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SUMMARY

Rotaviruses exploit host glycans as receptors for cell
attachment. The discovery that human rotaviruses bind a
spectrum of host glycans provides new insights into virus
pathogenesis. Glycan expression is determined genetically
and regulated developmentally, which may affect suscepti-
bility to infection and vaccination.

Interaction with cellular glycans is a critical initial step in
the pathogenesis of many infectious agents. Technological
advances in glycobiology have expanded the repertoire of
studies delineating host glycan–pathogen interactions. For
rotavirus, the VP8* domain of the outer capsid spike pro-
tein VP4 is known to interact with cellular glycans. Sialic
acid was considered the key cellular attachment factor for
rotaviruses for decades. Although this is true for many
rotavirus strains causing infections in animals, glycan
array screens show that many human rotavirus strains
bind nonsialylated glycoconjugates, called histo-blood
group antigens, in a strain-specific manner. The expression
of histo-blood group antigens is determined genetically
and is regulated developmentally. Variations in glycan
binding between different rotavirus strains are biologically
relevant and provide new insights into multiple aspects of
virus pathogenesis such as interspecies transmission, host
range restriction, and tissue tropism. The genetics of
glycan expression may affect susceptibility to different
rotavirus strains and vaccine viruses, and impact the
efficacy of rotavirus vaccination in different populations. A
multidisciplinary approach to understanding rotavirus–
host glycan interactions provides molecular insights into
the interaction between microbial pathogens and glycans,
and opens up new avenues to translate findings from the
bench to the human population. (Cell Mol Gastroenterol
Hepatol 2016;2:263–273; http://dx.doi.org/10.1016/
j.jcmgh.2016.03.002)
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Tcans or glycoconjugates, with structures ranging
from simple monosaccharides to complex sugars with many
different branches, linkages, and orientations.1 Interaction
with host glycans is an essential and critical step in the
infectivity of most, if not all, microbial pathogens. Many
pathogens exploit these glycans for initial cell recognition
and attachment, and for enteric viruses such as rotaviruses
and noroviruses, these interactions are frequently the first
critical step for initiation of infections. Key fundamental,
clinical, and epidemiologic questions on rotavirus disease
have been answered through studies on the interactions of
rotavirus with host glycans. The approaches exemplify
multidisciplinary translational science and involve virolo-
gists, structural biologists, glycobiologists, physicians, and
epidemiologists (Figure 1). For example, screens using
transformative new technologies in glycobiology such as
glycan arrays identified histo-blood group antigens (HBGAs)
as new glycan partners for human rotaviruses. These in-
teractions were confirmed by enzyme-linked immunosor-
bent assays (ELISA) using synthetic glycans, and the basis of
these interactions was elucidated using x-ray crystallog-
raphy and nuclear magnetic resonance (NMR) spectroscopy.
The biological relevance of these findings has been
addressed using hemagglutination, saliva binding, and
in vitro infectivity assays. Preliminary findings from cell
lines now can be confirmed using physiologically relevant
models of the human gut such as intestinal enteroids.
Translational studies in people test if findings from the
bench hold true at the bedside or at the population level.
The findings from such team-science approaches not only
have direct implications for our understanding of the
biology of the virus, but also influence vaccine strategies, the
development of therapeutics, and provide a new foundation
for understanding other enteric infections. The diversity of
glycans recognized by animal and human rotaviruses, in-
sights gained into various aspects of viral pathogenesis such
as interspecies transmission, host restriction, and tissue
tropism, and the effect of genetic differences in glycan
expression on susceptibility to infection and vaccination are
reviewed here.
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Figure 1. Schematic representation of multidisciplinary studies on rotavirus interaction with host glycans. A combi-
nation of glycobiology, structural biology, basic virology, and field studies on infectious diseases have been used to under-
stand rotavirus–host-glycan interactions. (i) Clinical and epidemiologic questions on rotavirus infections in children have been
addressed through these approaches. (ii) A representative image of results from a glycan array is shown, with numeric order of
glycans in the array listed on the x-axis and binding intensity in relative florescence units (RFU) on the y-axis. (iii) A repre-
sentative image of enzyme-linked immunosorbent assay (ELISA) results showing the binding of VP8* from 3 rotavirus strains A,
B, and C to synthetic oligosaccharides. Each colored bar represents a synthetic oligosaccharide. Binding is measured by
optical density value at 450 nm. (iv) A cut-away of a cryo-electron microscopic reconstruction of a rotavirus triple-layered
particle. The core layer comprises VP2 and the intermediate layer is made of the protein VP6. The outer capsid is made of
the glycoprotein VP7. Sixty spikes made of the protease-sensitive protein VP4 extend from the VP7 layer, and comprise 2
domains, VP5* and VP8* (inset). The crystal structure of rotavirus VP8* in complex with a glycan is seen in the second inset.
(v) The biological relevance of binding assays were confirmed through infectivity assays on transformed cell lines and through
hemagglutination and saliva binding assays. (vi) HIEs provide a novel intestinal culture system to study rotaviruses. Confocal
microscopy shows cross-section of an HIE stained with Ki-67 (green) for proliferating cells, actin (red) for highlighting the apical
surface of the epithelial cells, and 40,6-diamidino-2-phenylindole (blue) for the nucleus (left panel). A multilobular, differentiated,
3-dimensional HIE is shown in the right panel. (vii) Field studies using samples from mother–infant pairs will determine the
relevance of these findings at a population level.
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Rotavirus Structure, Classification,
and Disease Burden

