearly all definitions and statements can be rephrased in 
terms of left MFDs in an obvious way. 

2. LINEAR COMMUTATIVE TRANSFORMATIONS ON R[ zi, zZ] 

Let N be a p X m matrix and D a m X m matrix over R[z,, ~~1. By 
definition, N and D are right factor coprime (r.f.c.) if the relations 

N=NE, D=DE, 
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-- 
where N, D, E are matrices over R[z,, zs] with dimensions p X m, m X m, 

and m X m respectively, imply that det E is a nonzero constant. Denoting by 
m,,m,,..., m,, the maximal order minors of (1.3) it is known that the 
following statements are equivalent: 

(i) N and D are r.f.c. 
(ii) m,,m,,..., mP are coprime polynomials. 
(iii) The variety ^Y( s( N, D)) is-a finite set. 
(iv) The quotient ring R[ zl, z2]/ $( N, D) is a finite dimensional R-vec- 

tor space. 
Coprimeness of N and D can be decided by computing a Grobner basis 

9=(g,,g,,..., g,) in the ideal %(N, D), starting from the generators 
m,,m,,...,m,. In fact the dimension over R of R[ zl, z,]/%(N, D) is equal 
to the number of manic monomials d,, d,, . . . that are not a multiple of the 
leading power products of any of the polynomials g i, g,, . . . , g, [4]. So N and 
D are r.f.c. if and only if { d,, d,, . . . } is a finite set. 

Note that this set is empty if and only if the Grobner basis 9 contains a 
nonzero constant polynomial. In this case Y( s( N, D)) = 0 and in [4] an 
explicit construction of polynomials 9i, Q~, . . . , q,, such that 1 = &qimi is 
given. 

Assume now that the monomials d,, d,. . . constitute a nonempty finite 
set {dl,d2,..., dk}. Thus the R-vector space R[z,, z,]/%(N, D) is finite 
dimensional and 

d,+%:=& dz+S:=ct2,..., d, + 5 := dk 

can be assumed as a basis in it. 
Consider the following maps: 

~2:Rh~,1/~ +R[z,,z2]/~:9+~~z29+~. (2.2) 

They are both well defined, commutative linear transformations on 
R[ zi, z2]/ s(N, D) and are represented by a pair of commutative matrices 
M,,_M, in Rkxk, once a basis vi, v,, . . . , vk in Rk has been associated with 
&,dI,..., dk. Note that the smallest 3 i- and 3 s-invariant subspace generated 
by d, =i is the whole space R[z,, z,]/3(N, D). Thus M:M&,, i, j EN, 
generate Rk. 
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The construction of M, and M, essentially requires one to express zldi 

andzad,, i=1,2 ,..., k, as linear combinations of J,, da,. . . , dk. This can be 
accomplished by applying the normal form algorithm with respect to 9 [4]. 

The properties of 3( N, D), as well as those of its variety Y( !$(N, D)), 
directly reflect into the structure of the pair M,, M,. Note first that the 
mapping 

is a monomorphism of R into Rkxk, so that the image set RI, is a subfield of 
RkX k isomorphic to R. Since the matrices M, and M, commute with each 
other and with every element (YIk, it follows that the mapping 

P(z,, .~2) = xaijzizg * CaijMiMi:= p(Ml, M,) 

ij ij 

is a homomorphism of R[z,, za] into R kxk It is easy to see that the kernel of . 
the homomorphism is the ideal 3( N, D), that is, 

As far as Y”( Y$( N, D)) is concerned, it is easily shown that for any p in 

R[z,, zzI> V(P) 2 TXN, D)) ‘f 1 and only if p(M,, M,) is a nilpotent 
matrix. In fact, by Hilbert’s NuZlstelZensatz, Y”(p) 3 Y’-( z(N, D)) implies 
p” E $(N, 0) f or some h and hence ph(M1, M,) = 0. Conversely, if 
ph(M,, M,) = 0 for some h, then ph E !$(N, D) and V(p) I V( s(N, D)). 
Note that the dimension k of the matrices M, and M, provides an upper 
bound for h. 

Further properties of Y( s( N, D)) are obtained if we refer to the spectral 
structure of M, and M, [5]. For, as a corollary of the theorem on common 
eigenvectors for commutative matrices [6], we have that (a,, (Ye) E 
V( $(N, 0)) if and only if M, and M, have a common eigenvector v and 

M1v = alv, My = CQV. 

