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Abstract

In this paper, triangle-free distance-regular graphs with diameter 3 and an eigenvalue θ with multiplicity
equal to their valency are studied. Let Γ be such a graph. We first show that θ = −1 if and only if Γ is
antipodal. Then we assume that the graph Γ is primitive. We show that it is formally self-dual (and hence
Q-polynomial and 1-homogeneous), all its eigenvalues are integral, and the eigenvalue with multiplicity
equal to the valency is either second largest or the smallest.

Let x, y ∈ VΓ be two adjacent vertices, and z ∈ Γ2(x) ∩ Γ2(y). Then the intersection number
τ2 := |Γ (z) ∩ Γ3(x) ∩ Γ3(y)| is independent of the choice of vertices x , y and z. In the case of the
coset graph of the doubly truncated binary Golay code, we have b2 = τ2. We classify all the graphs with
b2 = τ2 and establish that the just mentioned graph is the only example. In particular, we rule out an infinite
family of otherwise feasible intersection arrays.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Let Γ be a triangle-free distance-regular graph with a2 6= 0 (i.e., Γ has induced pentagons)
and an eigenvalue multiplicity mt equal to its valency k, i.e., mt = k (note that the graphs under
assumption a2 = 0 instead of a2 6= 0 have already been classified in [7]). Then the graph Γ is an
example of a triangle-free distance-regular graph for which the inequality

mt ≥ k
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(that follows from the Terwilliger tree bound [10] whenever t 6= ±k) is satisfied with equality.
There are many interesting triangle-free distance-regular graphs for which there is an eigenvalue
with multiplicity k. An important class of such examples comes from triangle-free distance-
regular graphs whose association scheme, as determined by their distance matrices, is formally
self-dual (for the definition see Section 2). The family of Hermitean form graphs over GF(22)

(see Brouwer, Cohen and Neumaier [2, 9.5C]) belongs to this class [2, Theorem 8.4.3].
In [8], it was shown that the set of projections into the eigenspace corresponding to t of the

neighbours of any vertex of the graph Γ forms a basis for this eigenspace, see also Lemma 2.2.
Furthermore, many such graphs were shown to have the 1-homogeneous property in the sense of
Nomura, including the graphs with diameter three.

Let Γ be a triangle-free distance-regular graph with diameter d = 3, and assume that Γ has
an eigenvalue t with multiplicity k. We first show that t = −1 if and only if Γ is antipodal.
Then we assume Γ is primitive. The study of this case is our main focus. The only known
example of such a graph is the coset graph of the doubly truncated binary Golay code with
intersection array {21, 20, 16; 1, 2, 12}. This graph belongs to the abovementioned family of
Hermitean form graphs over GF(22). In Section 3, we show our main result, namely that Γ is
always formally self-dual, that all its eigenvalues are integral, and finally that the eigenvalue t is
either the second largest or the least eigenvalue of Γ . We use the properties obtained to calculate
all feasible intersection arrays with valency up to 4000, see Appendix.

The formal self-duality of Γ implies the Q-polynomial property and also the 1-homogeneous
property. In Section 4, we study the intersection number τ2 := |Γ (z) ∩ Γ3(x) ∩ Γ3(y)|, which is
independent of the choice of adjacent vertices x , y and z ∈ Γ2(x)∩Γ2(y) by the 1-homogeneous
property. The condition b2 = τ2 gives rise to a 1-parameter infinite family of feasible intersection
arrays. Its first member corresponds to the abovementioned coset graph of doubly truncated
binary Golay code. Ivanov and Shpectorov [6], cf. [2, Theorem 11.3.6], showed the uniqueness of
this graph by showing that the second subconstituent consists of the disjoint union of 21 Petersen
graphs. We use similar combinatorial arguments to rule out all the members of the above family
except the first one.

2. Preliminaries

In this section we review some definitions and basic concepts. See Brouwer, Cohen and
Neumaier [2] and Godsil [4] for more background information.

Throughout this paper, Γ will denote a finite, undirected, connected graph, without loops or
multiple edges, with vertex set V Γ , edge set EΓ , shortest path-length distance function ∂ , and
diameter d := max{∂(x, y)|x, y ∈ V Γ }. For x ∈ V Γ and for an integer i , define Γi (x) to be
the set of vertices of Γ at distance i from x . We abbreviate Γ (x) := Γ1(x). The graph Γ is said
to be distance-regular whenever for all integers h, i, j (0 ≤ h, i, j ≤ d), and all x, y ∈ V Γ
with ∂(x, y) = h, the number ph

i j := |Γi (x) ∩ Γ j (y)| is independent of the vertices x and y.
The constants ph

i j (0 ≤ h, i, j ≤ d) are known as the intersection numbers of Γ . For notational
convenience, define ci := pi

