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Abstract
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1. Introduction

In finite-dimensional spaces, the existence and uniqueness of adapted solutions to forward–
backward stochastic differential equations (FBSDEs for short) with Poisson jumps were estab-
lished by SiTu [6], Yin and SiTu [9,10] via purely probabilistic approaches. They deal with the
FBSDEs with Lipschitz continuous coefficients or with continuous coefficients in the case of
fixed terminal time as well as in the case of random terminal time. Obviously, it is impossible to
generalize these results to the infinite-dimensional spaces case for FBSDEs with non-Lipschitz
continuous coefficients by using the smoothing technique (see, e.g., Yin and SiTu [10]). So we
need to find another approach to solve such FBSDEs.

Hu and Peng [2] investigated a class of infinite-dimensional semi-linear backward stochas-
tic evolution equations, and the so-called “mild solution” was given with the help of the Riesz
representation theorem and an extended martingale representation theorem. Thereafter Hu and
Peng [3] discussed semi-linear backward stochastic evolution equations and stochastic partial
differential equations, and also proved the existence and uniqueness of adapted solutions by uti-
lizing the extended martingale representation theorem and the stochastic Fubini theorem. These
results were proved to be very useful in discussing stochastic Hamilton–Bellman–Jacobi equa-
tions (cf. [5]). Moreover, SiTu [8] considered a class of backward stochastic differential equations
which have jumps and are driven by a K-valued Brownian motion and a Poisson random mea-
sure. The existence and uniqueness results were established, and some results were used to solve
some optimal stochastic control problems with respect to certain BSDEs with jumps in Hilbert
spaces.

In this paper, we are concerned with a class of FBSDEs with bounded random terminal times
in an infinite-dimensional space driven by a cylindrical Brownian motion and a Poisson random
measure. We give the existence and uniqueness results for such FBSDEs when the coefficients
are continuous but not Lipschitz continuous, and some applications to optimal stochastic control
problems. The proof of existence is based on the theory of weak convergence and the method
of finite-dimensional approximation. It should be mentioned that Yor [11] showed the existence
and uniqueness of strong solutions for finite horizon forward SDEs in a Hilbert space when
the coefficient satisfies linear growth condition and Lipschitz condition. The meaning of the
strong solution is actually identical with that of the adapted solution. Indeed, this result can be
generalized to the case of forward SDEs with Poisson jumps. Furthermore, under some suit-
able conditions (for example, monotonicity condition and Lipschitz condition on the coefficients
in [9]), we can use Itô’s formula for H -valued cylindrical Brownian motion and Poisson ran-
dom measure in [8] and the method of continuation given by Hu and Peng [4] to prove the
existence and uniqueness theorem of solutions to H -valued FBSDEs with Poisson jumps. But
as above mentioned, for those H -valued FBSDEs without Lipschitz continuous coefficients we
cannot depend on the smoothing technique of [10] to solve them. Although some ideas of [1,8]
are used throughout this work, the differences of framework and studied subject, require more
assumptions and more arguments.

The paper is organized as follows: in Section 2, we give the preliminaries, including the de-
finition of Hilbert space-valued cylindrical Brownian motion and the corresponding stochastic
integral with respect to it; in Section 3, the existence and uniqueness of adapted solutions to
Hilbert space-valued FBSDEs with Poisson jumps and with non-Lipschitz continuous coeffi-
cients are proved by partially adopting some ideas of Darling and Pardoux [1] and SiTu [8]. And
a priori estimate and a uniqueness theorem of adapted solutions to above FBSDEs are also given.
Finally, in Section 4 we use an example, which is a class of special FBSDEs without Lipschitz
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continuous coefficients, to illustrate that our given assumptions can be fulfilled. We also apply
our main results to study optimal stochastic control problems.

2. Preliminaries

Let K and H be two separable Hilbert spaces with inner product (·,·)K and (·,·)H , respec-
tively. We denote their norms by | · |K and | · |H . Assume that {ei}∞i=1 and {ēi}∞i=1 are two
orthonormal bases of K and H , respectively. Without confusion, we always use (·,·) and | · |
to denote the inner product and the norm.

