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Let Ω ⊂ C
n be a bounded starlike circular domain with 0 ∈ Ω . In this paper, we

introduce a class of holomorphic mappings M g on Ω . Let f (z) be a normalized locally
biholomorphic mapping on Ω such that J−1

f (z) f (z) ∈ M g and z = 0 is the zero of order
k + 1 of f (z)− z. We obtain a sharp growth theorem and sharp coefficient bounds for f (z).
As applications, sharp distortion theorems for a subclass of starlike mappings are obtained.
These results unify and generalize many known results.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In the case of one complex variable, the following growth, distortion theorem and de Branges theorem are well
known [16].

Theorem A. Let f (z) = z + ∑∞
m=2 amzm be a normalized univalent holomorphic function on the unit disc D in C. Then

|z|
(1 + |z|)2

�
∣∣ f (z)

∣∣ � |z|
(1 − |z|)2

, z ∈ D,

1 − |z|
(1 + |z|)3

�
∣∣ f ′(z)

∣∣ � 1 + |z|
(1 − |z|)3

, z ∈ D,

|am| � m. (1)

However, in the case of several complex variables, Cartan [2] pointed out that the above theorem does not hold.
Since Barnard, Fitzgerald and Gong [1], Chuaqui [3] extended the growth theorem (1) to normalized starlike mappings on

the Euclidean unit ball in C
n . Liu and Ren [13] obtained the generalization on the bounded starlike circular domains in C

n .
After that, many mathematicians investigate the growth and covering theorems for the subclasses of the starlike mappings
on the bounded starlike circular domains in C

n (see [4,8,11,13–15]).
Concerning the distortion theorem, the situation is quite different. Until now, the distortion theorem for the normalized

starlike mappings is still a conjecture. Recently, Pfaltzgraff and Suffridge [17], Hamada and Kohr [9] obtained respectively
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a distortion result for a subclass of starlike mappings on the Euclidean unit ball in C
n and on bounded balanced pseudo-

convex domains in C
n .

As for the bounds for coefficients of subclasses of normalized biholomorphic mappings, Kohr [7] obtained a sharp bound
for the second coefficient of starlike mappings or starlike mappings of α on the Euclidean unit ball in C

n . Gong [5] obtained
bounds for the second coefficients of starlike mappings on the unit polydisc in C

n . Recently, considering the zero of order
(i.e., x = 0 is a zero of order k + 1 of f (x) − x and f (x) defined on the unit ball in a complex Banach space) and using the
analytical characterizations of starlike mappings, Xu and Liu [19] obtained the coefficient bounds for the class of biholomor-
phic mappings, while z = 0 is a zero of order k + 1 of e−t f (z, t)− z ( f (·, t) defined on the unit ball in C

n with respect to an
arbitrary norm), the coefficient bounds for biholomorphic mappings were studied by Hamada, Honda and Kohr [10] using
the method of Loewner chains.

In this paper, inspired by the works of Hamada and Honda [11], Pfaltzgraff and Suffridge [17], Hamada and Kohr [9],
we obtain sharp growth theorems and sharp coefficient bounds for a class of biholomorphic mappings defined on bounded
starlike circular domain in C

n . Moreover, the sharp distortion theorems for a subclass of starlike mappings are obtained.
These results generalize the related works of some authors.

Throughout this article, let C
n be the space of n complex variables z = (z1, z2, . . . , zn)′ with the Euclidean inner product

〈z, w〉 = ∑n
j=1 z j w j and the norm ‖z‖ = 〈z, z〉 1

2 , z ∈ C
n , Bn be the Euclidean unit ball in C

n . Let Ω ⊂ C
n be a bounded

starlike circular domain with 0 ∈ Ω , and its Minkowski functional ρ(z) ∈ C 1 (see Lemma 1) except for a lower dimensional
manifold in Ω , where Ω represents the closure of Ω . N be the set of all positive integers and D be the unit disk in C. Let
∂Ω be the boundary of Ω and H(Ω) be the set of all holomorphic mappings from Ω into C

n , H(Ω,Ω) be the set of all
holomorphic mappings from Ω into Ω . As is known to us, if f ∈ H(Ω), then

f (w) =
∞∑

n=0

1

n! Dn f (z)
(
(w − z)n),

for all w in some neighborhood of z ∈ Ω , where Dn f (z) is the nth-Fréchet derivative of f at z, and for n � 1,

Dn f (z)
(
(w − z)n) = Dn f (z) (w − z, . . . , w − z)︸ ︷︷ ︸

n

.