1,i−1 (1 ≤ i ≤ d), ai := pi
1i (0 ≤ i ≤ d), bi := pi

1,i+1 (0 ≤ i ≤

d − 1), ki := p0
i i (0 ≤ i ≤ d), and set c0 = 0 = bd and n := |V Γ |. We observe that a0 = 0 and

c1 = 1. Moreover, ai + bi + ci = k (0 ≤ i ≤ d), where k := k1.
It is well known that a distance-regular graph Γ of diameter d has precisely d +1 eigenvalues,

say θ0 > θ1 > · · · > θd . Also, θ0 = k, its multiplicity, is equal 1, and θd = −k if and only if Γ
is bipartite. Let Ui be a matrix with its columns forming an orthonormal basis for the eigenspace
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corresponding to θi . Then Ei := UiU∗

i is called the principal idempotent of A corresponding to
θi . For each integer i (0 ≤ i ≤ d), we denote the multiplicity of θi by mθi .

Let Γ be a graph of diameter d . We can define distance matrices as follows. For each
i (0 ≤ i ≤ d) let Ai be the matrix with rows and columns indexed by V Γ , and the x, y
entry of Ai equal to 1 if ∂(x, y) = i , and 0 otherwise. We call Ai the i th distance matrix of Γ ,
and A := A1 is the adjacency matrix of Γ . Suppose now that the graph Γ is distance-regular.
Then the distance matrices A0, A1, . . . , Ad form a basis for a commutative semi-simple R-
algebraM, known as the Bose–Mesner algebra of the graph Γ . The set of principal idempotents
{E0, E1, . . . , Ed} is another basis of the algebraM. Therefore, we can define two (d+1)×(d+1)

matrices P and Q by:

Ai =

d∑
j=0

Pj i E j and Ei =
1
n

d∑
j=0

Q j i A j (0 ≤ i ≤ d). (1)

When P = Q, the graph Γ is called formally self-dual. The following relations between P and
Q, which will be used in the next section to calculate these two matrices, can be found in [4,
p. 226]

P Q = nI and PT ∆m = ∆k Q, (2)

where ∆m and ∆k are the (d+1)×(d+1) diagonal matrices with (∆m)i i = mθi and (∆k)i i = ki .
Let θ be an eigenvalue of the graph Γ , and let E be the associated principal idempotent. Let

w0, w1, . . . , wd be the numbers satisfying

E =
mθ

n

d∑
j=0

w j A j , (3)

where mθ denotes the multiplicity of θ . We refer to wi as the i th cosine of Γ with respect to θ

(or E), and call w0, w1, . . . , wd the cosine sequence of Γ associated with θ (or E). Note that, by
the right relation of (1), (3) and (2), the cosines are related to the entries of matrices P and Q,
i.e., for θ = θi and w j = w j (θi )

Q j i = mθi w j (θi ) and Pi j = k j w j (θi ). (4)

For notational convenience, we identify V Γ with the standard orthonormal basis in the Euclidean
space (V, 〈 , 〉), where V = Rn (column vectors), and where 〈 , 〉 is the dot product 〈u, v〉 = utv

for u, v ∈ V . The following basic result can be found, for example, in Brouwer, Cohen and
Neumaier [2, p. 128] ((i) follows immediately from (3)).

Lemma 2.1. Let Γ be a distance-regular graph with diameter d. Let θ be an eigenvalue of
Γ with multiplicity mθ , associated principal idempotent E, and associated cosine sequence
w0, w1, . . . , wd . Then the following two conditions hold.

(i) For all x, y ∈ V Γ with ∂(x, y) = i we have 〈Ex, Ey〉 = wi mθ/n.
(ii) The cosine sequence satisfies w0 = 1 and ciwi−1 + aiwi + biwi+1 = θwi (0 ≤ i ≤ d),

where w−1 and wd+1 are set arbitrarily. �

In particular, we have w1 = θ/k, and for d ≥ 2 also:

w2 = (θ2
− a1θ − k)/(kb1), and kb1(1 − w2) = (k − θ)(θ + k − a1). (5)
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If we assume furthermore that d = 3 and a1 = 0, then we have also:

w3 =
w2(θ − a2) − c2w1

b2
=

θ3
− a2θ

2
− θ(k + kc2 − c2) + ka2

k(k − 1)b2

=
−

(
θ2

+ c2θ − (k − c2)
)

c3

k(k − 1)b2
. (6)

The cubic term of θ in w3 was reduced using the relations (2) and (4) (or alternatively, (8)).

