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Abstract

We introduce 2-way "nite automata with quantum and classical states (2qcfa’s). This is a
variant on the 2-way quantum "nite automata (2qfa) model which may be simpler to implement
than unrestricted 2qfa’s; the internal state of a 2qcfa may include a quantum part that may be
in a (mixed) quantum state, but the tape head position is required to be classical.

We show two languages for which 2qcfa’s are better than classical 2-way automata. First,
2qcfa’s can recognize palindromes, a language that cannot be recognized by 2-way deterministic
or probabilistic "nite automata. Second, in polynomial time 2qcfa’s can recognize {anbn|n ∈ N},
a language that can be recognized classically by a 2-way probabilistic automaton but only in
exponential time. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The theory of quantum computing has had some remarkable successes, such as
Shor’s quantum algorithm for factoring integers in polynomial time [21] and Grover’s
algorithm for searching an unordered list of size n with just O(

√
n) accesses to the list

[11]. However, these algorithms are for general quantum Turing machines or quantum
circuits. Today’s experimental quantum computers are much less powerful and the
biggest quantum computer consists of just 5 quantum bits (qubits). Therefore, it may
be interesting to consider more restricted theoretical models of quantum computers. In
this paper, we consider the following question: what is the simplest and most restricted
model of computation where quantum computers are still more powerful than their
classical counterparts? Classically, one of simplest models of computation is a "nite
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automaton. Quantum "nite automata have been recently studied by several authors
[2,3,5,15,17].

Two models of quantum "nite automata have been considered. The simplest is
1-way quantum "nite automata (1qfa’s) introduced by Kondacs and Watrous [15] and
Moore and Crutch"eld [17]. This is very simple model of computation but it is not
very powerful; the languages recognized by 1qfa’s form a proper subset of the regular
languages (languages recognized by 1-way deterministic automata). A more powerful
generalization of this model is 1-way qfa’s that allow mixed states (de"ned similarly
to quantum circuits with mixed states [1]). Any 1-way dfa can be easily simulated by
a 1-way qfa with mixed states. However, all languages recognized by 1-way qfa’s with
mixed states (with bounded error) are still regular. The second model is 2-way quan-
tum "nite automata (2qfa’s) [15]. In this model, it is easy to simulate any deterministic
automaton and some nonregular languages can be recognized as well. This implies that
2qfa’s are strictly more powerful than their classical counterparts. However, this model
has another disadvantage: it allows superpositions where the head can be in multiple
positions simultaneously. To implement such a machine, we need at least O(log n)
qubits to store the position of the head (where n is the length of the input). It would
be nicer to have a model where the size of the quantum part does not depend on the
length of the input.

In this paper, we propose 2-way "nite automata with quantum and classical states
(2qcfa’s), an intermediate model between 1qfa’s and 2qfa’s. This model is both pow-
erful (2qcfa’s can trivially simulate any classical automaton and recognize some lan-
guages that classical automata cannot) and can be implemented with a quantum part
of constant size.

We consider the following two languages: Lpal = {x∈{a; b}∗ |x= xR} (the language
consisting of all palindromes over the alphabet {a; b}) and Leq = {anbn |n∈N}.
It has been shown that no probabilistic 2-way "nite automaton can recognize Lpal

with bounded error in any amount of time [7], and that no classical 2-way "nite au-
tomaton can recognize Leq (or any other nonregular language) with bounded error in
polynomial time [6,13]. We prove that there exists an exponential time 2qcfa recog-
nizing Lpal with bounded probability of error, and a polynomial time 2qcfa recognizing
Leq with bounded probability of error, thereby giving two examples where 2qcfa’s are
provably more powerful than classical 2pfa’s.

It is interesting to note that our 2qcfa’s for Lpal and Leq require that the quantum
part of the machine consist of only a single qubit; in essence, our 2qcfa’s use the
quantum state of this qubit to represent and process certain information regarding the
input. While the extremely high precision required in manipulating this single qubit
certainly calls into question the practicalities of these algorithms, it is interesting that
such extreme examples of space-eIciency=precision trade-oJs exist, particularly in light
of existing bounds on the amount of information transmittable and accessible in a single
qubit (or "nite collection of qubits) [3,12,18].