Let J f (z) be the Jacobian of f at z ∈ Ω , det J f (z) be the Jacobian determinant of f at z ∈ Ω . A holomorphic mapping
f :Ω → C

n is said to be biholomorphic if the inverse f −1 exists and is holomorphic on the open set f (Ω). A mapping
f ∈ H(Ω) is said to be locally biholomorphic if det J f (z) �= 0 for each z ∈ Ω. If f :Ω → C

n is a holomorphic mapping, we
say that f is normalized if f (0) = 0 and J f (0) = I , where I represents the identity matrix.

Firstly, we recall a class of mappings M which plays the role of the Carathéodory class in several complex variables.

M =
{

h ∈ H(Ω): h(0) = 0, Jh(0) = I, �e
∂ρ(z)

∂z
h(z) > 0, z ∈ Ω \ {0}

}
,

where ∂ρ(z)
∂z = (

∂ρ(z)
∂z1

, . . . ,
∂ρ(z)
∂zn

).
Now, we introduce the following class M g on Ω ⊂ C

n , which has been introduced by Kohr [7] on Bn and studied by
Graham, Hamada and Kohr [6].

Definition 1. Let g ∈ H(D) be a biholomorphic function such that g(0) = 1, g(ξ̄ ) = g(ξ), for ξ ∈ D , �e g(ξ) > 0 on ξ ∈ D ,
and assume g satisfies the following conditions for r ∈ (0,1):⎧⎨

⎩
min|ξ |=r

∣∣g(ξ)
∣∣ = min|ξ |=r

�e g(ξ) = g(−r),

max|ξ |=r

∣∣g(ξ)
∣∣ = max|ξ |=r

�e g(ξ) = g(r).
(2)

We define M g to be the class of mappings given by

M g =
{

h ∈ H(Ω): h(0) = 0, Jh(0) = I,
ρ(z)

2 ∂ρ(z)
∂z h(z)

∈ g(D), z ∈ Ω \ {0}
}
.

Clearly, if g(ξ) = 1+ξ
1−ξ

, ξ ∈ D , then M g becomes the class M. Especially, if Ω = Bn, then

M g =
{

h ∈ H(B): h(0) = 0, Jh(0) = I,
‖z‖2

〈h(z), z〉 ∈ g(D), z ∈ B \ {0}
}
.

A normalized biholomorphic mapping f :Ω → C
n is said to be starlike if f (Ω) is a starlike domain with respect to

the origin. Let S∗
g(Ω) denote the subset of the starlike mappings consisting of those normalized locally biholomorphic

mappings f such that J−1(z) f (z) ∈ M g . When Ω = D , S∗
g(D) is denoted by S∗

g .
f
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Definition 2. Let 0 � α < 1. A normalized locally biholomorphic mappings f ∈ H(Ω) is said to be starlike of order α if[
D f (x)

]−1
f (x) ∈ M g,

where g(ζ ) = 1−(2α−1)ζ
1−ζ

, ζ ∈ D .
We denote by S∗

α(Ω) the set of all starlike mappings of order α on Ω .

Definition 3. Let 0 � α < 1. A normalized locally biholomorphic mappings f ∈ H(Ω) is said to be almost starlike of order α
if [

D f (x)
]−1

f (x) ∈ M g,

where g(ζ ) = 1+ζ
1+(2α−1)ζ

, ζ ∈ D .
We denote by AS∗

α(Ω) the set of all starlike mappings of order α on Ω .

Definition 4. Suppose f , g ∈ H(D). If there exists a function ϕ ∈ H(D, D), ϕ(0) = 0 such that f = g ◦ ϕ , then we say that f
is subordinate to g (written f ≺ g).

Definition 5. (See [12].) Suppose Ω is a domain (connected open set) in C
n which contains 0, f ∈ H(Ω). We say that z = 0

is the zero of order k of f (z) if f (0) = 0, . . . , Dk−1 f (0) = 0, but Dk f (0) �= 0, where k ∈ N.
We denote by S∗

g,k+1(Ω) (respectively S∗
α,k+1(Ω), AS∗

α,k+1(Ω)) the subset of S∗
g(Ω) (respectively S∗

α(Ω), AS∗
α(Ω)) of

mappings f such that z = 0 is a zero of order k + 1 of f (z) − z. When Ω = D , S∗
g,k+1(D) is denoted by S∗

g,k+1.