On the other hand, in view of the Frobenius theorem on simultaneous 
triangularization of commutative matrices [6], the variety V( $( N, D)) can 
be characterized in the following way. Let T, = [t,:!)] and T, = [t,‘j2)] be 
triangular matrices such that M, = P- ‘TIP and M, = P- ‘T,P for some 
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invertible matrix P in Ckxk. Then ((Y,, aa) belongs to Y(z(N, D)) if and 
only if there exists an integer i such that 

A natural question arises as to what extent the condition 

determines the structure of the pair of commutative matrices R, and R,. 

The corresponding question for R[ z] requires one to investigate the structure 
of matrices R that satisfy the condition 

p(R)=0 CJ P(z)E% (2.4) 

for a given ideal Y$ c R[z]. In this case the answer is very simple: denoting 
by k the dimension of R[ z]/ 3, we have that 

(a) matrices R have dimension greater than or equal to k; 

(b) matrices R with dimension k x k are cyclic and similar to each other, 
and their minimum polynomial is the manic generator of 3. 

In the case of the ideal s(N, 0) c R[z,, ~a], point (a) naturally extends, 
as shown in the following theorem. 

THEOREM 2.1. Let s(N, 0) c R[z,, zZ] and let dimR[z,, .z,]/s(N, D) 
= k > 0. Assume that R, and R, are commutative matrices satisfying (2.3’). 

Then R, and R, have dimension greater than or equal to k. 

Proof. To prove the theorem, it is enough to show that, for any pair of 
commutative matrices U and V in R”‘“, the subspace spanned by UpVq, 
p,q=O,I,..., has dimension not greater than n. 

This is obviously true if U and V are simultaneously diagonalizable. If 
not, by a theorem of T. Motzkin and 0. Taussky [7] there exist two sequences 
of matrices { U,, }, { V,, } such that 

U= lim U,, 
h-+m 

V= lim V,, 
h+m 

and for any h, U,, and V,, are simultaneously diagonalizable commutative 
matrices of dimension n X n. 
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Consider n + 1 distinct manic monomials f,, fi,. . . , f,,, in R[z,, x2]. 
Since U, and V,, are simultaneously diagonalizable, there exists a real valued 
vector a,, = (ulh azh . *. un+lh ) with dimension n + 1, such that 

o=aIhfi(Uh,Vh)+a2hf2(Uh,Vh)+ ... +%+l,hf,+lwhJh) (2.5) 

and 
n+l 

1 = c bihb (2.6) 
i=l 

Since a,,as,... is a compact sequence, by the BolzanoWeierstrass prop- 
erty a converging subsequence as,, a s2,. . . can be extracted from it. Letting 

b=(br bs ... bn+r)= lima,,, 
jToc 

(2.6) implies 
n+1 

1 = c Ibil. 
i=l 

Recalling (2.5), we have 

ntl 

II II 
n+l 

C bif,(‘,V) = C (bi-as,l)R(‘,V)+ 
i=l i=l 

nil 

G iFl lbi - us,illlA("~v) II 

n+l 

+ C laS,iI(/f;(u~v)-f;(~i~~j)I( 
i=l 

Since, as j increases, a,, 
i = 1,2,..., 

converges to b and fi‘( Usj, V,J converge to A( U, V ), 
n + 1, we ob&in 

c bif;( U, V) = 0. 
i=l 

Therefore, the space spanned by the matrices UPVq, p, q = 0,1,2,. . . , has 
dimension not greater than n. H 

The following theorem provides an extension of point (b) to pairs of 
commutative matrices with dimension k X k. 
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THEOREM 2.2. Let R, and R, be commutative matrices with dimension 
k x k, satisfying the condition (2.3’). Furthermore, assume that there exists a 
nonzero vector w in Rk such that the smallest R,- and Rsinvariant subspace 
of Rk which contains w is the whole space Rk. Then R, and R, are 
simultaneously reducible by similarity to the matrices M, and M, associated 
with the maps al and d2 in (2.1) and (2.2). 

Proof. Consider the monomials z,d i and z,d i, i = 1,2,. . . , k. Then in 
the R-linear span of d 1, d,, . . . , d, the polynomials 

pi= $ yjidj=zldimod3(N,D), i=1,2 k, ,...> (2.7) 
j=l 

and 

4i= i qjidj=zzdimodS(N,D), i=1,2 k, ,...> (2.8) 
j=l 

are uniquely defined and can be computed using the normal form algorithm 

[41. 
Introduce the k x k matrices 

T = [ d,(M,> M,)v, d,(M,, M,)v, . . 