Rotaviruses are the leading cause of severe dehydrating
gastroenteritis in children younger than 5 years of age.
Globally, rotavirus infections result in approximately
453,000 deaths each year, accounting for approximately 5%
of child deaths.2 The majority of these deaths occur in
developing countries in Asia and sub-Saharan Africa. Two
live-attenuated oral vaccines against rotavirus (Rotarix,
GlaxoSmithKline Biologicals, Belgium and RotaTeq, Merck &
Co Inc, Whitehouse Station, NJ) were licensed for use in
2006, and as of October 2015, have been introduced into the
national immunization programs of 79 countries world-
wide.3 Large clinical trials have shown that the vaccines are
highly efficacious in developed countries,4,5 and have
significantly reduced the burden of rotavirus gastroenteritis
in many high- and middle-income countries.6–12 However,
the vaccines remain less efficacious in developing countries,
which have the greatest burden of disease.13–16 A number of
factors contribute to the lower efficacy in these populations,
including higher rates of malnutrition and tropical enter-
opathy, early infections, competing enteric infections at the
time of vaccination, and interference by maternal anti-
bodies.13 Efforts are ongoing to improve the efficacy of
existing vaccines and to develop more effective next-
generation vaccines, and this is critical for decreasing the
disease burden in highly affected populations.

Rotavirus is a member of the family Reoviridae. The viral
genome consists of 11 segments of double-stranded RNA
that code for 6 structural viral proteins (VP) and 6
nonstructural proteins.17 The infectious virion is a triple-
layered particle consisting of a core layer made of VP2, an
intermediate layer made of VP6, and an outer shell made of
glycoprotein VP7. Sixty protein spikes made of a protease-
sensitive protein, VP4, extend from the VP7 shell
(Figure 1, iv). Similar to the classification of influenza virus
into H- and N- types based on the hemagglutinin and
neuraminidase proteins, variability in the genes encoding
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the 2 rotavirus outer capsid proteins (VP7 and VP4) form
the basis of a dual-nomenclature system used to classify
rotaviruses into G and P genotypes, respectively. To date, 27
G genotypes and 37 P genotypes (Figure 2, dendrogram)
have been identified.18 As many as 70 different combina-
tions of G and P genotypes have been described in human
infections, although a vast majority are caused by G geno-
types G1, G2, G3, G4, and G9, in combination with P geno-
types P[4], P[6], and P[8].

Rotavirus Interacts With Cellular
Glycans Through the VP8*
Domain of VP4

Rotavirus replicates primarily in differentiated epithelial
cells at the tips of the small intestinal villi. In animal models
of rotavirus infection, histopathologic changes range from no
or slight lesions such as enterocyte vacuolization, to major
changes such as villous blunting and crypt hyperplasia.17

Pathogenesis is multifactorial. Rotavirus infection and a
viral enterotoxin both alter intracellular calcium [Ca2þ]
signaling and stimulation of chloride [Cl-] secretion.
Increased Ca2þ levels are thought to be central to stimulating
Cl- secretion.17 Virus-mediated down-regulation of the
expression of absorptive enzymes results in increased para-
cellular leakage through functional changes in the tight
junctions between enterocytes.19,20 Villous blunting also
leads to decreased absorptive capacity. Furthermore, prolif-
eration of crypt cells occurs during rotavirus infections,
resulting in increased secretion. Secretion also is mediated by
the activation of the enteric nervous system by the virus.17

Recently, decreased sodium (Naþ) absorption by inhibition
of the ion transport protein sodium-hydrogen exchanger 3
(NHE3) activity also has been shown after rotavirus infec-
tion, suggesting another mechanism of diarrhea induction
used by many bacterial pathogens.21 In addition, rotavirus
infection results in a decrease in brush-border enzymes, such
as sucrase isomaltase, leading to an osmotic gradient that can
contribute to diarrhea.22 Villous ischemia and alterations in
intestinal motility also have been reported in rotavirus in-
fections,23 with little or no evidence of inflammation.