Definition 2.1. We say that {w(t), t ∈ R+} is a cylindrical Brownian motion on the separable
Hilbert space K , if the following three conditions hold:

(i) ∀t ∈ R+, w(t) is a stochastic linear functional on K ;
(ii) ∀n ∈ N , ∀h1, h2, . . . , hn ∈ K , {(w(t)h1,w(t)h2, . . . ,w(t)hn), t ∈ R+} is a Brownian mo-

tion (not necessary standard) with values in Rn;
(iii) ∀h1, h2 ∈ K , ∀t ∈ R+, E(w(t)h1)(w(t)h2) = t (h1, h2).

Suppose that {k(t), t ∈ R+} is a Poisson point process taking values in measurable space
(Z,B(Z)) with compensator π(z) ds. π(z) is a σ -finite measure on B(Z). We denote by
Nk(ds, dz) the Poisson counting measure induced by k(·), and by Ñk(ds, dz) the martingale
measure such that Ñk(ds, dz) = Nk(ds, dz) − π(dz) ds. Throughout this paper we assume that
(Ω,F ,P ; {Ft }T0 ) is a complete filtered probability space such that F0 contains all P -null sets
of F , Ft = Ft+ = ⋂

ε>0 Ft+ε, t � 0, and F = FT . We further assume that the filtration is gener-
ated by the cylindrical Brownian motion w(·) and the Poisson point process k(·) and augmented,
that is, Ft = σ [w(s); s � t] ∨ σ [Nk(A, (0, s]); s � t, A ∈ B(Z)] ∨ N , t � T , where N is all
the P -null sets, and T > 0 is a real number. The following notation will be used in this pa-
per:

S2
F (H) :=

{
v(t,ω): v(t,ω) is H -valued, Ft -adapted such that E sup

0�t�τ

∣∣v(t,ω)
∣∣2

< ∞
}
;

L2
F (H) :=

{
f (t,ω): f (t,ω) is H -valued, Ft -adapted such that

E

τ∫
0

∣∣f (t,ω)
∣∣2

dt < ∞
}

;

F 2
F (H) :=

{
u(t, z,ω): u(t, z,ω) is H -valued, Ft -predictable such that

E

τ∫ ∫ ∣∣u(t, z,ω)
∣∣2

π(dz) dt < ∞
}

;

0 Z
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L2
F

(
L(K,H)

) :=
{

ξ(t,ω) ∈ L(K,H): ξ(t,ω) is Ft -adapted such that

E

τ∫
0

∥∥ξ(t,ω)
∥∥2
L(K,H)

dt := E

τ∫
0

∞∑
i=1

∣∣ξ(t,ω)ei

∣∣2
H

dt < ∞
}

;

L2
π (H) :=

{
η(z): η(z) is B(Z) measurable, H -valued such that

‖η‖2 :=
∫
Z

∣∣η(z)
∣∣2

π(dz) < ∞
}
,

where τ � T is a bounded stopping time, L(K,H) is the set of all bounded linear operators
from K into H , and {ei}∞i=1 is the orthonormal basis of K . For any ϕ(·) ∈ L2

F (L(K,H)), the
stochastic integration

∫ τ

0 ϕ(t) dw(t) is defined as follows:

τ∫
0

ϕ(t) dw(t) =
∞∑
i=1

τ∫
0

ϕ(t)ei d
(
w(t)ei

)
.

Obviously, the above definition has a meaning. It is clear that L2
F (H)×L2

F (H)×L2
F (L(K,H))×

F 2
F (H) is a Hilbert space. We still use | · | to denote the norm on L2

F (L(K,H)) be-
low.

3. Hilbert space-valued FBSDEs with Poisson jumps

In this section, we consider the following coupled forward–backward stochastic differential
equations with Poisson jumps:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dxt = b(t, xt , yt , qt ,pt ,ω)dt + σ(t, xt , yt , qt ,pt ,ω)dw(t)

+ ∫
Z

c(t, xt−, yt−, qt ,pt , z,ω)Ñk(dt, dz), x0 ∈ L2((Ω,F0,P );H),

dyt = −f (t, xt , yt , qt ,pt ,ω)dt + qt dw(t) + ∫
Z

pt (z)Ñk(dt, dz),

yτ = ψ(xτ ), 0 � t � τ,

(3.1)

where the coefficients b,σ, c, f and ψ are the maps as follows:

b : [0, T ] × H × H ×L(K,H) × L2
π (H) × Ω → H,

f : [0, T ] × H × H ×L(K,H) × L2
π (H) × Ω → H,

σ : [0, T ] × H × H ×L(K,H) × L2
π (H) × Ω → L(K,H),

c : [0, T ] × H × H ×L(K,H) × L2
π (H) × Z × Ω → H,

ψ :Ω × H → H.