Lemma 2.2 ([8, Lemma 3.3]). Let Γ be a non-bipartite triangle-free distance-regular graph
with diameter d ≥ 2 and valency k ≥ 3. Let θ be an eigenvalue of Γ with multiplicity equal to
k. Let E be the associated principal idempotent and w0, . . . , wd the associated cosine sequence.
Let x ∈ V Γ and y ∈ Γi (x), where 1 ≤ i ≤ d. Then w1(w0 − w2) 6= 0, and

Ey = Ci

 ∑
z∈Γ (x)∩Γi−1(y)

Ez

 + Ai

 ∑
z∈Γ (x)∩Γi (y)

Ez

 + Bi

 ∑
z∈Γ (x)∩Γi+1(y)

Ez

 ,

where

Ci =
w1wi−1 − w2wi

w1(1 − w2)
, Ai =

w1wi − w2wi

w1(1 − w2)
, Bi =

w1wi+1 − w2wi

w1(1 − w2)
, (7)

and Bd is not determined (the corresponding intersection is empty). �

3. Formal self-duality

Let Γ be a distance-regular graph with diameter d = 3. Let {k, b1, b2; 1, c2, c3} be its
intersection array (hence a1 = k − b1 − 1, a2 = k − b2 − c2, a3 = k − c3, so there are 5
independent parameters), and let k = θ0 > θ1 > θ2 > θ3 be its eigenvalues. Next we assume
a1 = 0, i.e., that b1 = k − 1, and we are down to parameters k, b2, c2 and c3. We will show
below that we can express these four parameters in terms of the eigenvalues of Γ . To keep the
notation simple and to handle various cases simultaneously, we introduce labels u, v and t such
that {u, v, t} = {θ1, θ2, θ3}. The eigenvalues of Γ are the eigenvalues of the following tridiagonal
matrix

0 k 0 0
1 0 k − 1 0
0 c2 a2 b2
0 0 c3 a3

 ,

i.e., the zeros of the following characteristic polynomial

(θ − k)(θ3
+ θ2(c3 − a2) − θ(c2(a3 − 1) + k) + ka2 + c3(c2 − k)). (8)

Therefore, u +v+ t = a2 −c3, uv+vt + tu = −c2(k −c3 −1)−k and −uvt = ka2 −c3(k −c2).
By solving this system for c2, c3 and a2, we obtain:

c2 = −
k(1 + u + v + t) + uv + vt + tu + uvt

k − 1
, (9)

c3 = −
k(u + v + t) + uvt

c2
, (10)

a2 = u + v + t + c3. (11)
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Thus we have also:

b2 = −
(k + vt + v + t)(k + v + u + uv)(k + tu + u + t)

c2(k − 1)2 and

n =
(k − u)(k − v)(k − t)

c2c3
.

For a later purpose, we express the intersection number c2 also in the following ways:

c2 =
(t + 1)(u + 1)(v + 1)

1 − k
− (t + 1 + u + v) =

(t + 1)(k + u + v + uv)

1 − k
− (u + v).

(12)

Furthermore, by solving the following system of equations: mu u + mv v + mt t = −k,
mu u2

+ mv v2
+ mt t2

= k(n − k) and mu u3
+ mv v3

+ mt t3
= −k3, we obtain

mu =
k(k − v)(k − t)(k + v + t + vt)

(u − v)(u − t)c2c3
,

mv =
k(k − u)(k − t)(k + u + t + ut)

(v − u)(v − t)c2c3
,

mt =
k(k − u)(k − v)(k + v + u + vu)

(t − v)(t − u)c2c3
.

Now let us assume that Γ has an eigenvalue of multiplicity k. Without loss of generality, we
assume that mt = k, i.e.,

(k − u)(k − v)(k + u + v + uv) = −(t − v)(t − u)(k(u + v + t) + uvt). (13)

We first consider the case t = −1.

Proposition 3.1 (The Antipodal Case). Let Γ be a triangle-free distance-regular graph with
diameter d = 3, valency k, and nontrivial eigenvalues u, v and t. Suppose t has multiplicity
k. Then t = −1 if and only if Γ is antipodal. If t = −1 then its eigenvalues are integral,
c2 = −(u + v), k = −uv, and the size of antipodal classes is r = (u + 1)(v + 1)/(u + v) and

mu = (k + 1)(r − 1)v/(v − u), mv = (k + 1)(r − 1)u/(u − v). (14)

Proof. Setting t = −1 in (13), we obtain (k2
− 1)(k + uv) = 0, i.e., k = −uv. Now, using

(10)–(12), we obtain c2 = −(u + v), c3 = k, a3 = 0, a2 = −(u − 1)(v − 1) and b2 = 1.
Therefore, the graph Γ is antipodal, and it can be parametrized by (k + 1, r, c2), see [5, p. 209].
Of course, in this case we have m−1 = k. By (12) and 0 = a1 = k − 1 − (r − 1)c2, we obtain
also:

r = 1 +
k − 1

c2
= 1 + v +

(1 − v)(1 + v)

u + v
=

(u + 1)(v + 1)

u + v

and (14). We have u, v ∈ Z by [5, p. 209], since 0 6= −c2 (= δ). The converse is immediate. �

Remark 3.2. (i) Note that there is a known infinite family of examples in this case:
(22s, 22s−1, 2), where s ∈ N, constructed by de Caen, Mathon and Moorhouse [3].