The attachment of the virus to epithelial cells is a
multistep process involving the interaction of viral proteins
with cellular receptors such as cell surface glycans.24 The
spike protein VP4 is implicated in the initial attachment to
host cell glycans. During rotavirus infection, proteolysis
results in the cleavage of the spike protein VP4 (88 kilo-
daltons) into VP5* (60 kilodaltons) and VP8* (28 kilo-
daltons) fragments that remain noncovalently attached to
the virion (Figure 1, iv, inset).17 The binding to cellular
glycans is mediated by the VP8* domain of VP4, whereas
VP5* plays a role in host cell membrane penetration.25,26

NMR and x-ray crystallography studies of VP8* from
different rotavirus spike protein genotypes show that the
protein exhibits a galectin-like fold with 2 twisted b-sheets
separated by a shallow cleft (Figure 1, iv, inset).26–30

Galectins are a family of proteins that bind b-galactoside–
containing oligosaccharides. VP4 is proposed to be formed
by the insertion of a host-derived, galectin-like carbohydrate
binding domain into a membrane interacting protein of the
virus.26 The insertion of a carbohydrate-binding domain in a
membrane interaction protein has been described for other
viral proteins such as the influenza hemagglutinin.31 The
crystal structures of VP8* from 3 animal rotavirus strains, a
rhesus rotavirus strain RRV, a porcine rotavirus strain CRW-
8, and a bovine rotavirus strain B223, are determined and
represent the genotypes P[3], P[7], and P[11], respec-
tively.26,27,29 The VP8* structures of human rotaviruses Wa,
DS1, HAL1166, and N155 representing the genotypes P[8],
P[4], P[14], and P[11], respectively, also are known.27–30

P[8] and P[4] are the most common VP4 genotypes
described in children worldwide.32 P[14] and P[11] rotavi-
ruses are less common but both genotypes are highly
interesting in that infections with these viruses appear to
have resulted from interspecies transmission of animal ro-
taviruses into the human population.33–35 P[11] infections
in human beings are almost exclusive to neonates.36,37

Although the galectin-like fold is conserved among all of
these rotavirus VP8* structures, there are differences in the
width of the cleft between the 2 b-sheets among some
strains and this may play a role in the differences in their
glycan binding profiles.38

Sialic Acid as a Key Cellular
Partner for Rotavirus VP8*

For more than 30 years, sialic acid (Sia) was considered
the key determinant of interactions for rotavirus VP8*. This
was based on early work showing that some rotavirus
strains hemagglutinate red blood cells (RBCs) and that
removal of terminal Sia residues by sialidase treatment of
RBCs results in reduced virus binding.39–41 Furthermore,
the infectivity of some animal strains is sensitive to siali-
dase treatment, suggesting a role for Sia in virus attach-
ment.42,43 X-ray crystallography studies confirm this
interaction. The crystal structure of the VP8* of the
sialidase-sensitive RRV strain in complex with the ligand
shows Sia binding in an open-ended, shallow groove be-
tween the 2 b-sheets (Figure 2A, i), distinct from the car-
bohydrate binding site in galectins.26 The rim of the groove
is formed by side chains of Y188 and S190 on one side and
Y155 on the other side, and the floor of the groove is
formed by R101, V144, K187, and Y189 side chains. Key Sia
binding residues R101, Y189, and S190 are strongly
conserved among other sialidase-sensitive rotavirus
strains. A similar Sia binding groove is present in the VP8*
of a porcine P[7] rotavirus strain CRW-8 in complex with
monosialodihexosylganglioside GM3.44

Although Sia binding is a common theme for the
sialidase-sensitive animal rotavirus strains, there are vari-
ations in binding specificity to different members of the Sia
family. The most common members of this family are
N-acetylneuraminic acid (Neu5Ac) and N-glycolylneur-
aminic acid (Neu5Gc), which differ by the presence of an
additional hydroxyl group in Neu5Gc. RRV VP8* shows
greater affinity for Neu5Ac, and VP8* from bovine strain
NCDV, porcine strains OSU and CRW-8, and simian strain
SA11 show greater specificity for Neu5Gc.45–47 The binding