Assume further that b and f are all jointly measurable and Ft -adapted; σ and c are all jointly
measurable and Ft -predictable; ψ is jointly measurable with respect to B(H) ×Fτ .

Definition 3.1. A quadruple (x·, y·, q·,p·) with values in H × H × L(K,H) × H is called an
adapted solution of FBSDEs (3.1) if and only if
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(i) (x·, y·, q·,p·) ∈ S2
F (H) × S2

F (H) × L2
F (L(K,H)) × F 2

F (H);
(ii) (x·, y·, q·,p·) satisfies (3.1).

For simplicity, we will use the following notation:

u := (x, y, q,p), A(t, u,ω) := (−f (t, u,ω), b(t, u,ω), σ (t, u,ω), c(t, u, ·,ω)
)
,

(u,A) := u · A = −(x, f ) + (y, b) + 〈〈σ,q〉〉 + 〈p, c〉,

〈〈σ,q〉〉 :=
∞∑
i=1

(σei, qei),

〈p, c〉 :=
∫
Z

(
p·(z), c(·, u, z)

)
π(dz).

We suppose that:

(A1) b, f , σ , c are all continuous with respect to (x, y, q,p) ∈ H × H ×L(K,H) × L2
π (H).

(A2) A(t,u,ω) = A1(t, u,ω) + A2(t, u,ω), where |A1(t, u,ω)| � u(t)(1 + |x| + |y|). Further-
more, for any ui = (xi, yi, qi,pi) ∈ H × H × L(K,H) × L2

π (H), i = 1,2, the following
conditions are satisfied:∣∣A1(t, x, y, q1,p1,ω) − A1(t, x, y, q2,p2,ω)

∣∣ � α
[|q1 − q2| + ‖p1 − p2‖

];∣∣A2(t, u1,ω) − A2(t, u2,ω)
∣∣ � u(t)

[|x1 − x2| + |y1 − y2|
]

+ α
[|q1 − q2| + ‖p1 − p2‖

]
,

where α � 0, u(t) is a non-negative deterministic function satisfying
∫ T

0 u(t)2 dt < ∞.

(A3) ψ(x,ω) = β4x + ψ(0,ω), where β4 � 0, ψ(0,ω) is measurable with respect to Fτ and
square integrable.

(A4)

E

[ τ∫
0

∣∣f2(s,0,0,0,0,ω)
∣∣2

ds +
τ∫

0

∣∣b2(s,0,0,0,0,ω)
∣∣2

ds

+
τ∫

0

∥∥σ2(s,0,0,0,0,ω)
∥∥2

ds +
τ∫

0

∥∥c2(s,0,0,0,0, ·,ω)
∥∥2

ds

]
= L < ∞.

(A5) For any ui = (xi, yi, qi,pi), i = 1,2, the following inequality holds:(
A(t,u1) − A(t,u2), u1 − u2

)
� −β1u(t)|x1 − x2|2 − β2u(t)|y1 − y2|2

− β3
[|q1 − q2|2 + ‖p1 − p2‖2], (3.2)

where βi � 0,1 � i � 3. To prove the uniqueness of solutions to (3.1), assume further that
one of the following conditions is satisfied:
(1) β1, β4 > 0, and(

y1 − y2, f1(t, x1, y1, q,p) − f1(t, x2, y2, q,p)
)

� u(t)ρ
(|y1 − y2|2

) + u(t)|y1 − y2||x1 − x2|; (3.3)
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(2) β2, β3 > 0, and(
x1 − x2, b1(t, x1, y1, q,p) − b1(t, x2, y2, q,p)

)
� u(t)ρ

(|x1 − x2|2
) + u(t)|x1 − x2||y1 − y2|, (3.4)

where ρ(u),u � 0 is a strictly increasing, continuous and concave function with
ρ(0) = 0 such that

∫
0+ du/ρ(u) = ∞.

Lemma 3.1 (A priori estimate). Assume that (A1)–(A4) and (3.2) of (A5) with β1, β4 > 0 or
β2, β3 > 0 hold. If (x·, y·, q·,p·) is an adapted solution of FBSDEs (3.1), then

E

{
sup

0�t�τ

|xt |2 + sup
0�t�τ

|yt |2 +
τ∫

0

‖qt‖2 dt +
τ∫

0

‖pt‖2 dt

}
� C < ∞,

where C is a positive constant depending on L,
∫ T

0 u(t)2 dt , T , α, βi , i = 1,2,3,4 and E|ψ(0)|2
only.