(ii) Let Γ be a distance-regular graph with diameter d = 3. If Γ is bipartite and antipodal, then
k1, 1k, (−1)k, (−k)1 are the eigenvalues of Γ , and Γ is the complete bipartite graph Kk+1,k+1
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with a perfect matching deleted. Among the triangle-free antipodal graphs of diameter three, the
bipartite and antipodal graphs are the only graphs which are formally self-dual. If Γ is bipartite
and not antipodal, then none of its eigenvalue multiplicities is equal to its valency, see [2, p. 432].

From now on we assume Γ is primitive, which means t 6= −1, and we set

g(k, t) := k2
− 2k + t3

+ t2
− t and f (k, t, x) := k2

+ kt − kx + t2x − x2
− t x2.

Our aim is to prove that Γ is formally self-dual. We begin by showing that one of its eigenvalues
is equal to kw2.

Lemma 3.3. Let Γ be a primitive triangle-free distance-regular graph with diameter d = 3,
valency k > 2 and nontrivial eigenvalues u, v and t. Suppose mt = k. Let w0, w1, w2, w3 be the
cosine sequence corresponding to t. Then

(i) g(k, t) 6= 0,
(ii) f (k, t, u) = 0 if u 6= kw2 and f (k, t, v) = 0 if v 6= kw2,

(iii) kw2 ∈ {u, v}.

Proof. By collecting the terms with the same power of v in (13), we obtain

(k2
+ t3

− (t + 1)u2)k + (g(k, t) − (t − 1)(k + t + u + tu)) uv

−(1 + t)(k − u + tu − u2)v2
= 0. (15)

Let us now compute the scalar product ‖Ey‖
2

= 〈Ey, Ey〉, for x ∈ V Γ and y ∈ Γ2(x), where
E is the principal idempotent corresponding to the eigenvalue t , by first using Lemma 2.1(i)
and then using Lemma 2.2. After multiplication of the obtained relation with n/k, and by
noting that c2 = |Γ (x) ∩ Γ1(y)|, a2 = |Γ (x) ∩ Γ2(y)| and bi = |Γ (x) ∩ Γ3(y)|, we
obtain the relation 1 = (U + V )w2 + V (1 − w2), where V = c2C2

2 + a2 A2
2 + b2 B2

2 , and
U + V = (c2C2 + a2 A2 + b2 B2)

2. Since we can express the cosines w1, w2, w3 corresponding
to the eigenvalue t in terms of the eigenvalues k, u, v, t by using (5) and (6), the same is true also
for the coordinates C2, A2 and B2 from Lemma 2.2:

C2 =
t2

− 1
t (k − 1)

, A2 =
(t + 1)(t2

− k)

(t + k)t (k − 1)
, B2 =

Xv + Y
(k + t)t (k − 1)(k + v + u + uv)

,

where X = k(t2
+ kt − 2t − 1) + t3

+ (k + t)(t2
− 1)u and Y = k(k + t)(t2

− 1) + u(k2t +

t3
+ k(t2

− 2t − 1)). The scalar product relation renders

0 = v2 (k − 1)(1 + t)(k + t + u + tu)

−v(u(2k − 4k2
+ k3

− 3kt + u − ku − 2ktu) − k(k + t) + (1 + u)t (t3
+ t2

− k2

+ kt2
+ 2u + tu − ktu)) − (k + t)(k g(k, t) − u(1 + t)(k − t2

+ u(k − 1))). (16)

Both Eqs. (15) and (16) are of degree at most 2 in v, but when we subtract a proper multiple of
one from the other, the quadratic term on v vanishes, and we obtain the following relation:

uk
(

k + t +
g(k, t)
t + 1

)
+ u2(g(k, t) − k2

− t3) + (k(k + t) − u3(t + 1))
k + t
t + 1

+

[
u

(
k(1 + t) +

g(k, t)
t + 1

)
− u2

(
k + t −

g(k, t)
t + 1

)
+

(
k(k + t) − u3(1 + t)

)]
v = 0,

(17)
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unless (t + 1)(u − kw2) = 0, i.e., u = kw2, since t 6= −1 (as we assumed Γ is primitive).

(i) Suppose g(k, t) = 0, i.e., (k − 1)2
= (1 + t)2(1 − t). Let us set 1 − t = s2 for a positive

s ∈ R. Since s ≤
√

2 would give us too small k, we have s >
√

2 and k = 1 + s(s2
− 2). Thus

the relation (16) transforms to (s − 1 − u)(s − 1 − v)(u + v) = 0. We have u 6= s − 1 6= v, since
otherwise we get k +u + t +ut = 0 or k +v + t +vt = 0, which implies that b2 = 0. Therefore,
u + v = 0, and s =

√
2 by the relation (15), and b2 6= 0 6= c2. This is a contradiction.