The remainder of this paper has the following organization. In Section 2 we give a
de"nition of 2-way "nite automata with quantum and classical states. In Section 3 we
describe a 2qcfa for Lpal and in Section 4 we give a 2qcfa for Leq. We conclude with
Section 5, which includes mention of various open questions relating to this paper.
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2. De�nitions

In this section we give our de"nition for 2-way "nite automata with quantum and
classical states. Informally, we may describe a 2qcfa as a classical 2-way "nite au-
tomaton that has access to a "xed-size quantum register, upon which it may perform
quantum transformations and measurements. The transformations and measurements are
determined by local descriptions of the classical portion of the machine, and the re-
sults of the measurements may determine the manner in which the classical part of the
machine evolves.

Before giving a more formal de"nition of our model, we recall a few basic facts
regarding quantum computing. For a more detailed overview of quantum computing,
we refer the reader to [4,14,19,20]. Let Q be a "nite set. A superposition of elements
in Q is a norm 1 vector in a Hilbert space H of dimension |Q|, where each element
q∈Q is identi"ed with an elementary unit vector denoted by |q〉. Any superposition
may therefore be written in the form

∑
q∈Q �q|q〉, where each �q is a complex number

and we have
∑

q∈Q |�q|2 = 1. In general, we denote superpositions as |�〉, | 〉, etc., even
when symbols �,  , etc., are not used alone. A unitary operator on H is any invertible
linear operator that preserves length (equivalently U is unitary if U−1 =U †, where
U † denotes the adjoint of U ). When we say that we apply the unitary transformation
described by U to a system in a given superposition | 〉, we mean that the superposition
of this system is changed according to the mapping | 〉 �→U | 〉. A set of operators {Pj}
on H specify an orthogonal measurement (also called a von Neumann measurement)
if Pj =P†

j and P2
j =Pj for all j, PjPk = 0 for j 	= k, and

∑
j Pj = I . If a superposition

| 〉 is measured (or observed) via a measurement described by a collection {Pj}, the
following happens: (i) the result of the measurement is j with probability ‖Pj| 〉‖2

for each j, and (ii) the superposition of the system is changed to (1=‖Pj| 〉‖)Pj| 〉 for
whichever j was the result of the measurement.

Now we may de"ne 2qcfa’s more precisely. A two-way "nite automaton with quan-
tum and classical states is speci"ed by a 9-tuple

M = (Q; S; �;�; �; q0; s0; Sacc; Srej);

where Q and S are "nite state sets (quantum states and classical states, respectively), �
is a "nite alphabet, � and � are functions described below that specify the behavior of
M , q0 ∈Q is the initial quantum state, s0 ∈ S is the initial classical state, and Sacc; Srej ⊆ S
are the sets of (classical) accepting states and rejecting states, respectively. We let
�=�∪{c; $} be the tape alphabet of M , where c =∈� is called the left end-marker
and $ =∈� is called the right end-marker.

The function � speci"es the evolution of the quantum portion of the internal state:
for each pair (s; �)∈ S\(Sacc ∪ Srej)×�, �(s; �) is an action to be performed on the
quantum portion of the internal state of M . Each action �(s; �) corresponds to either
a unitary transformation or an orthogonal measurement.

The function � speci"es the evolution of the classical part of M (i.e., the classical
part of the internal state and the tape head). In case �(s; �) is a unitary transformation,
�(s; �) is an element of S ×{−1; 0; 1} specifying a new classical state and a movement
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of the tape head. In case �(s; �) is a measurement, �(s; �) is a mapping from the set of
possible results of the measurement to S ×{−1; 0; 1} (again specifying a new classical
state and a tape head movement, this time one such pair for each outcome of the
observation). It is assumed that � is de"ned so that the tape head never moves left
when scanning the left end-marker c, and never moves right when scanning the right
end-marker $.