Figure 2. Crystal structures of rotavirus VP8*. (A) Phylogenetic analysis of rotavirus VP4 types (circular dendrogram) was
constructed by MEGA6 using the maximum likelihood method,75 surrounded by the crystal structures of different VP8*. The
structures of VP8* in complex with specific glycans are presented where known. (i) P[3] genotype, Rhesus rotavirus RRV in
complex with Sia. (ii) P[8] genotype, human rotavirus Wa. Currently, there are no structures of P[8] VP8* in complex with
glycans. (iii) P[14] genotype, human rotavirus HAL1166 in complex with A-type HBGA in the same pocket as Sia binding in
RRV. (iv) P[11] genotype, human neonatal rotavirus N155 in complex with type II tetrasaccharide LNT. The glycan binding
occurs in a different site compared with RRV and HAL1166. (v) P[11] genotype, human neonatal rotavirus N155 in complex
with type II tetrasaccharide LNnT. (vi) P[11] genotype, bovine rotavirus B223 in complex with type II tetrasaccharide LNnT. The
difference in J–K loop (iv–vi, black box) between N155 and B223 contributes to the inability of B223 to bind type I glycans. (B)
Structure-based sequence alignment of VP8* from different rotavirus strains with residues colored with Clustal X shading using
Jalview. Each residue in the alignment is assigned a color if the amino acid profile at that position meets a minimum criteria
specific for that residue type.76
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preference and affinity may be influenced by the amino
acid residues at positions 187 and 157 of VP8*, respec-
tively.27,47 The binding of VP8* from many animal strains
to Neu5Gc may be significant from an evolutionary
perspective, given that Neu5Gc is expressed in mammalian
tissues but not in normal human tissues. Binding to Neu5Gc
is not described for any human rotavirus strain and cor-
relates with the evolutionary loss of Neu5Gc expression in
human beings.48

The vast majority of strains causing human infections are
insensitive to sialidase treatment.49 For P genotypes that are
detected in both human beings and animals, sialidase
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sensitivity is VP4 genotype–specific and does not segregate
by species of origin.50 In the VP8* of prevalent P genotypes
(P[4], P[6], and P[8] genotypes), as well as that of some
other sialidase-insensitive strains, the key Sia binding res-
idue R101 is replaced by amino acids with hydrophobic side
chains that would prevent the formation of hydrogen bonds
with Sia (Figure 2B).26 These results led to initial conclu-
sions that Sia binding may not be an obligate requirement
for all rotaviruses. However, NMR spectroscopy and
molecular modeling of VP8* from a sialidase-insensitive
human rotavirus P[8] strain (Wa) show binding to gangli-
osides such as GM1 using internal Sia residues.51 Infectivity
assays on cells treated with sialidases showed a marginal
increase in Wa titer, further suggesting a role for internal
glycan residues as receptors for this virus strain. Of note, the
cleft between the 2 b-sheets in the VP8* of the globally
dominant human rotavirus P[4] and P[8] strains is consid-
erably wider (Figure 2A, ii, and B) than the cleft in Sia
binding animal rotavirus strains.38 Although no crystal
structures are available for these human genotypes in
complex with glycans, NMR and modeling studies propose
that a wider cleft would allow for binding of gangliosides
such as GM1 using internal Sia residues.51

Taken together, these findings led to the paradigm that
sialidase-sensitive strains with a narrow cleft recognize
glycans such as GD1 with terminal Sia while the sialidase-
insensitive strains possessing a wider cleft bind ganglio-
sides such as GM1 that contain internal Sia residues.51 The
former group comprises predominantly animal rotavirus
strains while the majority of human strains fall in the latter
group. However, recent studies have shown that although
recognition of sialoglycans is necessary for many animal
rotaviruses, Sia binding may not be an obligatory require-
ment for all strains. Human rotavirus strains can bind
nonsialylated glycans, showing genotype-dependent varia-
tions in glycan binding that may be critical for multiple
aspects of virus pathogenesis.28,29,52–57