Proof. The proof is standard. By combining Itô’s formula for H -valued B.M. and Poisson ran-
dom measure (see [8, Lemma 1]), Gronwall’s inequality, Burkhoder–Davis–Gandy’s inequality,
as well as some elementary algebraic inequalities, the result is obtained easily. �
Lemma 3.2 (Uniqueness). If (3.3) or (3.4) is satisfied, then there exists a unique solution
(x·, y·, q·,p·) ∈ S2

F (H) × S2
F (H) × L2

F (L(K,H)) × F 2
F (H) for FBSDEs (3.1).

Proof. The proof is the same as that of Theorem 2.1 in [8]. �
Lemma 3.3. If K and H are all Euclidean spaces, w(t) is a finite-dimensional Brownian motion,
then (3.1) admits a unique adapted solution under the assumptions of (A1)–(A5).

Proof. We may prove the lemma in the same way as Theorem 3.2 in [10]. First, we smooth out
the coefficient A1(t, u,ω) to get An

1(t, u,ω) over components x and y with the same smoother.
Then we proceed the same arguments in Theorem 3.2. Indeed, the proof here is even easier, since
the assumption of A1 does not influence on the proof. �

Now let us give the main theorem in this paper:

Theorem 3.1. Let (A1)–(A5) hold. Then FBSDEs (3.1) have a unique adapted solution
(x·, y·, q·,p·) ∈ S2

F (H) × S2
F (H) × L2

F (L(K,H)) × F 2
F (H).

Proof. Uniqueness is directly derived by Lemma 3.2. It is sufficient to show the existence of
solutions. Let Hm and Km denote the linear subspaces generated by finite bases {ēi}mi=1 and
{ei}mi=1, respectively. For any x ∈ H , we set

Qmx =
m∑

i=1

(x, ēi )H ēi , Q̃mw(t) =
m∑

i=1

(
w(t)ei

)
.

Then Q̃mw(t) can be seen as an m-dimensional Brownian motion. Consider the following
FBSDEs with Poisson jumps:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxm
t = Qmb

(
t, xm

t , ym
t , qm

t ,pm
t ,ω

)
dt + Qmσ

(
t, xm

t , ym
t , qm

t ,pm
t ,ω

)
Q̃m dw(t)

+
∫
Z

Qmc
(
t, xm

t−, ym
t−, qm

t ,pm
t , z,ω

)
Ñk(dt, dz), xm

0 = Qmx0,

dym
t = −Qmf

(
t, xm

t , ym
t , qm

t ,pm
t ,ω

)
dt + qm

t Q̃m dw(t) +
∫
Z

pm
t (z)Ñk(dt, dz),

ym
τ = Qmψ

(
xm
τ

)
, 0 � t � τ.

(3.5)

From Lemma 3.3, we know that FBSDEs (3.5) have a unique adapted solution (xm
t , ym

t , qm
t ,pm

t ) ∈
S2
F (Hm) × S2

F (Hm) × L2
F (L(Km,Hm)) × F 2

F (Hm). If we set(
q̃m
t ei, ēk

) = (
qm
t ei, ēk

) = qki(t), 1 � k, i � m,(
q̃m
t em+j , ēk

) = 0, ∀j = 1,2, . . . , 1 � k � m,

bm(s, x, y, q,p,ω) = Qmb
(
s, x(m), y(m), q(m),p(m),ω

)
,

fm(s, x, y, q,p,ω) = Qmf
(
s, x(m), y(m), q(m),p(m),ω

)
,

σm(s, x, y, q,p,ω) = Qmσ
(
s, x(m), y(m), q(m),p(m),ω

)
Q̃m,

cm(s, x, y, q,p, z,ω) = Qmc
(
s, x(m), y(m), q(m),p(m), z,ω

)
,

where q̃m
t ∈ L(K,Hm), x(m) = ∑m

i=1(x, ēi )ēi ∈ Hm, y(m) = ∑m
i=1(y, ēi )ēi ∈ Hm, p(m) =∑m

i=1(p, ēi)ēi , and for any u ∈ K ,

q(m)u =
m∑

i=1

(
m∑

j=1

(u, ej )qej , ēi

)
ēi ∈ Hm,

then (3.5) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxm
t = bm

(
t, xm

t , ym
t , q̃m

t ,pm
t ,ω

)
dt + σm

(
t, xm

t , ym
t , q̃m

t ,pm
t ,ω

)
dw(t)