(ii) Let us assume u 6= kw2. We can then calculate v from Eq. (17) in the case when the coefficient
beside v is not zero. If, on the other hand, this coefficient is zero, then the free coefficient also
has to be zero, in which case we subtract the first coefficient multiplied by (t + 1) from the
second multiplied by (k + t) (the term u3 and the free term both vanish at the same time), and
obtain g(k, t) = 0 after division by (k − 1)(t − u)u (note that k 6= 1, t 6= u and u 6= 0 by
(17) and b2 6= 0). This is obviously not possible, so we have another contradiction. Therefore, v

is uniquely determined by the linear equation (17). We solve it, and set the value for v in (16),
which gives us f (k, t, u) = 0 after dividing by

(k − 1) (t − u) (t + 1) g(k, t) (k + t + u + tu) (k − u2).

This product is nonzero, as k 6= 1, −1 6= t 6= u, g(k, t) 6= 0, b2 6= 0 and c2 6= 0. The remaining
part of the statement (ii) follows by symmetry between u and v.

(iii) We can again, by symmetry between u and v, and without loss of generality, continue with
the assumption u 6= kw2. So it is enough to verify that the relation (16) is satisfied in the case
when v = kw2. Indeed, in this case (16) is equivalent to f (k, t, u) = 0 by (i), and we are done
by (ii). �

Due to the symmetry between u and v (as we have not ordered the nontrivial eigenvalues of
Γ ), we can, without loss of generality, assume

u = kw2 =
t2

− k
k − 1

=
t2

− 1
k − 1

− 1, (18)

i.e., (u + 1)(k − 1) = t2
− 1. The second relation of Lemma 3.3(ii) is a quadratic equation for k

(or v): f (k, t, v) = (k − v)(k + v) − (k + vt)(v − t) = 0.

Theorem 3.4. Let Γ be a primitive triangle-free distance-regular graph with diameter d = 3,
valency k > 2 and nontrivial eigenvalues {u, v, t}. Suppose mt = k. Let w0, w1, w2, w3 be the
cosine sequence corresponding to t. Then

(i) All the eigenvalues are integral,
(ii) k > t > u > 0 > v or k > u > 0 > v > t , where u = kw2,

(iii) Γ is formally self-dual (in particular, it is also Q-polynomial for the ordering k, t, u, v).

Proof. Suppose {k, u, v, t} are the eigenvalues of Γ , and let mt = k. Without loss of generality
we assume, by Lemma 3.3, that u = kw2 and f (k, t, v) = 0.

(i) The eigenvalues t , u and v are zeros of a cubic monic polynomial (8) with integral coefficients.
These eigenvalues are integral unless two of them have the same multiplicity. We show the
integrality of the eigenvalues by showing that the following cases (a)–(b) are not possible.

(a) Let us assume the eigenvalues t and u are irrational. If the eigenvalue v is also irrational, then
mt = mu = mv = k and we have n = 3k + 1, k2 ≤ 2k, c2 ≥ (k − 1)/2, a2 > (k − 1)/2,
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see [8, Theorem 4.2], and finally 1 > k − a2 − c2 = b2 gives us a contradiction. Hence v

is rational (cf. [1] and [2, p. 130]) and we have mu = k. Since v is an algebraic integer, it
has to be integer. By Lemma 3.3(iii), we have (u2

− k)/(k − 1) ∈ {t, v}. Suppose first that
t = (u2

− k)/(k − 1). Since u = (t2
− k)/(k − 1), this equation transforms (after multiplying by

(k − 1)3/((t + 1)(k − t))) to t2
+ kt − t + k2

− 3k + 1 = 0, i.e., a quadratic with discriminant
−3 + 10k − 3k2. It follows that this quadratic does not have any real solutions for k > 3, and for
k = 3 we get the solution t = −1, which is not possible by the assumption that Γ is primitive
and Proposition 3.1. Therefore, v = (u2

−k)/(k −1) and, by Lemma 3.3(ii), also f (k, u, t) = 0.
Hence we have u2

∈ Q, and furthermore, since t is an algebraic conjugate of u, we have u2
= t2

and u = v, which is a contradiction.

(b) Let us now assume t is irrational and u is rational. Then t is a square-root of a rational number,
and we have v = −t . Hence u = (v2

− k)/(k − 1) and f (k, v, t) = 0. By adding f (k, v, t) = 0
to f (k, t, v) = 0, we obtain k2

= v2, which is not possible.
Therefore, by (a) and (b), the eigenvalue t is rational, and hence integral. It follows from (18)

that also u is rational and so integral. Then also v is integral by (11).

(ii) Since Γ is primitive, we have t 6= −1 by Lemma 3.3. Without loss of generality, we assume
that u = kw2, i.e., (18) holds. This implies that u ≥ −1 and k − 1 | t2

− 1. If u = −1, then
t = 1, k = 2v −1 by f (k, t, v) = 0 and c2 = −k(v +1)/(k −1) < 0, which is not possible. The
case u = 0, i.e. t2

= k, is not possible, since f (k, t, v) = 0 (by Lemma 3.3) implies v2
= t3,

which means that t = s2 for s ∈ N, v < 0 and c2 = s4/(s + 1). So u > 0 and |t | >
√

k.
If t > 0, then t > u (i.e., (t − k)(t + 1) < 0), and we have k > t > u > 0 > v.
If t < 0, then v < 0, and f (k, t, v) = 0 imply v > t , hence k > u > 0 > v > t .
The case t < 0 and v > 0 is not possible since, by −k < t < −

√
k, we have

0 < k(k + t) + v(t2
− k) + v2(−1 − t) = f (k, t, v) = 0,

which is a contradiction.