P= [d,(R,,R,)w d,(R,,R,)w ..- 

Both matrices are invertible. In fact let 

0 = C aidi( Ml, M,)vl 
i 

dk(M,> %.)v,], (2.9) 

d,(R,, R,)w]. (2.10) 

be any linear combination of the columns of T. This implies 

0 = Caidi(Ml> M,)(M;Mivl)> r,s=O,l,..., 
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and, since span{ M;Mivl, r, s = 0, 1,. . . } = Rk, we have 

0 = &$,(M,, M2). 

Hence, recalling the condition (2.3) we obtain 

which shows that the scalars (or, (~a,. . . , ak are all zero. The same argument 
applies to the columns of P. 

From (2.7), (2.8), and (2.3) it follows that 

M,di(M,, M,) - CYjidj(M,> M,) VI= 0, 
j 1 

M,di(M,t MP,) - CVjidj(Ml> MS) Vl= 0, 
i I 

so that 

Tm ‘M,T = [ yji] and T-‘M,T = [ qji]. 

By the same arguments one obtains 

P_‘R,P = [Vii] and P-‘R,P = [vii]. 

We therefore have that R, and R, are simultaneously reducible to M, and 
M, by the similarity transformation induced by PT- ‘. n 

REMARK When we consider an ideal 3 in R[z], the k x k matrices R 
which satisfy (2.4) turn out to be cyclic. So in this case we do not need to 
assume cyclicity to prove that these matrices are related each other by 
similarity transformations. 

On the other side, as we have seen, the cyclicity assumption for R, and 
R, or, equivalently, the existence of w is necessary in the case of an ideal in 
R[z,, .z,], as we cannot exclude the existence of k X k commutative matrices 
R, and R, which satisfy (2.3’) and cannot be reduced to M, and M, by 
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similarity transformations. To see this, consider for instance the polynomial 
ideal 3 generated by 212, z1z2, 222. The quotient space R[ zlr zJ/ 3 has 
dimension 3, and using the normal form algorithm, we obtain 

0 
M,=O i 

0 0 
0 M,= 

1 0 

0, 1 
0 

The commutative pair given by 

0 0 0 R,= lo o, 
i 1 R,= 0 0 0 0 

0 0 
0 0 1, 
0 0 0 1 (2.12) 

although it satisfies (2.3’) cannot be reduced by similarity to (2.11). To see 
that, it is enough to assume vi = [l 0 0]‘, so that vr, M1vl, Mzvl span R3, 
while there isn’t any vector w such that R;Riw, T, s = 0, 1,. . . , span R3. 

3. ASSIGNABILITY OF THE CLOSED LOOP POLYNOMIAL VARIETY 

Any p x m rational matrix in two variables W( zr, za) can be expressed in 
terms of right or left MFDs as 

W= NaD;i= D,‘N,. (3.1) 

We say that Na DR ' (DL 'NL) is right (left) factor coprime if NR and D, 
(N, and DL) are r.f.c. (1.f.c.). According to the procedure introduced in 
Section 1, each MFD in (3.1) is associated with the ideal generated by the 
maximal order minors in the matrices [Nd D,$] or [NL D,] and with the 
varieties Y( 3( NR, DR)) or Y( s( NL, DL)). 

If we restrict to (right or left) factor coprime MFDs of W(z,, zs) it can 
be proved that the corresponding ideals and varieties are independent of the 
MFD. In other terms, given any l.c. MFD DL'N~ and any r.c. MFD NRDil 
of W, we have [8] 
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The points of (3.2) only depend on W(z,, zs) and are therefore called rank 

singularities of W. The finite set (3.2) will be denoted by Y(W). 
Polynomial matrices with elements in R[z~, z2] constitute a fundamental 

tool for studying the dynamics of 2D systems. We recall that a finite 
dimensional discrete linear 2D system in state space form Z = 
(A,, A,, B,, B,, C, L) is defined by the following equations: 

x(h+l,k+l)=A,x(h,k+l)+A,x(h+l,k) 

+ B&h, k + 1) + B&h + 1, k), 

y(h, k) = Cx(h, k)+ Lu(h, k), 

where A, and A,, B, and B,, C, and L are matrices of respective 
dimensions n X n, n x m, p x n, and p x m, and where u(h, k), 

x(h, k), y(h, k) are vectors of respective dimensions m, n, p. 

The input/output behavior of Z is given by its transfer matrix 

W,( zlr z2) = C(Z - A,.z, - As+) - ‘( B,z, + B,z,) + L, (3.3) 

which is a p X m proper rational matrix in two variables. The polynomial 
det(Z - A,z, - A,z,) is called the characteristic polynomial of 1.. 