+
∫
Z

cm

(
t, xm

t−, ym
t−, q̃m

t ,pm
t , z,ω

)
Ñk(ds, dz), xm

0 = Qmx0,

dym
t = −fm

(
t, xm

t , ym
t , q̃m

t ,pm
t ,ω

)
dt + q̃m

t dw(t) +
∫
Z

pm
t (z)Ñk(dt, dz),

ym
τ = Qmψ

(
xm
τ

)
, 0 � t � τ.

(3.6)

By Lemma 3.1 and the assumptions (A2) and (A4), we have

sup
m

E

{
sup

0�t�τ

∣∣xm
t

∣∣2 + sup
0�t�τ

∣∣ym
t

∣∣2 +
τ∫

0

∥∥q̃m
t

∥∥2
dt +

τ∫
0

∥∥pm
t

∥∥2
dt

}
< ∞

and

sup
m

E

{ τ∫
0

(∣∣bm

(
t, xm

t , ym
t , q̃m

t ,pm
t ,ω

)∣∣2 + ∣∣fm

(
t, xm

t , ym
t , q̃m

t ,pm
t ,ω

)∣∣2

+ ∥∥σm

(
t, xm

t , ym
t , q̃m

t ,pm
t ,ω

)∥∥2 + ∥∥Cm

(
t, xm

t , ym
t , q̃m

t ,pm
t , z,ω

)∥∥2)
dt

}
< ∞.
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Hence there exists a subsequence {m(j)} of {m}, where we denote it by {m} again, and
(x·, y·, q·,p·) ∈ L2

F (H) × L2
F (H) × L2

F (L(K,H)) × F 2
F (H), b∞(·), f∞(·) ∈ L2

F (H),σ∞(·) ∈
L2
F (L(K,H)), c∞(·, z) ∈ F 2

F (H) such that as m → ∞,

xm· → x· weakly in L2
F (H),

ym· → y· weakly in L2
F (H),

q̃m· → q· weakly in L2
F

(
(K,H)

)
,

pm· → p· weakly in F 2
F (H),

bm

(·, xm· , ym· , q̃m· ,pm·
) → b∞ weakly in L2

F (H),

fm

(·, xm· , ym· , q̃m· ,pm·
) → f∞ weakly in L2

F (H),

σm

(·, xm· , ym· , q̃m· ,pm·
) → σ∞ weakly in L2

F
(
L(K,H)

)
,

cm

(·, xm· , ym· , q̃m· ,pm· , z
) → c∞(z) weakly in F 2

F (H).

On the other hand, for any η ∈ L2((Ω,Fτ ,P );H), the extended martingale representation theo-
rem in Hilbert space H (see, e.g., [7]) yields that

η = Eη +
τ∫

0

h(t) dw(t) +
τ∫

0

∫
Z

g(t, z)Ñk(ds, dz),

h(·) ∈ L2
F

(
L(K,H)

)
, g(·, z) ∈ F 2

F (H).

Therefore

E

(
η,

τ∫
0

q̃m
t dw(t)

)
= E

[ τ∫
0

〈〈
h(t), q̃m

t

〉〉
dt

]
→ E

[ τ∫
0

〈〈
h(t), qt

〉〉
dt

]

= E

(
η,

τ∫
0

qt dw(t)

)

and

E

(
η,

τ∫
0

∫
Z

pm
t (z)Ñk(dt, dz)

)
= E

[ τ∫
0

∫
Z

〈
g(t, z),pm

t (z)
〉
dt

]

→ E

[ τ∫
0

∫
Z

〈
g(t, z),pt

〉
dt

]

= E

(
η,

τ∫
0

∫
Z

pt (z)Ñk(dt, dz)

)
.

Also

E
(
η,ym

τ

) = E
(
η,β4x

m
τ + Qmψ(0)

) → E
(
η,β4xτ + ψ(0)

) = E
(
η,ψ(xτ )

)
.