2. Preliminaries

In order to prove the desired results, we first give some lemmas.

Lemma 1. (See [13].) Ω ⊂ C
n is a bounded starlike circular domain if and only if there exists a unique real continuous function

ρ : C
n → R, called the Minkowski functional of Ω , such that

(i) ρ(z) � 0, z ∈ C
n; ρ(z) = 0 ⇔ z = 0;

(ii) ρ(tz) = |t|ρ(z), t ∈ C, z ∈ C
n;

(iii) Ω = {z ∈ C
n: ρ(z) < 1}.

Furthermore, the function ρ(z) has the following properties.

2
∂ρ(z)

∂z
z = ρ(z), z ∈ C

n,

2
∂ρ(z0)

∂z
z0 = 1, z0 ∈ ∂Ω,

∂ρ(λz)

∂z
= ∂ρ(z)

∂z
, λ ∈ (0,∞),

∂ρ(eiθ z)

∂z
= e−iθ ∂ρ(z)

∂z
, θ ∈ R,

where ∂ρ(z)
∂z = (

∂ρ(z)
∂z1

, . . . ,
∂ρ(z)
∂zn

).

Lemma 2. (See [13].) If f is a starlike mapping on Ω , z ∈ Ω \ {0}, z(t) = f −1(t f (z)) (0 � t � 1). Then

(a) ρ(z(t)) is strictly increasing on [0,1] with respect to t;
(b) ρ( f (z)) = limt→0

ρ(z(t))
t , dz(t)

dt = 1
t J−1

f (z(t)) f (z(t)), t ∈ (0,1);

(c) dρ(z(t))
dt = 2�e( ∂ρ(z(t))

∂z
dz(t)

dt ), t ∈ (0,1).

Lemma 3. (See [18].) If f ∈ H(D), g is a biholomorphic function on D, f (0) = g(0), f ′(0) = · · · = f (k−1)(0) = 0, and f ≺ g. Then

f (rD) ⊆ g
(
rk D

)
, r ∈ (0,1), rD = {

ξ ∈ C: |ξ | < r
}
.
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Lemma 4. (See [19].) If f ∈ H(D), g is a biholomorphic function on D, f (0) = g(0), f ′(0) = · · · = f (k−1)(0) = 0, and f ≺ g, then

| f (n)(0)|
n! �

∣∣g′(0)
∣∣, n = k, . . . ,2k − 1.

Using Lemma 3, we can prove the following.

Lemma 5. Let g : D → C satisfy the conditions of Definition 1. If h ∈ M g and z = 0 is the zero of order k + 1 (k ∈ N) of h(z) − z, then

ρ(z)

g(ρk(z))
� 2�e

∂ρ(z)

∂z
h(z) � ρ(z)

g(−ρk(z))
(3)

for all z ∈ Ω .

Proof. Fix z ∈ Ω \ {0}, and denote z0 = z
ρ(z) . Let p : D → C be given by

p(η) =
{ η

2
∂ρ(z0)

∂z h(ηz0)
, η �= 0,

1, η = 0.

Then p ∈ H(D), p(0) = g(0) = 1, and since h ∈ M g , we deduce that

p(η) = η

2 ∂ρ(z0)
∂z h(ηz0)

= ρ(ηz0)

2 ∂ρ(ηz0)
∂z h(ηz0)

∈ g(D), η ∈ D.

Let ψ(η) = 1
p(η)

. This implies that ψ(η) ∈ 1
g (D) for all η ∈ D . Since ψ(0) = 1

g (0) = 1, we have ψ ≺ 1
g .

According to hypothesis of Lemma 5, we deduce that

ψ(η) = 1 − 2
∂ρ(z0)

∂z

(Dk+1h(0)(zk+1
0 ))

(k + 1)! ηk + · · · .

It is easy to see that the function ψ(η) satisfies the conditions of Lemma 3, hence we obtain

ψ(rD) ⊆ 1

g

(
rk D

)
, r ∈ (0,1), rD = {

η ∈ C: |η| < r
}
.