VP8* of Human Rotavirus Strains
Bind Histo-Blood Group Antigens

The discovery that the VP8* of some human rotavirus
strains bind HBGAs brought a paradigm shift in our
understanding of rotavirus interactions with cellular
glycans.28,29,52–57 HBGAs are nonsialylated glycoconjugates
expressed on the surface of RBCs and epithelial cells, and
are present in mucosal secretions.58 HBGAs are cellular
receptors for a number of gastrointestinal pathogens such
as noroviruses, Helicobacter pylori, and Campylobacter
jejuni.59–61 HBGA synthesis occurs by the sequential addi-
tion of monosaccharides to precursor disaccharides by
genetically coded glycosyltransferase enzymes such as the A
and B transferases (ABH genes), fucosyltransferase-2 (FUT2,
secretor gene) and FUT-3/4 (Lewis gene). Thus, an in-
dividual’s HBGA expression profile is genetically determined
based on his/her ABH, Secretor, and Lewis genotypes.
Precursor disaccharides contain the sugars galactose and
N-acetylglucosamine (GlcNAc), linked by a b1-3 or b1-4
linkage. Based on the linkages, the glycans are categorized
as type I and type II, with type I sugars containing the b1-3
linkage and type II containing the b1-4 linkage, respectively.
The biosynthesis of H-type I HBGA (Figure 3) involves the
addition of a fucose residue in the a1,2 position to the
terminal galactose of the type I precursor by the enzyme
FUT2. The modification of H antigens by A and B trans-
ferases leads to the generation of the A or B antigens of the
ABO system, respectively. Lewis antigens are synthesized by
the addition of a fucose residue in the a1,3 or a1,4 position
to the terminal GlcNAc of the precursor structures or H-type
HBGA; addition to the precursor disaccharide results in the
generation of Lewis-a (Lea), whereas the addition to the
terminal GlcNAc of the H-type I HBGA leads to the genera-
tion of Lewis-b (Leb). Type II HBGA synthesis occurs on the
type II precursor backbone, and similarly leads to the gen-
eration of H-type II, Lewis-x (Lex), and Lewis-y (Ley) anti-
gens. Specific mutations in FUT2 and FUT3 genes render
them nonfunctional and individuals with these mutations
are referred to as secretor-negative and Lewis-negative,
respectively. Major findings on rotavirus–HBGA in-
teractions are discussed in the following subsections.
Discovery of VP8*-HBGA Interactions:
P[14] VP8* Binds A-Type HBGA

The first evidence for human rotavirus interaction with
HBGA came through studies with a P[14] rotavirus strain
HAL1166.28 Human infections with P[14] viruses are
thought to have resulted from interspecies transmission of P
[14] strains from even-toed ungulates such as sheep and
goats to human beings.34 The x-ray crystallographic struc-
ture of the VP8* of HAL1166 shows that the cleft in this
strain is narrower than the VP8* cleft in other human
rotavirus strains such as P[4] and P[8], and is more similar
to the narrow cleft seen in Sia binding animal strains.
Despite this similarity, structural changes in the cleft region
are not compatible with Sia binding. A high-throughput
glycan array screen comprising 511 sialylated and non-
sialylated glycans unexpectedly identified A-type HBGA as a
partner for P[14] VP8*. Specific binding to glycans with
terminal residues characteristic of A-type HBGA was seen,
although there was no binding to sialylated glycans with
either internal or terminal Sia. Structural studies show that
binding to A-type HBGA occurs in the same pocket where
Sia binds RRV VP8* (Figure 2A, i and iii). The binding of P
[14] VP8* to A-type HBGA is biologically relevant as seen by
hemagglutination and infectivity assays. For example, the
infectivity of HAL1166 is enhanced significantly in Chinese
hamster ovary cells expressing A-type HBGA and infectivity
is blocked by treatment with anti–A-type antibodies. P[14]
infections in A–blood type individuals have been reported,
but more epidemiologic data are needed to validate the
clinical significance of this finding.

Binding to A-type HBGA also was seen for VP8* from P
[9] and P[25] rotaviruses, which are highly homologous to P
[14] VP8* in the glycan-binding domain.28,55 Hemaggluti-
nation, saliva binding, and infectivity assays support the
biological significance of this interaction while homology
modeling and mutagenesis show that the carbohydrate



Figure 3. Biosynthesis of
type I HBGA. The type I
precursor contains the
sugars Gal and GlcNAc
linked by a b1-3 linkage.
The biosynthesis of H-type
I HBGA involves the addi-
tion of a fucose residue in
the a1,2 position to the
terminal Gal of the type I
precursor by the enzyme
FUT2 (secretor gene). The
modification of H antigens
by A- and B-glycosyl
transferases leads to the
generation of the A or B
antigens, respectively. Lea

antigen is synthesized by
the addition of a fucose
residue in the a1,3 or a1,4
position to the terminal
GlcNAc of the type I pre-
cursor by the enzyme
FUT-3/4 (Lewis gene). The
addition of a fucose res-
idue in the a1,3 or a1,4
position by these enzymes
to H-type HBGA leads to
the generation of Leb.
Persons who lack func-
tional FUT2 cannot ex-
press fucose at the a1,2
position and are referred to
as nonsecretors.
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binding interface is shared with the Sia-binding animal
rotaviruses through different amino acid residues.28,55
Binding of Neonate-Specific P[11] VP8* to
Precursor Glycans: Basis of Age Restriction