Now we take weak limits on both sides of the stochastic integral equations determined by (3.6).
Above results and the fact of xm → x0 (strongly in L2((Ω,F0,P );H)) will give
0
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
xt = x0 +

t∫
0

b∞(s) ds +
t∫

0

σ∞(s) dw(s) +
t∫

0

∫
Z

c∞(s, z)Ñk(ds, dz)

yt = ψ(xτ ) +
τ∫

t

f∞(s) ds −
τ∫

t

qs dw(s) −
τ∫

t

∫
Z

ps(z)Ñk(ds, dz), 0 � t � τ.

(3.7)

In the sequel we will show

b∞(t) = b(t, xt , yt , qt ,pt ,ω), f∞(t) = f (t, xt , yt , qt ,pt ,ω),

σ∞(t) = σ(t, xt , yt , qt ,pt ,ω), c∞(t, z) = c(t, xt , yt , qt ,pt , z,ω).

For any (x̄t , ȳt , q̄t , p̄t ) ∈ L2
F (H) × L2

F (H) × L2
F (L(K,H)) × F 2

F (H), define

um
t = (

xm
t , ym

t , qm
t ,pm

t

)
, ūt = (x̄t , ȳt , q̄t , p̄t ),

Am

(
t, um

t ,ω
) = (−fm

(
t, um

t ,ω
)
, bm

(
t, um

t ,ω
)
, σm

(
t, um

t ,ω
)
, cm

(
t, um

t , ·,ω))
,

Δm = E

τ∫
0

(
Am

(
t, um

t ,ω
) − Am(t, ūt ,ω),um

t − ūt

)
dt

+ E

τ∫
0

(
β1u(t)

∣∣xm
t − x̄

(m)
t

∣∣2 + β2u(t)
∣∣ym

t − ȳ
(m)
t

∣∣2

+ β3
[∣∣qm

t − q̄
(m)
t

∣∣2 + ∥∥pm
t − p̄

(m)
t

∥∥2])
dt.

From the definitions of fm,bm,σm, cm and assumption (A5), we immediately get

Δm = E

τ∫
0

(
A

(
t, um

t ,ω
) − A

(
t, ū

(m)
t ,ω

)
, um

t − ū
(m)
t

)
dt

+ E

τ∫
0

(
β1u(t)

∣∣xm
t − x̄

(m)
t

∣∣2 + β2u(t)
∣∣ym

t − ȳ
(m)
t

∣∣2

+ β3
[∣∣qm

t − q̄
(m)
t

∣∣2 + ∥∥pm
t − p̄

(m)
t

∥∥2])
dt � 0.

By Itô’s formula, we obtain

E

[ τ∫
0

[(
ym
t , bm

(
t, um

t

)) − (
xm
t , fm

(
s, um

t

)) + 〈〈
qm
t , σm

(
t, um

t

)〉〉 + 〈
pm

t (·), cm

(
t, um

t , ·)〉]dt

]

= E
[
β4

∣∣xm
τ

∣∣2 + Qmψ(0)xm
τ − Qmx0y

m
0

]
.

Using weak lower semi-continuity of convex functionals, and noting that ym
0 → y0 weakly in

L2((Ω,F0,P );H), we can get that
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lim
m→∞

E

[ τ∫
0

[(
ym
t , bm

(
t, um

t

)) − (
xm
t , fm

(
t, um

t

)) + 〈〈
qm
t , σm

(
t, um

t

)〉〉

+〈
pm

t (·), cm

(
t, um

t , ·)〉]dt

]
= lim

m→∞
E

[
β4

∣∣xm
τ

∣∣2 + ψ(0)xm
τ − Qmx0y

m
0

]
� E

[
β4|xτ |2 + ψ(0)xτ − x0y0

]
= E

[ τ∫
0

[(
yt , b∞(t)

) − (
xt , f∞(t)

) + 〈〈
qt , σ∞(t)

〉〉 + 〈
pt (·), c∞(t, ·)〉]dt

]
. (3.8)

Since Am(·, ū,ω) → A(·, ū,ω) strongly, this gives

E

[ τ∫
0

(
um

t − ūt ,Am(t, ūt ) − A(t, ūt )
)
dt

]
→ 0, m → ∞. (3.9)

Define the following Hilbert space:

L2
F ,u(·)(H) =

{
v(t,ω): v(t,ω) is H -valued,Ft -adapted such that

‖v‖2
u(·) = E

τ∫
0

u(t)
∣∣v(t,ω)

∣∣2
dt < ∞

}
.