On the other hand, combining the maximum and minimum principles for harmonic functions with (2), we deduce that

1

g(|η|k) � �e ψ(η) � 1

g(−|η|k) , η ∈ D.

Setting η = ρ(z) in the above relation, we obtain (3), as desired. This completes the proof of Lemma 5. �
Lemma 6. Let g : D → C satisfy the conditions of Definition 1. If h ∈ M g and z = 0 is the zero of order k + 1 (k ∈ N) of h(z) − z, then∣∣∣∣2∂ρ(z)

∂z

Dmh(0)(zm)

m!
∣∣∣∣ �

∣∣g′(0)
∣∣ρm(z), z ∈ Ω, m = k + 1, . . . ,2k. (4)

Proof. Fix z ∈ Ω \ {0}, and denote z0 = z
ρ(z) . Let p : D → C be given by

p(η) =
{

η

2
∂ρ(z0)

∂z h(ηz0)
, η �= 0,

1, η = 0.

Let ψ(η) = 1
p(η)

. From the proof of Lemma 5, we have

ψ(η) = 1 − 2
∂ρ(z0)

∂z

Dk+1h(0)(zk+1
0 )

(k + 1)! ηk + · · · . (5)

It is easy to see that the function ψ(η) satisfies the conditions of Lemma 4, hence we deduce that

|ψ(n)(0)|
n! �

∣∣g′(0)
∣∣, n = k, . . . ,2k − 1. (6)

Combining the relations (5) and (6), we deduce that
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∣∣∣∣2∂ρ(z)

∂z

Dmh(0)(zm)

m!
∣∣∣∣ �

∣∣g′(0)
∣∣ρm(z), z ∈ Ω, m = k + 1, . . . ,2k.

This completes the proof of Lemma 6. �
Let b ∈ S∗

g be defined by b(0) = b′(0) − 1 = 0 and

ζb′(ζ )

b(ζ )
= g(ζ ), ζ ∈ D.

For a positive integer k, let

bk(ζ ) = ζ
[
ϕ

(
ζ k)] 1

k , (7)

where

ϕ(ζ ) = b(ζ )

ζ
.

The branches of the power functions are chosen so that

(
ϕ

(
ζ k)) 1

k
∣∣
ζ=0 = 1.

Since Ω ⊂ C
n is a bounded starlike circular domain with 0 ∈ Ω , by the definition of bounded starlike circular domain, it

is not difficult to check that U j = {z j ∈ C: (0, . . . ,0, z j,0, . . . ,0)′ ∈ Ω} ( j = 1, . . . ,n) is a disk with center at the origin. Let

f (z) = rbk(
z1
r )

z1
z, (8)

where r is the radius of the disk U = {z1 ∈ C: (z1,0, . . . ,0)′ ∈ Ω}. Then, we obtain the following lemma by direct compu-
tations.

Lemma 7. Let bk be as in (7), and f be as in (8). Then:

(i) bk(ζ ) = ζ − 1
k g′(0)ζ k+1 + · · · , and

ζb′
k(ζ )

bk(ζ )
= g

(
ζ k), ζ ∈ D.

Thus, bk ∈ S∗
g,k+1 and bk(0) = b′

k(0) − 1 = 0.
(ii) f (z) ∈ S∗

g,k+1(Ω) and

f (ζu) = bk(ζ )u =
(

ζ − 1

k
g′(0)ζ k+1 + · · ·

)
u, ζ ∈ D, u = (u1, . . . , un)

′ ∈ ∂Ω, u1 = r.

3. Main results and their proofs

In this section, we give the main results and their proofs. In the case of the unit ball in a complex Banach space,
Theorems 1 and 2 were obtained by Hamada and Honda [11].

Theorem 1. Let g : D → C satisfy the conditions of Definition 1 and f ∈ S∗
g,k+1(Ω). Then

ρ(z)exp

ρ(z)∫
0

[
g
(−yk) − 1

]dy

y
� ρ

(
f (z)

)
� ρ(z)exp

ρ(z)∫
0

[
g
(

yk) − 1
]dy

y
, z ∈ Ω. (9)

These estimates are sharp.