Clinically and epidemiologically, rotavirus infections in
newborns are distinct from infections in older children.62,63

The majority of infections in neonates are asymptomatic,
although association with severe gastrointestinal symptoms
such as necrotizing enterocolitis and feed intolerance also
have been described. Rotavirus infections in neonates are
caused by remarkably stable, unusual virus strains that
appear to be geographically restricted. Strains belonging to
the P[11] genotype (in combination with either G9 or G10
VP7 genotype) are associated with high rates of neonatal
infections in India.37,64 Very few cases of G9P[11] or G10P
[11] infections are reported beyond the neonatal period.
The basis of the predilection of these viruses for newborns
was unclear until the discovery of HAL1166 VP8* binding to
A-type HBGA prompted studies to identify glycan receptors
for neonatal P[11] viruses.54,56

Glycan screens for P[11] VP8* using arrays of cellular
and human milk glycans54,56,57 show that the VP8* of a
neonatal P[11] virus strain N155 recognizes type I and type
II precursor glycans (also referred to as lacto-N-biose and
N-acetyllactosamine [LacNAc], respectively). The synthesis
of precursors is constitutive in many cell types, and the
addition of branches and terminal sugars is a developmen-
tally regulated process that occurs in the postnatal period.
The binding of P[11] VP8* to precursor glycans may explain
the predilection of these strains for newborns. With growth
and development, the P[11] viruses are likely unable to bind
modified glycans in the gut and therefore unable to infect
children in the older age group. This is supported by bio-
logical relevance of P[11] VP8* glycan binding: P[11] VP8*
binds saliva from infants but not adults,54 hemagglutination
occurs with cord blood RBCs, and infectivity of P[11] viruses
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is increased in the presence of HBGAs.56 Furthermore, the
infectivity of a G9P[11] virus is reduced in the presence of
poly-LacNAc, human milk, and infant saliva containing
LacNAc, suggesting that soluble glycans in human milk can
possibly act as decoy receptors for the P[11] VP8* and
prevent binding to intestinal LacNAc glycans.54

The crystal structures of N155 VP8* in complex with a
type I tetrasaccharide lacto-N-tetraose (LNT) and type II
tetrasaccharide lacto-N-neotetraose (LNnT) show that there
are additional glycan binding sites in rotavirus VP8*
(Figure 2A, iv and v).29 Binding to LNT and LNnT in P[11]
VP8* occurs in a previously uncharacterized binding pocket,
distinct from the Sia and A-type HBGA binding sites in an-
imal and P[14] rotaviruses, respectively. The binding cleft in
P[11] VP8* is noticeably wider and is more similar to the
cleft observed in the globally dominant P[4], P[6], and P[8]
VP8* despite sequence differences. Although the crystal
structures of these common genotypes in complex with
glycans are not yet described, it is tantalizing to speculate
that the glycan-binding site in these strains with a wider
cleft overlaps with the newly identified glycan-binding site
discovered in P[11] VP8*, with specific sequence changes
that correspond to their glycan specificity. Galectin-3 is also
known to bind LNT and LNnT, and the crystal structure of
galectin-3 in complex with these glycans show that the
ligand adopts a linear conformation similar to that observed
in the P[11] VP8*.65 This leads to new questions on whether
these glycans can engage both galectins and VP8*, and
whether galectins play a role in rotavirus entry into cells.
VP8*–HBGA Interactions as a Basis
for Interspecies Transmission

The findings with P[14] and P[11] VP8*s binding to
HBGA suggest a role for VP8*-HBGA interactions as a basis
for interspecies transmission of rotavirus strains. The
HAL1166 strain was isolated from a child in Finland66;
however, this strain has its origins in even-toed ungulates.34

The VP8* of HAL1166 has a narrow cleft similar to Sia-
binding animal rotaviruses, but A-type HBGA binds at the
same location as Sia in the animal strains.28 This difference
in binding is brought about by subtle changes in the struc-
tural framework of P[14] VP8*. Although the key Sia binding
residue R101 is positionally conserved, there are differences
in side-chain orientations, resulting in steric hindrance to
Sia binding. An insertion in position 187 in HAL1166 allows
for specific interaction with A-type HBGA (Figure 2B). Thus,
comparisons of the complex structures of Sia binding animal
rotavirus VP8* and human P[14] VP8* show how subtle
sequence changes within the glycan-binding region results
in the switch in specificity from Sia to A-type HBGA, which
likely facilitates the interspecies transmission of this virus
from ungulates to individuals with A-type HBGA expression.