Consider now the feedback connection of Z and 2 = (F,, F2, G,, 

G,, H, J), where F, and F,, G, and G,, H, J are matrices of respective 
dimensions i? X ii, ii X p, m X fi, m X p; and assume that Z is strictly 
proper, i.e. L = 0. The closed loop characteristic polynomial of the feedback 
connection can be expressed in terms of suitable MFDs of the transfer 
matrices W, and W% [2]. In fact, let 

ND-‘=W,, X?Y=Wz 

be MFDs such that 

det D = det(Z - A,z, - Asz,), 

det X = det( Z - F,z, - Fss,). 

(3.4a) 

(3.4b) 
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Then the closed loop characteristic polynomial is given by 

A( zi, ~a) = det( XD + YN). (3.5) 

From a system theoretic point of view, and in particular in the framework 
of stability analysis, it is quite important to investigate to what extent the 
variety V(A) can be modified by varying X and Y over the polynomial 
matrices in two variables, with the constraint det X(0,0) # 0 (which corre- 
sponds to assuming that X-‘Y is a proper rational matrix). If D and N are 
not coprime, a greatest common right divisor E(z,, ~a) can be extracted, and 
after substituting N,E for N and D,E for D, (3.5) becomes 

A(2 ,,z,)=detEdet(XD,+YN,). (3.6) 

Thus the closed loop polynomial A is the product of det E, which is an 
invariant factor under feedback connection, and a polynomial A, = det( XD, 

+ YN,), whose variety is completely characterized by the following theorem. 

THEOREM 3.1. Let N,D,’ be a r.c. MFD of W,, and let 

A,=det(XDa+YNs) (3.7) 

Then, for any X and Y, U( A,) 2 V( W,) and, conversely, for any 

algebraic curve %? that includes Y(W,), there exist X and Y such that 

V( A,) = %‘. 

Proof. The inclusion V(A,) 2 V( W,) is a direct consequence of the 

Binet-Cauchy formula. 

For the converse, let q be a polynomial such that V(q) = V. By Hilbert’s 
Nullstellensatz, qr belongs to s(W,) for some integer r. 

Let Mi(zl, z,), i = 1,2 ,..., ~1, be the submatrices of maximal order in 
[ Ni, DA], and denote by mi( zi, zs), i = 1,2,. . . , p, the corresponding maxi- 
mal order minors. Then there exist polynomials si, sa,. . . , sp, such that 

q’= Cm,s, 

and constant matrices of suitable size Xi, Yi, i = 1,2,. . . , such that 

Mi(zl, z2) = XiDR + YiNR. (3.8) 
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Premultiplying (3.8) by adj Mi si and summing over i, we obtain 

xsi(adj M,)X, D, + xs,(adj M,)Y, NA i 1 [i I 
= xsi(adjMi)Mi = xs,miZ,, = qTI,,. 

So, if we choose in (3.7) X = Cisi(adjMi)Xi and Y = C,s,(adjM,)Y,, we 
obtain 

AR = det( qrZ,l) = q’“‘. 

This gives V(A,) = V’-(q) = %. n 

The previous theorem clarifies the role played by the set of rank singulari- 
ties V( W,) in the assignability of the closed loop variety Y(A). Actually, 
given a right MFD ND-’ = W,, the algebraic curve det(XD + YN) = 0 
includes ^Y( W,) for any X and Y. Moreover, when ND-’ is factor coprime, 
the algebraic curve is freely assignable except that it must include V( Wx). 

REMARK. When we deal with transfer matrices in one indeterminate, the 
problem of assigning the closed loop characteristic polynomial is much 
simpler. In fact factor coprimeness in R[z] implies that the Bezout equation 
(1.2) is solvable for any C and in particular for C = I,,,, so that ^Y( W,) is 
empty. 

4. ALGORITHMS FOR COMPUTING X -‘Y 

Theorem 3.1 and the factorization (3.6) give us a complete characteriza- 
tion of the closed loop polynomial variety in the sense that y(A) can be 
arbitrarily assigned except that it must include V(W) and V(det E). In 
other words, V(W) and Y(det E) represent the whole set of points of V(A) 
which are not affected by feedback compensation. 

The aim of this section is to provide some algorithms for effectively 
computing a MFD X-‘Y of a feedback compensator 2. More precisely, 
given a pair of polynomial matrices N(z,, zs) and D(z,, z2) of dimensions 



2D SYSTEMS FEEDBACK COMPENSATION 147 

p x m and m x m respectively and an algebraic curve %? c C XC associated 
to the equation p( zi, zs) = 0, the algorithms we shall introduce solve the 
following problems: 

(i) Decide if V is assignable, i.e. decide if there exist X and Y such that 

V(A) = V”(det(XD + YN)) = %?. (4.1) 

(ii) Whenever %? is assignable, compute a pair of matrices X and Y 
which solve (4.1). 