(iii) With a straightforward calculation (using mt = k, (18) and the relation f (k, t, v) = 0), we
verify that the following matrices of eigenvalues and dual eigenvalues are equal:

P =



1 k k2 k3

1 t
t2

− k
c2

−
t2

− k
c2

− t − 1

1 u
u2

− k
c2

−
u2

− k
c2

− u − 1

1 v
v2

− k
c2

−
v2

− k
c2

− v − 1


and

Q =



1 mt mu mv

1 tmt/k umu/k vmv/k

1 mt
t2

− k
c2k2

mu
u2

− k
c2k2

mv

v2
− k

c2k2

1 mt

(
k − t2

c2k3
−

1 + t
k3

)
mu

(
k − u2

c2k3
−

1 + u
k3

)
mv

(
k − v2

c2k3
−

1 + v

k3

)

 . �

Remark 3.5. A direct consequence of Theorem 3.4(iii) is that kw0, kw1, kw2 and kw3 are all
the eigenvalues of the graph Γ . We can express k and the cosine w2 in terms of the cosines w1
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and w3 as follows:

k = −
1 + w1 − w3 − w2

3
w1w3(w1 − w3)

and w2 =
w2

1k − 1
k − 1

=
w1(w1 − w2

3)

1 + (w1 − 1)w3 − w2
3
,

where we obtained k from f (k, t, v) = 0, and w2 directly from Lemma 2.1(ii) and a1 = 0.

Using the absolute bound, we also obtain the following result.

Lemma 3.6. Let Γ be a primitive triangle-free distance-regular graph with valency k > 3,
diameter d = 3, a2 6= 0 and an eigenvalue of multiplicity k. Then c2 ≥ 2. �

4. The 1-homogeneous property

Let Γ be a distance-regular graph. Then Γ is 1-homogeneous in the sense of Nomura, i.e.
where the distance partition corresponding to any pair of adjacent vertices x and y, i.e., the
collection of nonempty intersections D j

i (x, y) := Γi (x) ∩ Γ j (y), is equitable.

Lemma 4.1. Let Γ be a primitive triangle-free distance-regular graph with diameter d = 3,
a2 6= 0, eigenvalues k > 2, u > 0, v < 0, t , and mt = k. Then Γ is 1-homogeneous. Let x
and y be adjacent vertices of Γ . Then we have, for all z ∈ D2

2(x, y), the following formula for
b2 − τ2 = |Γ (z) ∩ D2

3(x, y)|

b2 − τ2 =
g(k, t) (k2

− 2k + vt2
+ t2

− v)2(k2
− k + tk + t + 1 + vt2

+ v + 2vt + t2)

((v + t)g(k, t) + (t2 − k)(1 − t2))2(k − 1)2 ,

(19)

where the above denominator is nonzero.

Proof. Γ is 1-homogeneous by [8, Cor. 4.7], cf. Miklavič [9]. By [8, Eq. (11)], we obtain (19).
The above denominator is nonzero by w3 6= w2, since otherwise the recursion relation for cosines
gives us (k − θ)w3 = 0 and therefore w2 = w1 = w0 = 0, which is not possible. �

From the above formula, we can calculate τ2 in terms of the eigenvalues {k, t, u, v}. In
particular, we calculate the distance partitions corresponding to an edge in those cases where
k ∈ {70, 105, 161, 276}, see Fig. A.4 and k ∈ {21, 175}, see Fig. A.3.

Lemma 4.2. Let Γ be a primitive triangle-free distance-regular graph with diameter d = 3,
valency k > 2, nontrivial eigenvalues {u, v, t} and the multiplicity mt = k. Then b2 = τ2 if and
only if

b2 = q2(2 − q − q2
+ q3), a2 = (q − 1)2(q + 1), c2 = q(q − 1),

c3 = q2(q2
− q + 1) (20)

for some integer q ≥ 2. Also, if b2 = τ2, then we have

k2 = (1 − q + q2)(2 + q3)(1 − q + q3) and

k3 = (2 + q3)(1 − q + q3)(2 − q − q2
+ q3). (21)
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Proof. Let us assume b2 = τ2. Without loss of generality, we assume, by Lemma 3.3, u =

(t2
− k)/(k − 1) and thus we have also f (k, t, v) = 0. The expression b2 − τ2 is zero if and only

if at least one of the three factors in the numerator of (19) is zero. The first factor is nonzero by
Lemma 3.3.