The binding of the P[11] VP8* to type I and type II
precursor glycans is another striking example of interspe-
cies transmission. The human neonatal P[11] viruses are
naturally occurring bovine–human reassortant strains;
these viruses have some genes of human rotavirus origin
but others that have originated from bovine rotavirus
strains.33,35 In particular, the spike protein VP4 is of bovine
rotavirus origin. Phylogenetic analysis of the neonatal P[11]
virus shows that the VP4 gene in these strains shows
approximately 86% amino acid identity to P[11] viruses
isolated from cattle.33,35 A bovine G10P[11] strain B223
shows hemagglutination properties similar to the human
neonatal P[11] virus, and infectivity is enhanced with
expression of H-type HBGA in Chinese hamster ovary
cells.54,56 Despite these similarities, there are differences in
the glycan binding profiles between the bovine and human P
[11] VP8* on a shotgun milk glycan array. Although the
human neonatal P[11] VP8* binds both type I and type II
glycans, the bovine P[11] VP8* only binds to type II glycans
(Figure 2A, vi).57 This difference is mediated by small
changes in certain loop regions such as the J–K loop in the
bovine VP8*; the loop projects away in the bovine P[11]
VP8* compared with the human P[11] VP8* and therefore
cannot interact with the terminal sugars of type I glycans
such as LNT (Figure 2A, iv–vi).29 Although little is known
about differences in glycan expression between the bovine
and human gut, there is evidence to suggest that bovine milk
contains an abundance of type II glycans whereas human
milk contains type I and type II glycans.67 Thus, the bovine
strain may have achieved specificity for type II glycans in
the bovine microenvironment, and through a few sequence
changes, evolved to cross the species barrier by recognizing
both type II and type I glycans present in human beings.
This ability to bind a broader spectrum of glycans may be
the basis for the zoonotic transmission of this virus from
cattle to human beings.
Expanded Spectrum of Glycan Binding as the
Basis for Global Prevalence of Some Strains

P[14] and P[11] VP8* provide extensive insights into the
interaction of human rotaviruses with HBGA; however,
much less is known about P[4], P[6], and P[8], which
represent the 3 most prevalent VP4 genotypes worldwide.
The crystal structures of P[4] and P[8] VP8* show that these
genotypes possess a wide cleft that correlates with an amino
acid deletion at position 135, and a significant change from
arginine to phenylalanine at position 101 (Figure 2B).29 The
structure of P[6] VP8* remains to be solved, but this
genotype also shows sequence changes associated with a
wider cleft. Glycan binding assays using a panel of synthetic
oligosaccharides show that P[4] VP8* from strain DS1 and P
[8] VP8* from strain Wa bind Leb and H-type I HBGA,
whereas VP8* from a neonatal P[6] strain ST-3 binds H-type
I (Figure 2B).53 The binding to a type I terminal residue and
an internal Lex determinant also is described for another P
[6] neonatal strain RV3.57,68 However, contradicting the
enzyme-linked immunosorbent assay results, no interaction
between Leb or H-type I HBGA with VP8* from DS-1 or Wa
was seen in saturation transfer difference NMR spectros-
copy.52 The saturation transfer difference NMR data suggest
that P[4] VP8* from DS1 and P[6] VP8* from RV3 interact
with A-type HBGA, leading to a conclusion that A-type
HBGAs are receptors for human rotaviruses. It is hypothe-
sized that strains show variability in the ways they
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recognize A-type HBGA based on findings that P[14] and P
[9] VP8* interact with A-type HBGA predominantly through
the N-acetylgalactosamine residue, whereas P[4] and P[8]
interact using the fucose moiety. The discrepancy in results
obtained from the binding studies and NMR using VP8*
from the same strains (DS-1, Wa, and ST3) remains to be
resolved and validated through crystallography and epide-
miologic studies.