Proof. Since f ∈ S∗
g,k+1(Ω), we deduce from Lemma 5 that

ρ(z)
k

� 2�e
∂ρ(z)

J−1
f (z) f (z) � ρ(z)

k
(10)
g(ρ (z)) ∂z g(−ρ (z))
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for all z ∈ Ω . Obviously, according to the assumption of Theorem 1, we conclude that f belongs to either starlike mappings
class or its subclasses. Fix z ∈ Ω \ {0}, let z(t) = f −1(t f (z)) (0 � t � 1). In view of Lemma 2(a), we deduce that ρ(z(t))
is strictly increasing on [0,1]. Hence, ρ(z(t)) is differentiable on [0,1] a.e. From Lemma 2 and (10), we deduce that for
t ∈ (0,1]

ρ(z(t))

g(ρk(z(t)))
� t

dρ(z(t))

dt
� ρ(z(t))

g(−ρk(z(t)))
, (11)

and we may rewrite (11) as

g(−ρk(z(t)))

ρ(z(t))

dρ(z(t))

dt
� 1

t
� g(ρk(z(t)))

ρ(z(t))

dρ(z(t))

dt
.

Integrating both sides of the above inequalities with respect to t and making a change of variable, we obtain

ρ(z)∫
ρ(z(ε))

g(−yk)dy

y
=

1∫
ε

g(−ρk(z(t)))

ρ(z(t))

dρ(z(t))

dt
dt �

1∫
ε

1

t
dt,

and

ρ(z)∫
ρ(z(ε))

g(yk)dy

y
=

1∫
ε

g(ρk(z(t)))

ρ(z(t))

dρ(z(t))

dt
dt �

1∫
ε

1

t
dt,

where 0 < ε < 1. It is elementary to verify that

log
ρ(z(ε))

ε
�

ρ(z)∫
ρ(z(ε))

[
g
(−yk) − 1

]dy

y
+ logρ(z), (12)

and

log
ρ(z(ε))

ε
�

ρ(z)∫
ρ(z(ε))

[
g
(

yk) − 1
]dy

y
+ logρ(z). (13)

If we now let ε → 0+ in the above inequalities (12), (13) and use Lemma 2(b), we have

ρ(z)exp

ρ(z)∫
0

[
g
(−yk) − 1

]dy

y
� ρ

(
f (z)

)
� ρ(z)exp

ρ(z)∫
0

[
g
(

yk) − 1
]dy

y
, z ∈ Ω, (14)

as claimed. This completes the proof of Theorem 1. �
Later, we will show that the above estimations are sharp. To end this, we give the following theorem.

Theorem 2. Let g : D → C satisfy the conditions of Definition 1 and f ∈ S∗
g,k+1(Ω). Then

e− π i
k bk

(
e

π i
k ρ(z)

)
� ρ

(
f (z)

)
� bk

(
ρ(z)

)
, z ∈ Ω. (15)

These estimations are sharp.

Proof. From (9) and Lemma 7(i), we obtain

exp

ρ(z)∫
0

[
yb̃′

k(y)

b̃k(y)
− 1

]
dy

y
� ρ( f (z))

ρ(z)
� exp

ρ(z)∫
0

[
yb′

k(y)

bk(y)
− 1

]
dy

y

for z ∈ Ω , where b̃k(ζ ) = e− π i
k bk(e

π i
k ζ ). Then, we obtain

exp

[
log

b̃k(ρ(z))

ρ(z)
− log b̃′

k(0)

]
� ρ( f (z))

ρ(z)
� exp

[
log

bk(ρ(z))

ρ(z)
− log b′

k(0)

]
for z ∈ Ω , since b̃k(y), bk(y) for y > 0. This implies (15).
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Next, we will show that the estimations (15) are sharp. Let f (z) ∈ S∗
g,k+1(Ω) be as in (8). Since ρ( f (Ru)) = bk(R) and

ρ( f (e
π i
k Ru)) = |bk(e

π i
k R)|, where 0 � R < 1, u = (u1, . . . , un)′ ∈ ∂Ω , u1 = r, the equalities of the estimations (15) hold. This

completes the proof. �
Remark 1. The equivalence of (9) and (15) implies that the estimations (9) are sharp.

Now, we obtain the following corollaries from Theorem 1.