Suppose the second factor is zero, i.e., k2
− 2k + vt2

+ t2
− v = 0. By subtracting the relation

f (k, t, v) = 0, we obtain k(2 + t − v) = t2
− v + v2

+ tv2. If v = t + 2 then t = −5
and v = −3, which is not possible by f (k, t, v) = 0. So we obtained a linear equation on k,
i.e., k = (t2

−v +v2
+ tv2)/(2+ t −v). The relation f (k, t, v) = 0 now transforms, by t 6= −1,

to (2t + v + tv)(t2
− v − v2

+ v3) = 0. Since both t and v are integers by Theorem 3.4, the
equation 2t +v+tv = 0, i.e., t = 2/(2+v)−1, has only four solutions, namely 0, −1, −3 or −4;
however, none of them gives k ≥ 3. Therefore, t2

− v − v2
+ v3

= 0, i.e., t2
= −v(v2

− v − 1).
Since v is a negative integer and these two factors are relatively prime, they both have to be
perfect squares. This is not possible, because v2

−v −1 lies between the two consecutive perfect
squares v2 and v2

− 2v + 1. This gives us our contradiction.
So the third factor k2

− k + tk + t + 1 + vt2
+ v + 2vt + t2 in the numerator of (19) is zero.

Again, by subtracting f (k, t, v) from it, we obtain a linear equation on k (note that v 6= 1 by
Theorem 3.4), i.e.,

k =
1 + t + t2

+ (1 + 2t)v + (1 + t)v2

1 − v
. (22)

The relation f (k, t, v) = 0 now transforms, by v 6= 1 and t 6= −1, to

2t + 1 + 3v + 2v2
= ±(v − 1)

√
−3 − 4v. (23)

Therefore, the expression −3 − 4v must be a square, i.e., −3 − 4v = s2 for some s ∈ N. Then
v = −1+ (1− s2)/4, which is an integer only when s is odd, so s = 2q −1 for an integer q > 1.
Now v = −q2

+ q − 1. In the case of the positive sign for the solution of t in the quadratic (23),
we do not get a positive integer u. So we assume the negative sign and obtain, by (23) and (22),
t = 1 − 2q + q3

− q4 < 0, k = (1 − q + q2)(1 − q + q3), u = 1 − q2
+ q3. We obtain (20) and

(21) from formulas (9)–(11), and k2 = k(k − 1)/c2, k3 = k(k − 1)b2/(c2c3).
The converse is a straightforward calculation by Lemma 4.1. �

Proposition 4.3. Let Γ be a triangle-free 1-homogeneous distance-regular graph with diameter
d ≥ 2 (if d = 2 we assume b2 = 0 = τ2). Then

(i) c2 | gcd(a2(2b2 − τ2) − b2ρ3, a2(a2 − 1 − b2 + τ2) + b2ρ3, b2(b2 − 1) − a2(b2 − τ2)

+ b2ρ3),
(ii) If τ2 = b2, then the size of a connected component of a second subconstituent of Γ is

c2 − 1 + 2a2 + a2(a2 − 1)/c2, and it divides k − 1 + a2(k − 1)/c2.

Proof. We will consider the distance partition corresponding to two distinct pairs of adjacent
vertices (y, z0) and (y, z1).

(i) Note that for h ∈ {0, 1}, |D2
1(zh, y)| = k − 1, |D2

2(zh, y)| = (k − 1)a2/c2 and |D2
3(zh, y)| =

(k − 1)b2/c2, see Fig. 4.1. These numbers are also the sums of rows and columns in the table
of Fig. 4.2. The vertex zh has, in the set D2

1(z1−h, y), c2 − 1, a2 and b2 vertices respectively
at distances 1, 2 and 3. Furthermore, zh has (a2(2b2 − τ2) − b2ρ3) /c2 vertices at distance 2 in
the set D2

3(z1−h, y). Note that this table is symmetric. In order to understand this, we switch our
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Fig. 4.1. The distance partition corresponding to an edge of a triangle-free 1-homogeneous distance-regular graph with
diameter 3. Remember k2 = k(k − 1)/c2, k3 = k(k − 1)b2/(c2c3). Once the parameter τ2 is computed, we obtain
ρ3 = (b2 − τ2)a2/b2, and in the case when the diameter of the graph equals 3, also |D3

3 | = k3 − (k − 1)b2/c2 =

(k − 1)b2a3/(c2c3) and σ3 = (a2 − ρ3)c3/a3.

Fig. 4.2. The second subconstituent of the vertex y is split corresponding to the distance from z0 and z1.

view from the distance partition corresponding to vertices y and zh to the distance partition
corresponding to vertices y and z1−h , and the vertices from the sets that correspond to the
collided numbers (the missing two were a2, b2 and (a2(2b2 − τ2) − b2ρ3) /c2) “exchange” their
positions in the distance distribution diagram. Therefore, by knowing the sums of columns/rows,
it is easy to complete all the entries in the table of Fig. 4.2, and to conclude that they are
integral.