On a given input x, a 2qcfa M is to operate as follows. Initially, the classical
part of M ’s internal state is in state s0, the quantum part of the internal state is in
superposition |q0〉, and the tape head of M is scanning the tape square indexed by 0.
The tape squares indexed by 1; : : : ; |x|= n contain x1; : : : ; xn, while the squares indexed
by 0 and n + 1 contain end-markers c and $, respectively. On each step, the quantum
part of the internal state is "rst changed according to �(s; �), where s is the current
classical internal state and � is the currently scanned tape symbol, and then the classical
internal state and tape head position are changed according to �(s; �) (along with the
particular result obtained from �(s; �) in case �(s; �) is a measurement).

Since the results obtained from each measurement �(s; �) are probabilistic, the tran-
sitions among the classical parts of a given 2qcfa may be probabilistic as well. For
each input x, we may de"ne a probability pacc(x) that a given 2qcfa M eventually
enters a classical accepting state, and a probability prej(x) that M eventually enters a
rejecting state. A given computation is assumed to halt when either an accepting or
rejecting classical state is reached, so the above events are mutually exclusive. We say
that a given machine M recognizes a language L⊆�∗ with one-sided error � if for all
x∈�∗ we have pacc(x) + prej(x) = 1, pacc(x) = 1 if x∈L, and prej(x)¿1 − � if x =∈L.
Other notions of recognition such as two-sided error, zero error, etc., may be de"ned
analogously, but we will only consider one-sided error in this paper.

A natural extension of our model is to allow POVM-type measurements (see [20],
for instance) rather than orthogonal measurements. In fact, this does not change the
power of the model since POVM-type measurements may be simulated by orthog-
onal measurements and unitary operators on (possibly) larger quantum systems. It
may be the case that one may reduce the number of states required for various
tasks using POVMs, although it is questionable whether this has any physical
signi"cance.

3. Recognizing palindromes

In this section we prove that 2qcfa’s can recognize palindromes with any "xed
error bound �¿0, which is an impossible task for classical probabilistic 2-way "nite
automata. We "rst de"ne a 2qcfa for this language that uses a quantum register having
three orthogonal states, since this is easier to describe than the two orthogonal state
(i.e., single qubit) case. Once we have this, it is simple to modify the 2qcfa so that it
requires a single qubit register, due to the fact that the three orthogonal state machine
uses only real amplitudes, along with the fact that there is a natural mapping from
the unit sphere in real three-dimensional Euclidean space to the unit sphere in a two-
dimensional complex Hilbert space.
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Theorem 1. For any �¿0 there exists a 2qcfa M operating as follows. For any input
x∈{a; b}∗, if x is a palindrome then M accepts x with certainty, and if x is not a
palindrome then M accepts x with probability at most � and rejects x otherwise.

In order to prove Theorem 1, we consider the 3× 3 integer matrices A and B, de"ned
as follows:

A =


 4 3 0
−3 4 0

0 0 5


 ; B =


 4 0 3

0 5 0
−3 0 4


 : (1)

Also de"ne a function f : Z3 → Z as

f(u) = 4u[1] + 3u[2] + 3u[3]

for each u∈Z3, and de"ne a set K ⊆Z3 as

K = {u ∈ Z3: u[1] 	≡ 0 (mod 5); f(u) 	≡ 0 (mod 5)

and u[2] · u[3] ≡ 0 (mod 5)}:

Lemma 2. If u∈K , then Au∈K and Bu∈K .

Proof. We show that u∈K implies Au∈K ; the proof for Bu∈K is similar. Write
u= (a; b; c)T, so that Au= (4a + 3b;−3a + 4b; 5c)T. We immediately see (Au)[2]·(Au)
[3]≡ 0 (mod 5), so it remains to show (Au)[1] 	≡ 0 (mod 5) and f(Au) 	≡ 0 (mod 5).
Since u∈K , we have

a 	≡ 0 (mod 5); (2)

f(u) = 4a + 3b + 3c 	≡ 0 (mod 5) (3)

and either b≡ 0 (mod 5) or c≡ 0 (mod 5).
Suppose "rst that b≡ 0 (mod 5). Then we have (Au)[1]≡ 4a (mod 5) and

f(Au) = 4(4a + 3b) + 3(−3a + 4b) + 3(5c) ≡ 2a (mod 5):