Corollary 1. If f ∈ S∗
α,k+1(Ω), then

ρ(z)

(1 + ρk(z))
2(1−α)

k

� ρ
(

f (z)
)
� ρ(z)

(1 − ρk(z))
2(1−α)

k

, z ∈ Ω.

The above estimate is sharp.

Proof. Letting g(ζ ) = 1−(2α−1)ζ
1−ζ

, ζ ∈ D , 0 � α < 1 in Theorem 1, we obtain the desired result. This completes the proof. �
Corollary 2. If f ∈ AS∗

α,k+1(Ω), then

ρ(z)

(1 + (1 − 2α)ρk(z))
2(1−α)

k(1−2α)

� ρ
(

f (z)
)
� ρ(z)

(1 − (1 − 2α)ρk(z))
2(1−α)

k(1−2α)

for z ∈ Ω , 0 � α < 1, α �= 1
2 and

ρ(z)exp

(
−ρk(z)

k

)
� ρ

(
f (z)

)
� ρ(z)exp

(
ρk(z)

k

)
for z ∈ Ω , α = 1

2 . The above estimations are sharp.

Proof. Letting g(ζ ) = 1+ζ
1+(2α−1)ζ

, ζ ∈ D , 0 � α < 1 in Theorem 1, we have the desired result. This completes the proof. �
Remark 2. Corollaries 1, 2 were obtained by Liu and Liu [15] using the analytical characterizations of starlike mappings of
order α and almost starlike mapping of order α on B . However, taking g(ζ ) = 1−(2α−1)ζ

1−ζ
,

1+ζ
1+(2α−1)ζ

, ζ ∈ D in Theorem 1,
respectively, we easily obtain these results.

Theorem 3. Let g : D → C satisfy the conditions of Definition 1 and f ∈ S∗
g,k+1(Ω). Then∣∣∣∣2∂ρ(z)

∂z

Dm f (0)(zm)

m!
∣∣∣∣ � 1

m − 1

∣∣g′(0)
∣∣ρm(z), z ∈ Ω, m = k + 1, . . . ,2k. (16)

When m = k + 1, this estimation is sharp.

Proof. Denote h(z) = J−1
f (z) f (z), z ∈ Ω . Since f (z) = J f (z)h(z), it follows that

z + Dk+1 f (0)(zk+1)

(k + 1)! + · · · + Dm f (0)(zm)

m! + · · ·

=
(

I + Dk+1 f (0)(zk, ·)
k! + · · · + Dm f (0)(zm−1, ·)

(m − 1)! + · · ·
)

×
(

Jh(0)z + D2h(0)(z2)

2! + Dk+1h(0)(zk+1)

(k + 1)! + · · · + Dmh(0)(zm)

m! + · · ·
)

.

Comparing with the coefficients of two sides of the above equality, we have

Jh(0)z = z, D jh(0)
(
z j) = 0, j = 2, . . . ,k. (17)

Using (17), we deduce that

Dm f (0)(zm)

m! = Dmh(0)(zm)

m! + Dm f (0)(zm)

(m − 1)! , m = k + 1, . . . ,2k,

Dm f (0)(zm) = −1 Dmh(0)(zm)
, m = k + 1, . . . ,2k. (18)
m! m − 1 m!
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Clearly, h(z) satisfies the condition of Lemma 6. In view of Lemma 6 and (18), we obtain∣∣∣∣2∂ρ(z)

∂z

Dm f (0)(zm)

m!
∣∣∣∣ = 1

m − 1

∣∣∣∣2∂ρ(z)

∂z

Dmh(0)(zm)

m!
∣∣∣∣

� 1

m − 1

∣∣g′(0)
∣∣ρm(z), z ∈ Ω, m = k + 1, . . . ,2k.

The following example shows that estimation (16) is sharp for m = k + 1.

Example 1. Let f be as in (8). According to Lemma 7, we obtain that f ∈ S∗
g,k+1(Ω), and

f (z) = z − 1

k
g′(0)

(
z1

r

)k

z + · · · .
Taking z = ξu, where u = (u1, . . . , un)′ ∈ ∂Ω , u1 = r, we have

f (ξu) = ζu − 1

k
g′(0)ζ k+1u + · · · .

Therefore,

Dk+1 f (0)(uk+1)

(k + 1)! = −1

k
g′(0)u.