In order to answer question (i), we have to decide whether V includes 
V(det E) and Y(W). This will be done in three steps. 

Step 1 [Computation of det E]. An obvious way to determine det E is to 
express the transfer matrix ND- ’ as a right coprime MFD N,D,’ using 
either the primitive factorization algorithm [9] or the Lai and Chen algorithm 
[lo]. This gives 

det D 
det E = - 

det D, (4.2) 

An alternative approach is required to evaluate the maximal order minors 
qr, qs, , . . , qp of the polynomial matrix [D’ N’] and, using linear operations, to 
compute det E as their greatest common divisor. 

Note that, by equating the maximal order minors on both sides of 

[:I =#I. (4.3) 

one gets 

9i = mi det E, i=1,2 )...) /.L, (4.4) 

which gives a set of generators m,, m2,. . . , m,, for the ideal r(NR, DA) = 

XW). 
Step 2 [Check the inclzlsion %’ 3 V(det E)]. Clearly V 3 V(det E) if 

and only if det E is a divisor of pi for some positive integer j, and deg(det E) 
provides an upper bound for the integer j. 
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Step 3 [Check the inclusion V II V(W)]. According to Section 2 and 
using the generators m,, m2,. . . , m,, obtained in step 1, we associate a pair of 
commutative matrices M,, M, with the ideal ‘G(W). Then the inclusion 
%? 3 V(W) is equivalent to the nilpotency of p( M,, M,). 

Suppose now that V is assignable. The computation of the matrices X 
and Y required at point (ii) can be performed in the following way. 

Using steps 1 and 3 above, compute the polynomials det E, m,, m2,. . . , m,, 

and the matrices M,, M,. Let r be the smallest integer such that p(M,, M,)’ 

= 0. Then p’ E 3(W) and the normal form algorithm gives the polynomials 
si satisfying 

Cs,m, = p’. (4.5) 

Compute now the matrices X = Zisi(adj M,)X, and Y = Cisi(adj M,)Y,, 

where Xi and Y, are the constant matrices considered in the proof of 
Theorem 3.1. Then A = XD + YiV provides a solution of the equation (4.1). 
In fact, according to the proof of Theorem 3.1 and recalling (4.4) and (4.5), 
we have 

det( XD + YN ) = det 

Since V(det E) c % = V(p), the variety of det( XD + YN) is the curve $7. 

5. CONNECTIONS WITH THE STATE SPACE APPROACH 

In Section 3 we have shown that when we tackle the problem of 
synthesizing a feedback compensator, we need to investigate the variety 
associated with the polynomial (1.1). The algorithms given in Section 4 refer 
to MFDs of the transfer matrices W, and Wz and make no explicit mention 
to the underlying 2D state space models of Z and 2. 

The connection between the transfer matrix and the state variable ap- 
proaches occurs through the possibility of expressing the transfer matrix W, 

as a MFD that satisfies Equation (3.3) and, conversely, of realizing X-‘Y by 
means of a 2D system 2 that satisfies Equation (3.4b). The problem of 
constructing a right MFD ND-’ starting from the matrices of Z, under the 
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constraint given by Equation (3.4a), can be linearly solved using the method 
presented in [lo]. Also, the problem of constructing a 2D system 2 = 
(F,, Fs,‘Fi, G,, H, J) that realizes X-‘Y under the constraint (3.4b) has an 
explicit solution that can be obtained from X and Y using linear algorithms 

WI- 
As a final remark, it is interesting to point out that the problem of 

deciding if a given algebraic curve V is assignable is solvable in terms of 
linear operations utilizing directly the matrices of the state model of Z. 

In order to compute a set of generators m, = det Da, m2,. . . , mp for the 
ideal 3( W ), note that 

W = C( I - A,z, - A,z,) ~ ‘( B,z, + Baz,) 

= [Cadj(Z - A lzl - A& (B,z, + %a,)] [det(Z - Aizi - Aaza) Zm] -’ 

and apply the procedure of Section 4 to the right MFD ND- ’ with 

N=Cadj(Z- A,z,A,z,)(B,z,+ Z&z,), 

D = det(Z - A,z, - A,z,) I,. 

This gives us the maximal order minors of [N’ D’], and by eliminating their 
g.c.d. we obtain the maximal order minors ml = det D,, m2,. . . , mp of 

[Nd 41. 
Finally, det E can be computed as det( Z - A,z, - A,z,)/m,. 
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