(ii) Now we assume τ2 = b2, see Figs. 4.3 and 4.4. Then there are no edges between the vertices
of the sets Fh := D2

1(zh, y) ∪ D2
2(zh, y) and D2

3(zh, y) for h ∈ {0, 1}.

Let us denote by H the subgraph induced by the vertices of the intersection F0 ∩ F1, and let s
be the size of a connected component in H . Since |V (H)| = c2 − 1 + 2a2 + a2(a2 − 1)/c2, and
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Fig. 4.3. The second subconstituent of the vertex y is split corresponding to the distance from z0 and z1 in the case
b2 = τ2.

Fig. 4.4. The distance partition corresponding to an edge in the case b2 = τ2 and d = 3.

a2 is the valency of the second subconstituent graph that is also triangle-free, we have

1 + a2 +
a2(a2 − 1)

c2
≤ s ≤ c2 − 1 + 2a2 +

a2(a2 − 1)

c2
.

But the above lower bound is greater than half of the above upper bound:

1 + a2 +
a2(a2 − 1)

c2
−

1
2

(
c2 − 1 + 2a2 +

a2(a2 − 1)

c2

)
= 1 +

(a2 − c2)(a2 + c2 − 1)

2c2
> 0,

so the subgraph H is connected and s = c2 − 1 + 2a2 + a2(a2 − 1)/c2. Finally, the size of F1 is
divisible by s. �

Theorem 4.4. Let Γ be a primitive triangle-free distance-regular graph with diameter d = 3,
valency k > 2, nontrivial eigenvalues {u, v, t} and the multiplicity mt = k. Then b2 = τ2 if and
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Table A.1
The list of feasible parameters of primitive distance-regular graphs with d = 3, a1 = 0, a2 6= 0 and mt = k, where
k < 4000 and t is the biggest nontrivial eigenvalue

n k t u v k2 = mu k3 = mv a2 c2 c3 τ2 σ3 ρ3 2a2 + τ2 − k

4,096 70 22 6 −10 2,415 1,610 48 2 30 10 18 24 36
3,200 105 25 5 −15 2,184 910 75 5 60 10 40 45 55
4,394 161 31 5 −21 3,220 1,012 120 8 105 11 75 80 90

237,276 1425 177 21 −57 169,100 66,750 1053 12 912 120 624 702 801
396,750 2668 253 23 −92 309,372 84,709 2116 23 1932 138 1449 1564 1702

Table A.2
The list of feasible parameters of primitive distance-regular graphs with d = 3, a1 = 0, a2 6= 0 and mt = k, where
k < 4000 and t is the least eigenvalue

n k u v t k2 = mu k3 = mv a2 c2 c3 τ2 σ3 ρ3 2a2 + τ2 − k

! 512 21 5 −3 −11 210 280 3 2 12 16 4 0 1
// 17,576 175 19 −7 −59 5075 12,325 16 6 63 153 9 0 10

49,152 276 20 −12 −76 18,975 29,900 64 4 132 156 44 16 8
93,312 345 21 −15 −87 39,560 53,406 99 3 180 162 72 33 15

// 238,328 793 49 −13 −199 52,338 185,196 45 12 208 736 16 0 33
// 1,815,848 2541 101 −21 −509 322,707 1,490,599 96 20 525 2425 25 0 76

The nonexistence of three cases is proved in Theorem 4.4. The regularity of the graph induced by D2
2 is equal to

2a2 + τ2 − k.

only if Γ is the coset graph of the doubly truncated binary Golay code. In particular, there are
no examples of graphs with parameters from Table A.2 for k ∈ {175, 793, 2541}.

Proof. Without loss of generality, we assume (18) and that f (k, t, v) = 0 by Lemma 3.3, and
obtain the parametrization (20) by Lemma 4.2. Therefore, by Proposition 4.3, the following
expression(

k − 1 +
(k − 1)a2

c2

)
1

c2 − 1 + 2a2 + a2(a2 − 1)/c2
= q2

− q + 2 +
2

q2 − 2

is integral. But this is possible only for q = 2. �
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Appendix

See Tables A.1 and A.2 and Figs. A.3 and A.4.



206 A. Jurišić et al. / European Journal of Combinatorics 29 (2008) 193–207

Fig. A.3. The distance partition corresponding to an edge of (a) the coset graph of the doubly truncated binary Golay
code (the second subconstituent of the second graph consists of 21 disjoint Petersen graphs), (b) the case k = 175, with
n = 17,576 ruled out.

Fig. A.4. The distance partitions corresponding to an edge in the following cases: (a) k = 70, n = 4096; (b) k = 105,
n = 3200; (c) k = 161, n = 4394. (d) k = 276, n = 49,152.
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[7] A. Jurišić, J. Koolen, Š. Miklavič, Triangle- and pentagon-free distance-regular graphs with an eigenvalue
multiplicity’s equal to the valency, J. Combin. Theory Ser. B 94 (2005) 245–258.
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