Genetic Basis of Strain Susceptibility
and Vaccine Response

The expression of glycan partners for the prevalent
rotavirus strains, H-type HBGA and Lewis antigens, are
determined genetically; these findings stimulated several
epidemiologic studies to determine if host genetics plays a
role in susceptibility to specific rotavirus genotypes. Most
studies focus on the genetic susceptibility to P[8] VP4 that
binds H-type HBGA present only in secretor-positive in-
dividuals. The P[8] genotype not only represents one of the
most prevalent VP4 types worldwide but is also a compo-
nent of the Rotarix and RotaTeq vaccines. In a retrospective
analysis of secretor status and rotavirus infection in 56
French children, a secretor-negative genotype was associ-
ated with resistance to symptomatic rotavirus infection.69

Another study involving 85 rotavirus-positive children in
Vietnam infected predominantly with a P[8] strain found
all children were HBGA secretors or partial secretors.70

A large study in the United States involving 1564 cases
with gastroenteritis and 818 healthy controls found only
1 of 189 rotavirus-positive patients was a nonsecretor,
compared with 23% in the control group. Overall, these
data indicate that nonsecretors are protected from rota-
virus infection.71 However, it is possible that there are
population-specific differences because contradictory re-
sults were seen in Tunisia, where, of 32 rotavirus-positive
children, P[8] infections were detected in both secretors
and nonsecretors.72

There is less clarity on the significance of Lewis status in
susceptibility to rotavirus. Both secretor and Lewis antigen
status are suggested to mediate susceptibility to rotavirus in
a genotype-dependent manner in Burkina Faso and
Nicaragua.73 In these populations, P[8] infections were seen
exclusively in Lewis- and secretor-positive children, but P[6]
infections were seen in Lewis-negative children, indepen-
dent of their secretor status. This correlates with the in vitro
data on P[8] binding to H-type I and Leb, and with P[6]
binding to H-type I and type I precursor in the glycan
binding studies.53,57 The comparatively higher prevalence of
Lewis-negative phenotype in Africa may explain the higher
prevalence of P[6] infections in this population. This raises
important questions on the role of host genetic status in
susceptibility to vaccine strains and protection from vacci-
nation. Because Lewis-negative children are resistant to P[8]
strains, they may be less susceptible to the vaccine strains
but continue to be susceptible to infections with P[6] viruses.
This provocative observation may explain the reduced vac-
cine efficacy in these populations. However, because this
observation was based on a small number of children with
P[6] and P[8] infections in one region of Africa, the
hypothesis remains to be validated in larger cohorts.

Advancements in in vitro culture techniques now allow
us to mechanistically explore these findings alongside
translational studies. For example, rotavirus infections in
human intestinal enteroid (HIEs) models can assess secretor
status–based differences in the growth of different rotavirus
strains.74 HIEs are a novel, genetically diverse, physiologi-
cally relevant model of human gut that show similar cellular
and functional properties to the human gastrointestinal
epithelium. Comparisons of the infectivity of P[8] strain Wa
with the P[8] vaccine Rotarix indicated that the growth of
Rotarix is attenuated in HIEs from different secretor-
positive individuals when compared with Wa. Further-
more, Rotarix infection was attenuated consistently in an
HIE from one secretor-negative individual. This novel
in vitro model to study vaccine virus attenuation suggests
that there is variability between individuals in susceptibility
to rotavirus strains.

Summary and Future Directions
The discovery of spike protein genotype-dependent

variations in glycan binding for rotavirus strains has resul-
ted in a new understanding of rotavirus host restriction,
zoonotic transmission, and susceptibility to specific rota-
virus strains. The role of host genetics in vaccine response,
particularly in the context of the susceptibility of the pop-
ulation to different strains, is an important new consider-
ation. Developmental regulation of glycan expression is
another important consideration for age at the time of
vaccination with specific strains. There is potential for the
development of therapeutics through the use of soluble
glycan decoys to prevent the binding of rotaviruses to cell
surface glycans. These are exciting findings that open up
new avenues for research on rotavirus interactions with
host glycans, and can bridge the gap between the bench and
bedside. Testing HIE cultures from individuals showing
genetic differences in glycan expression will allow the
exploration of the role of host genetics in susceptibility to
rotaviruses. At this point, the clinical relevance of rotavirus–
host glycan interactions is limited because there are few
translational studies. Epidemiologic studies in many
different populations may be required to fully understand
the impact of these discoveries. An important lesson from
the work on rotavirus–glycan interactions is that paradigms
derived from laboratory or animal virus strains may not
necessarily hold true for clinically relevant human virus
strains and that applying transformative techniques from
many different fields can lead to new lessons in the patho-
genesis of gastrointestinal infections.
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