It is clear that S2
F (H) ⊆ L2

F ,u(·)(H). By Itô’s formula, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|xt |2 = |x0|2 +
t∫

0

2xsb∞(s) ds +
t∫

0

2
(
xs, σ∞(s) dw(s)

) +
t∫

0

∥∥σ∞(s)
∥∥2

ds

+
t∫

0

∫
Z

2
(
xs,p∞(s, z)

)
Ñk(ds, dz) +

t∫
0

∫
Z

∥∥c∞(s, z)
∥∥2

Nk(ds, dz),

|yt |2 = ∣∣ψ(xτ )
∣∣2 +

τ∫
t

2ysf∞(s) ds −
τ∫

t

2
(
xs, qs dw(s)

)
−

τ∫
t

2
(
xs,ps(z)

)
Ñk(ds, dz) −

τ∫
t

‖qs‖2 ds +
τ∫

t

∥∥ps(z)
∥∥2

Nk(ds, dz).

From Gronwall’s inequality, elementary algebraic inequalities and B–D–G’s inequality, it is not
difficult to prove that E sup0�t�τ |xt |2 < ∞ and E

∫ τ

0 |xt |2 < ∞. Indeed, we also have S2
F (H) =

L2
F (H) under the assumptions of the present paper. By the uniqueness of weak convergence, we

conclude that

xm· → x· weakly in L2
F ,u(·)(H); ym· → y· weakly in L2

F ,u(·)(H).
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From these and (3.8) and (3.9), we immediately obtain

0 � lim
m→∞

Δm

� E

τ∫
0

(
A∞(t,ω) − A(t, ūt ,ω),ut − ūt

)
dt

+ E

τ∫
0

(
β1u(t)|xt − x̄t |2 + β2u(t)|yt − ȳt |2 + β3

[|qt − q̄t |2 + ‖pt − p̄t‖2])dt.

(3.10)

Set

ȳt = yt , q̄t = qt , p̄t = pt , xt − x̄t = εφ(t),

where ε > 0, φ(t) := f (t, xt , yt , qt ,pt ) − f∞(t). As ε → 0, with probability one

f∞(t,ω) = f (t, xt , yt , qt ,pt ,ω)

follows. Similarly, if we respectively set

x̄t = xt , q̄t = qt , p̄t = pt , yt − ȳt = −ε
(
b(t, xt , yt , qt ,pt ) − b∞(t)

);
x̄t = xt , ȳt = yt , p̄t = pt , qt − q̄t = −ε

(
σ(t, xt , yt , qt ,pt ) − σ∞(t)

);
x̄t = xt , ȳt = yt , q̄t = qt , pt − p̄t = −ε

(
c(t, xt , yt , qt ,pt , z) − c∞(t, z)

)
,

then with probability one we have

b(t, xt , yt , qt ,pt ) = b∞(t), σ (t, xt , yt , qt ,pt ) = σ∞(t),

c(t, xt , yt , qt ,pt , z) = c∞(t, z).

These complete the proof. �
4. Some applications to optimal stochastic control problems

In this section, we first give an example to illustrate that our given assumptions can be fulfilled,
then we apply our main results to solve a class of special optimal stochastic control problems in
a Hilbert space.

Example 4.1. Consider the following forward–backward stochastic differential equations with
Poisson jumps taking values in a separable Hilbert space H :⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dxt = b(t, xt , yt , qt ,pt ,ω)dt + σ(t, xt , yt , qt ,pt ,ω)dw(t)

+
∫
Z

c(t, xt−, yt−, qt ,pt , z,ω)Ñk(dt, dz), x0 = a ∈ H,

dyt = −f (t, xt , yt , qt ,pt ,ω)dt + qtdw(t) +
∫
Z

pt (z)Ñk(dt, dz),

(4.1)
yτ = xτ + ψ(0,ω), 0 � t � τ � T ,
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where ψ(0,ω) is measurable with respect to Fτ and square integrable. Moreover,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(s, x, y, q,p) = b1(s, x, y, q,p) + b2(s, x, y, q,p),

b1(s, x, y, q,p) = −Is �=0s
−αy/|y|1−β, 0 < β < 1,

b2(s, x, y, q,p) = −Is �=0s
−αy,

σ (s, x, y, q,p) = −q,

c(s, x, y, q,p, z) = −p,

f (s, x, y, q,p) = Is �=0s
−αx,

where u(s) = Is �=0s
−α,α < 1. It is easy to check (4.1) satisfies all assumptions of Theorem 3.1,

then there exists a unique adapted solution. However, it is clear that b1(s, x, y, q,p) is not Lip-
schitz continuous in y.