Thus (Au)[1] 	≡ 0 (mod 5) and f(Au) 	≡ 0 (mod 5) by (2).
Now suppose c≡ 0 (mod 5). Then

(Au)[1] = 4a + 3b

≡ 4a + 3b + 3c (mod 5)

≡f(u) (mod 5)
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and

f(Au) = 4(4a + 3b) + 3(−3a + 4b) + 3(5c)

≡ 2a + 4b (mod 5)

≡ 3(4a + 3b + 3c) (mod 5)

≡ 3f(u) (mod 5);

so that (Au)[1] 	≡ 0 (mod 5) and f(Au) 	≡ 0 (mod 5) by (3), which completes the proof.

Lemma 3. Let u∈Z3 satisfy u=Av=Bw for v; w∈Z3. Then u =∈K .

Proof. Assume u=Av=Bw for u; v; w∈Z3, so that A−1u; B−1u∈Z3. Since (B−1u)[2]
∈Z we conclude u[2]≡ 0 (mod 5), and since (A−1u)[1]∈Z we conclude 4u[1] −
3u[2]≡ 0 (mod 25). Together these congruences imply u[1]≡ 0 (mod 5), and hence u
=∈K .

Lemma 4. Let

u = Y−1
1 · · ·Y−1

n Xn · · ·X1(1; 0; 0)T;

where Xj; Yj ∈{A; B}. If Xj =Yj for 16j6n, then u[2]2 +u[3]2 = 0. Otherwise, u[2]2 +
u[3]2¿25−n.

Proof. If Xj =Yj for 16j6n, then we clearly have u= (1; 0; 0)T, and thus u[2]2 +
u[3]2 = 0.

Next suppose there exists j such that Xj 	=Yj. Note that ‖u‖= 1, since 5−1Xj and
5Y−1

j are unitary for each j, and further note that 25nu is integer valued. To prove the
lemma it therefore suIces to prove u 	= ±(1; 0; 0)T, since |u[1]|¡1 implies |u[1]|61−
25−n, and therefore

u[2]2 + u[3]2 = 1 − u[1]2 ¿ 1 − (1 − 25−n)2 ¿ 25−n:

Let k be the largest index such that Xk 	=Yk , and without loss of generality sup-
pose Xk =A, Yk =B. Write v=Xk−1 · · ·X1(1; 0; 0)T and w=Yk−1 · · ·Y1(1; 0; 0)T. Since
(1; 0; 0)T ∈K , we must have Av; Bw∈K by Lemma 2. By Lemma 3 this implies
Av 	=Bw, since Av=Bw contradicts the fact that Av; Bw∈K . Since Xj =Yj for j¿k,
we therefore have Yn · · ·Y1(1; 0; 0)T 	=Xn · · ·X1(1; 0; 0)T and thus u=Y−1

1 · · ·Y−1
n Xn · · ·

X1(1; 0; 0)T 	= (1; 0; 0)T. By similar reasoning, u 	= (−1; 0; 0)T since (−1; 0; 0)T ∈K and
hence Yn · · ·Y1(−1; 0; 0)T 	=Xn · · ·X1(1; 0; 0)T.

Proof of Theorem 1. De"ne Ua and Ub to be unitary operators as follows:

Ua|q0〉 = 4
5 |q0〉 − 3

5 |q1〉; Ub|q0〉 = 4
5 |q0〉 − 3

5 |q2〉;
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Repeat ad in"nitum:
Move the tape head to the "rst input symbol and set the quantum state to |q0〉.
While the currently scanned symbol is not $, do the following: (I)

Perform U� on the quantum state, for � denoting the currently scanned symbol.
Move the tape head one square to the right.

Move the tape head left until the c symbol is reached.
Move the tape head one square to the right.
While the currently scanned symbol is not $, do the following: (II)

Perform U−1
� on the quantum state, for � denoting the currently scanned symbol.

Move the tape head one square to the right.
Measure the quantum state: if the result is not q0 then reject.
Set b= 0.
While the currently scanned symbol is not c, do the following: (III)

Simulate k coin-Pips. Set b= 1 in case all results are not “heads”.
Move the tape head one square to the left.