By Lemma 1, we have

2
∂ρ(u)

∂z

Dk+1 f (0)(uk+1)

(k + 1)! = −1

k
g′(0)2

∂ρ(u)

∂z
u = −1

k
g′(0).

Setting u = z
ρ(z) , z ∈ Ω in the above relation, we obtain∣∣∣∣2∂ρ(z)

∂z

Dk+1 f (0)(zk+1)

(k + 1)!
∣∣∣∣ = 1

k

∣∣g′(0)
∣∣ρk+1(z),

as claimed. This completes the proof. �
The following theorems are associated with the operator F , which was firstly introduced by Pfaltzgraff and Suffridge [17]

on Bn .

Theorem 4. Let g : D → C be a convex function which satisfies the conditions of Definition 1. Suppose f j ∈ S∗
g , λ j � 0, j = 1,2, . . . ,n,

and
∑n

j=1 λ j = 1. Then

F ∈ S∗
g(Ω),

where F (z) = z
∏n

j=1(
r j f j(

z j
r j

)

z j
)λ j , r j is the radius of the disk U j , and the branch of the power function is chosen such that

(
r j f j(

z j
r j

)

z j
)λ j |z j=0 = 1, j = 1, . . . ,n.

Proof. Let h(z) = ∏n
j=1(

r j f j(
z j
r j

)

z j
)λ j . Then J F (z)η = h(z)(η + ( Jh(z)η)z

h(z) ), η ∈ C
n . Also

Jh(z)z

h(z)
=

n∑
j=1

λ j

( z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)
− 1

)
=

n∑
j=1

λ j

z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)
− 1.

Since f j ∈ S∗
g ( j = 1,2, . . . ,n), we have

�e

[
1 + Jh(z)z

h(z)

]
=

n∑
j=1

λ j�e

[ z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)

]
> 0, z ∈ Ω.

Therefore, Jh(z)z + h(z) �= 0. It is not difficult to check that

J−1
F (z)η = 1

h(z)

(
η − ( Jh(z)η)z

Jh(z)z + h(z)

)
, η ∈ C

n.

So F (z) is a normalized locally biholomorphic mapping on Ω .
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Straightforward calculation shows that

ρ(z)

2 ∂ρ(z)
∂z [ J−1

F (z)F (z)] = 1 + Jh(z)z

h(z)
=

n∑
j=1

λ j

z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)
.

On the other hand, since
z j f ′

j(
z j
r j

)

r j f j(
z j
r j

)
∈ g(D), and g(D) is convex, we have

n∑
j=1

λ j

z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)
∈ g(D),

as claimed. This completes the proof. �
Theorem 5. Let g : D → C be a convex function which satisfies the conditions of Definition 1. Suppose f j ∈ S∗

g , λ j � 0, j = 1,2, . . . ,n,

and
∑n

j=1 λ j = 1. Then

g
(−ρ(z)

)
expn

ρ(z)∫
0

[
g(−y) − 1

]
�

∣∣det J F (z)
∣∣ � g

(
ρ(z)

)
expn

ρ(z)∫
0

[
g(y) − 1

]dy

y
, (19)

where z ∈ Ω , F (z) = z
∏n

j=1(
r j f j(

z j
r j

)

z j
)λ j , r j is the radius of the disk U j , and the branch of the power function is chosen such that

(
r j f j(

z j
r j

)

z j
)λ j |z j=0 = 1, j = 1, . . . ,n.

Proof. As in the proof of Theorem 4, we can easily deduce that

∣∣det J F (z)
∣∣ =

n∏
j=1

∣∣∣∣ r j f j(
z j
r j

)

z j

∣∣∣∣nλ j
∣∣∣∣∣

n∑
j=1

λ j

z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)

∣∣∣∣∣. (20)

From the maximum (minimum) principle for harmonic functions and the fact that | z j
r j

| � ρ(z) ( j = 1, . . . ,n), we obtain

∣∣∣∣∣
n∑

j=1

λ j

z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)

∣∣∣∣∣ �
n∑

j=1

λ j�e
z j f ′

j(
z j
r j

)

r j f j(
z j
r j

)
� g

(−ρ(z)
)
, (21)

and ∣∣∣∣∣
n∑

j=1

λ j

z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)

∣∣∣∣∣ �
n∑

j=1

λ j

∣∣∣∣ z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)