Consider now the following Hilbert space-valued feedback control systems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
f
t = b

(
t, x

f
t , y

f
t , q

f
t ,p

f
t ,ω

)
dt + σ

(
t, x

f
t , y

f
t , q

f
t ,p

f
t ,ω

)
dw(t)

+
∫
Z

c
(
t, x

f
t−, y

f
t−, q

f
t ,p

f
t , z,ω

)
Ñk(dt, dz), x

f

0 = af ∈ H,

dy
f
t = −f

(
t, x

f
t , y

f
t , q

f
t ,p

f
t ,ω

)
dt + q

f
t dw(t) +

∫
Z

pt (z)
f Ñk(dt, dz),

yf
τ = ξ ∈ L2((Ω,Fτ ,P );H )

, 0 � t � τ � T ,

(4.2)

where f belongs to U defined by

U = {
u: u(t, x, y, q,p) is jointly measurable such that (4.2) has a unique solution

}
.

Our optimal stochastic control problem is to find f in U so as to maximize the following cost
functional:

J (f ) = E

[
h
(
0, y

f

0

) +
τ∫

0

∂h

∂t

(
t, y

f
t

)
dt + 1

2

τ∫
0

tr
[(

q
f
t

)∗
D2h

(
t, y

f
t

)
q

f
t

]
dt

−
τ∫

0

〈
Dh

(
t, y

f
t

)
, f 0(t, xf

t , y
f
t , q

f
t ,p

f
t

)〉
dt

+
τ∫

0

∫
Z

[
h
(
t, y

f
t− + pt (z)

f
) − h

(
t, y

f
t−

) − 〈
Dh

(
t, y

f
t−

)
,pt (z)

f
〉]
π(dz) dt

]
,

where h(t, y) : [0, T ] × H → R with the following properties:

(D1) h(·,·) has continuous ∂h/∂t , and continuous first and second order Fréchet differentials
given by Dh = Dyh and D2h, which are bounded in any bounded subset of [0, T ] × H ;

(D2) there exists f 0 ∈ U such that supf ∈U〈Dyh,f (t, x, y, q,p)〉 = 〈Dyh,f 0(t, x, y, q,p)〉.

Theorem 4.1. Let (D1) and (D2) hold, then

J
(
f 0) = sup

f ∈U

J (f ). (4.3)
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Proof. By Itô’s formula in [8], for any f ∈ U, we have

Eh(τ, ξ) = E

[
h
(
0, y

f

0

) +
τ∫

0

∂h

∂t

(
t, y

f
t

)
dt + 1

2

τ∫
0

tr
[(

q
f
t

)∗
D2h

(
t, y

f
t

)
q

f
t

]
dt

−
τ∫

0

〈
Dh

(
t, y

f
t

)
, f

(
t, x

f
t , y

f
t , q

f
t ,p

f
t

)〉
dt

+
τ∫

0

∫
Z

[
h
(
t, y

f
t− + pt(z)

f
) − h

(
t, y

f
t−

) − 〈
Dh

(
t, y

f
t−

)
,pt (z)

f
〉]
π(dz) dt

]

= J (f ) − E

[ τ∫
0

〈
Dh

(
t, y

f
t

)
, f

(
t, x

f
t , y

f
t , q

f
t ,p

f
t

)〉
dt

−
τ∫

0

〈
Dh

(
t, y

f
t

)
, f 0(t, xf

t , y
f
t , q

f
t ,p

f
t

)〉
dt

]
= J

(
f 0).

Hence by (D2), the conclusion follows. �
Remark 4.1. If we suppose inff ∈U〈Dyh,f (t, x, y, q,p)〉 = 〈Dyh,f 0(t, x, y, q,p)〉, then
J (f 0) = inff ∈U J (f ). Also we can discuss optimal stochastic control problems with restricted
coefficients. For example, let Uβ = {f β ∈ U: f β(t, x, y, q,p) = u(t)[x + βy], 0 � β � 1},
h(t, y) = 1

2 exp(αt)|y|2, where α is a constant, it is easy to see that J (f 1) = supf β∈Uβ
J (f β).

Indeed, for this case, appropriate b,σ and c can guarantee the existence and uniqueness of solu-
tions (for example, replace Is �=0s

−α by u(s) in Example 4.1).
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