If b= 0, accept.

Fig. 1. A 2qcfa for palindromes.

Ua|q1〉 = 3
5 |q0〉 + 4

5 |q1〉; Ub|q1〉 = |q1〉;

Ua|q2〉 = |q2〉; Ub|q2〉 = 3
5 |q0〉 + 4

5 |q2〉

and de"ne M to be a 2qcfa as described in Fig. 1. The parameter k will be speci"ed
below according to the error bound �.

The action of M on input x= x1x2 · · · xn is as follows. The machine starts with
its quantum state in superposition |q0〉. As while-loop (I) is executed, the tape head
moves over each input symbol and performs either the transformation Ua or Ub on the
quantum state (depending on whether the symbol scanned is a or b). Letting Xj denote
the matrix A or B, as de"ned in (1), depending on whether xj is a or b, we see that
the superposition of the quantum state of M after performing loop (I) is

�0|q0〉 + �1|q1〉 + �2|q2〉

for (�0; �1; �2)T = 5−nXn · · ·X1(1; 0; 0)T. At this point, the tape head is moved back to
the "rst input symbol and while-loop (II) is performed. A process similar to while-loop
(I) is performed (except the inverses of Ua and Ub are applied instead of Ua and Ub),
yielding superposition

*0|q0〉 + *1|q1〉 + *2|q2〉

for (*0; *1; *2)T =X−1
n · · ·X−1

1 Xn · · ·X1(1; 0; 0)T. Now the quantum state is measured:
M rejects with probability prej = *2

1 +*2
2 , and otherwise the quantum state collapses to

|q0〉 with probability *2
0 . By Lemma 4 we conclude prej = 0 in case x is a palindrome,

and prej¿25−n otherwise. Finally, M sets the variable b (stored in its classical internal
state) to 0, executes while-loop (III), and accepts if the while-loop terminates with b
still set to 0; it may be checked that this happens with probability pacc = 2−k(n+1).



306 A. Ambainis, J. Watrous / Theoretical Computer Science 287 (2002) 299–311

This sequence of steps is repeated inde"nitely, causing M to eventually reject with
probability

∑
j¿0

(1 − pacc)j(1 − prej)jprej =
prej

pacc + prej − paccprej

and accept with probability

∑
j¿0

(1 − pacc)j(1 − prej)j+1pacc =
pacc − paccprej

pacc + prej − paccprej
:

These probabilities clearly sum to 1, and the probability of acceptance is therefore 1
in case x is a palindrome. Letting k¿max{log 25;− log �}, we see that if x is not a
palindrome, then M rejects with probability at least 1− �, which completes the proof.

We now outline how this 2qcfa may be modi"ed so that a only single qubit is used.
De"ne a mapping + from the unit sphere in R3 to the unit sphere in C2 as follows:

+(cos�|q0〉 + sin� sin  |q1〉 + sin� cos  |q2〉)

= e−i =2 cos
�
2
|0〉 + ei =2 sin

�
2
|1〉

and de"ne

Û a|0〉 = cos
,
2
|0〉 − i sin

,
2
|1〉; Û b|0〉 = cos

,
2
|0〉 + sin

,
2
|1〉;

Û a|1〉 = −i sin
,
2
|0〉 + cos

,
2
|1〉; Û b|1〉 = − sin

,
2
|0〉 + cos

,
2
|1〉

for ,= tan−1(4=3). It may be veri"ed that the following relations hold:

Û a+(�0|q0〉 + �1|q1〉 + �2|q2〉) = ei�+(Ua(�0|q0〉 + �1|q1〉 + �2|q2〉));

Û b+(�0|q0〉 + �1|q1〉 + �2|q2〉) = ei�+(Ub(�0|q0〉 + �1|q1〉 + �2|q2〉));

where ei� represents a phase factor (possibly depending on �0, �1, and �2) that will not
aJect the operation of the machine. The proof of this claim follows from a much more
general relationship between rigid rotations in three dimensions and unitary transforma-
tions in two dimensions; see, for instance, [16] for further discussion. (See also Section
2.3.2 in [20].) Note here that we have exchanged the x and z coordinates from the
mappings described in these references in order to allow the observations to function
correctly. Clearly, we have that an observation of the state +(|q0〉) (in the {|0〉; |1〉}
basis) yields |0〉 with probability 1, and an observation of +(�0|q0〉 + �1|q1〉 + �2|q2〉)
yields |1〉 with probability at least (1 −√