∣∣∣∣ � g
(
ρ(z)

)
. (22)

On the other hand, by Theorems 4 and 1, we have

exp

ρ(z)∫
0

[
g(−y) − 1

]
�

n∏
j=1

∣∣∣∣ r j f j(
z j
r j

)

z j

∣∣∣∣λ j

� exp

ρ(z)∫
0

[
g(y) − 1

]dy

y
. (23)

From (20)–(23), we obtain (19), as claimed. This completes the proof. �
Remark 3. The estimations of Theorem 5 are sharp. To see this, let b ∈ S∗

g be defined by b(0) = b′(0) − 1 = 0 and

ξb′(ξ)

b(ξ)
= g(ξ), ξ ∈ D. (24)

And let

F (z) = rb(
z1
r )

z1
z, (25)

where r is the radius of the disk U = {z1 ∈ C: (z1,0, . . . ,0)′ ∈ Ω}. In view of Lemma 7, F ∈ S∗
g(Ω).
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From (24), we obtain the following equivalent formulation of Theorem 5.

ρ(z)b̃′(ρ(z))

b̃(ρ(z))
expn

ρ(z)∫
0

[
yb̃′(y)

b̃(y)
− 1

]
dy

y
�

∣∣det J F (z)
∣∣ � ρ(z)b′(ρ(z))

b(ρ(z))
exp n

ρ(z)∫
0

[
yb′(y)

b(y)
− 1

]
dy

y

for z ∈ Ω , where b̃(ξ) = −b(−ξ). Then, we have

ρ(z)b̃′(ρ(z))

b̃(ρ(z))
expn

[
log

b̃(ρ(z))

ρ(z)
− log b̃′(0)

]
�

∣∣det J F (z)
∣∣ � ρ(z)b′(ρ(z))

b(ρ(z))
expn

[
log

b(ρ(z))

ρ(z)
− log b(0)

]

for z ∈ Ω , since b̃(y),b(y) > 0 for y > 0. We deduce that

−ρ(z)b′(−ρ(z))

b(−ρ(z))

(−b(−ρ(z))

ρ(z)

)n

�
∣∣det J F (z)

∣∣ � ρ(z)b′(ρ(z))

b(ρ(z))

(
b(ρ(z))

ρ(z)

)n

, z ∈ Ω. (26)

Now, we show that the estimations (26) are sharp. Let F ∈ S∗
g(Ω) be as in (25). Taking z = Ru or z = −Ru (0 � R < 1,

u = (u1, . . . , un)′ ∈ ∂Ω , u1 = r), then the equalities of the estimations (26) hold for λ1 = 1, λ j = 0 ( j = 2, . . . ,n), and f j = b
( j = 1, . . . ,n). The equivalence of (19) and (26) implies that the estimations (19) are sharp. This completes the proof.

Theorem 6. Let g : D → C be a convex function which satisfies the conditions of Definition 1. Suppose f j ∈ S∗
g , λ j � 0, j = 1,2, . . . ,n,

and
∑n

j=1 λ j = 1. Then

g
(−ρ(z)

)
exp

ρ(z)∫
0

[
g(−y) − 1

]
� ρ

(
J F (z)z

)
� g

(
ρ(z)

)
exp

ρ(z)∫
0

[
g(y) − 1

]dy

y
,

where z ∈ Ω , F (z) = z
∏n

j=1(
r j f j(

z j
r j

)

z j
)λ j , r j is the radius of the disk U j , and the branch of the power function is chosen such that

(
r j f j(

z j
r j

)

z j
)λ j |z j=0 = 1, j = 1, . . . ,n.

Proof. Denote

h(x) =
n∏

j=1

( r j f j(
z j
r j

)

z j

)λ j

, z ∈ Ω.

Straightforward computation shows that

J F (z)z = h(z)z + (
Jh(z)z

)
z = z

n∏
j=1

( r j f j(
z j
r j

)

z j

)λ j n∑
j=1

λ j

z j f ′
j(

z j
r j

)

r j f j(
z j
r j

)
. (27)

From (21)–(23) and (27), we have the desired result. This completes the proof. �
Remark 4. The estimations of Theorem 6 are sharp. The proof of sharpness is similar to that of Theorem 5, so we omit it.
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