1 − �)=2¿�=4 in case �2
1 + �2

2¿�. Thus, by
substituting transformation Ûa for Ua, Ûb for Ub, adjusting k as necessary, and letting
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|0〉 be the initial state of the quantum register in the machine constructed above, we
obtain a 2qcfa for palindromes that uses a single qubit.

4. Recognizing anbn

The second language that we consider is {anbn |n∈N}. It is nonregular but can be
recognized by a 2-way probabilistic "nite automaton [9]. However, any 2-way proba-
bilistic automaton recognizing it runs in exponential expected time [10]. (More gener-
ally, a similar result is true for 2-way probabilistic automata recognizing any nonregular
language [6,13].)

In the quantum world, this language can be recognized by a 2qfa [15]. However, this
2qfa uses superpositions where the head of the qfa is in diJerent places for diJerent
components of the superposition and, therefore, cannot be implemented with a quantum
part of "nite size. In this paper, we show that this language can be also recognized by
a 2qcfa in polynomial time.

Theorem 5. For any �¿0, there is a 2qcfa M that accepts any x∈{anbn |n∈N}
with certainty, rejects x =∈{anbn |n∈N} with probability at least 1 − � and halts in
expected time O(m4) where m is the length of the word x.

Proof. The main idea is as follows:
We consider a qcfa M with 2 quantum states |q0〉 and |q1〉. M starts in the state

|q0〉. Every time when M reads a, the state is rotated by angle �=
√

2/ and every time
when M reads b, the state is rotated by −�. When the end of the word is reached,
M measures the state. If it is |q1〉, the word is rejected. Otherwise, the whole process
is repeated.

If the number of a’s is equal to the number of b’s, rotations cancel one another
and the "nal state is q0. Otherwise, the "nal state is diJerent from q0 because

√
2 is

irrational. Moreover, the amplitude of q1 in the "nal state is suIciently large. 1 There-
fore, repeating the above process O(n2) times guarantees getting q1 at least once (and
rejecting the input) with a high probability.

We also need that M halts on inputs x∈{anbn |n∈N} (instead of repeating the
above process forever). To achieve this, we periodically execute a subroutine that
accepts with a small probability c=n2. If the word is not in language, this does not
have much inPuence because this probability is much smaller than the probability of
getting q1 in one run. The resulting automaton is described in Fig. 2.

Next, we show that this automaton recognizes {anbn |n∈N}. It is enough to consider
its action on words of form anbn′ (because all other words are rejected by it at the
very beginning). We start with two lemmas that bound the probabilities of accepting
after loop (I) and rejecting after loop (II).

1 This relies on a property of
√

2 and is not true for an arbitrary irrational number instead of
√

2.
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Check (classically) whether the input is of form a∗b∗. If not, reject.
Otherwise, repeat ad in"nitum:

Move the tape head to the "rst input symbol and set the quantum state to |q0〉.
While the currently scanned symbol is not $, do the following: (I)

If the currently scanned symbol is a, perform U� on the quantum state.
If the currently scanned symbol is b, perform U−� on the quantum state.
Move the tape head one square to the right.

Measure the quantum state. If the result is not q0, reject.
Two times repeat: (II)

Move the tape head to the "rst input symbol
Move the tape head one square to the right.
While the currently scanned symbol is not c or $, do the following: (III)

Simulate a coin Pip. If the result is “heads”, move right. Otherwise, move left.
If both times the process ends at the right end-marker $, do:

Simulate k coin-Pips. If all results are not “heads”, accept.

Fig. 2. A 2qcfa for anbn.

Lemma 6. If the input is x= anbn′ and n′ 	= n, M rejects after loop (I) with proba-
bility at least 1=2(n− n′)2.

Proof. In this case, the state |q0〉 gets rotated by
√

2(n− n′)/. The superposition after
rotating |q0〉 by

√
2(n− n′)/ is

cos(
√

2(n− n′)/)|q0〉 + sin(
√

2(n− n′)/)|q1〉:

The probability of observing |q1〉 is sin2(
√

2(n−n′)/). We bound this probability from
below.

Let k be the closest integer to
√

2(n− n′). Assume that
√

2(n− n′)¿k. (The other
case is symmetric.) Then, k6

√
2(n− n′)2 − 1 (because k2 is integer and 2(n−n′)2−1

is the largest integer that is smaller than (
√

2(n− n′))2). We have

(
√

2(n− n′) −
√

2(n− n′)2 − 1)(
√

2(n− n′) +
√

2(n− n′)2 − 1)

= 2(n− n′)2 − 2(n− n′)2 + 1 = 1;
√

2(n− n′) − k ¿
√

2(n− n′) −
√

2(n− n′)2 − 1

=
1√

2(n− n′) +
√

2(n− n′)2 − 1
¿

1

2
√

2(n− n′)
:

We have 0¡
√

2(n − n′) − k¡1=2 (because k is the closest integer). For any
x∈ [0; 1=2], sin(x/)¿2x (because this is true for x= 0 and 1=2 and sin is concave
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in this interval). Therefore,

sin2(
√

2(n− n′)/) = sin2((
√

2(n− n′) − k)/) ¿ 4(
√

2(n− n′) − k)2

¿ 4
(

1

2
√

2(n− n′)

)2

=
1

2(n− n′)2 :

Lemma 7. Each execution of (II) leads to acceptance with probability 1=2k(n +
n′ + 1)2.

Proof. Each loop (III) is just a random walk starting at location 1 (the "rst symbol of
anbn′) and ending either at location 0 (the left end-marker c) or at location n+ n′ + 1
(the right end-marker $). It is a standard result in probability theory (see [8, Chapter
14.2]) that the probability of reaching the location n+ n′ + 1 is exactly 1=(n+ n′ + 1).
Repeating it twice and Pipping k coins afterwards gives the probability 1=2k(n+n′+1)2.

We select k = 1 + �log ��. If x= anbn, then the loop (I) always returns |q0〉 to |q0〉
and M never rejects. The probability of M accepting after cn2 executions of (II) is

1 −
(

1 − 1
2k(n + n′ + 1)2

)cn2

and this can be made arbitrarily close to 1 by selecting an appropriate constant c.
On the other hand, if x= anbn′ and n 	= n′, M rejects after (I) with probability

prej¿1=2(n−n′)2 and accepts after (II) with probability pacc1=2k(n+n′+1)26�=2(n+
n′ + 1)2. If this is repeated inde"nitely, the probability of rejecting is

∑
k¿0

(1 − pacc)k(1 − prej)kprej =
prej

pacc + prej − paccprej

¿
prej

pacc + prej
¿

1=2
1=2 + �=2

=
1

1 + �
¿ 1 − �:

In both cases, the expected number of iterations of (I) and (II) before M accepts or
rejects is O((n+n′)2) (because, in every iteration, M accepts or rejects with probability
at least c=(n+n′)2). Loop (I) takes O(n+n′) time and each random walk in (II) takes
O((n+n′)2) time. Hence, the expected running time of M is at most O((n+n′)4).

5. Conclusion

In this paper, we have introduced 2-way "nite automata with quantum and classical
states, and given two examples of languages for which 2qcfa’s outperform classical
probabilistic 2-way "nite automata: Lpal = {x∈{a; b}∗ |x= xR} and Leq = {anbn |n∈N}.
It is natural to ask what other languages can be recognized by 2qcfa’s. For instance,
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can any of the following languages be recognized by 2qcfa’s?

Lmiddle = {xay |x; y ∈ {a; b}∗; |x| = |y|} :

Lbalanced = {x ∈ {(; )}∗ |parentheses in x are balanced} :
Lsquare = {anbn2 |n ∈ N}:

Lpower = {anb2n |n ∈ N}:
If so, can any of these languages be recognized by polynomial time 2qcfa’s?
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