Sperner Families over a Subset

KO-WEI LIH

Institute of Mathematics, Academia Sinica, Taipei, Taiwan, Republic of China

Communicated by the Managing Editors

Received August 13, 1979

Let $|X| = n > 0$, $|Y| = k > 0$, and $Y \subseteq X$. A family A of subsets of X is a Sperner family of X over Y if $A_1 \not\subseteq A_2$ for every pair of distinct members of A and every member of A has a nonempty intersection with Y. The maximum cardinality $f(n, k)$ of such a family is determined in this paper. $f(n, k) = \binom{n}{\lfloor n/2 \rfloor} - \binom{n-k}{\lfloor n/2 \rfloor}$.

1. INTRODUCTION

Let X be a finite set of cardinality $|X| = n > 0$. A family A of subsets of X is called a Sperner family of X if $A_1 \not\subseteq A_2$ for every pair of distinct members of A. A fundamental result of Sperner [5] states that the cardinality of a Sperner family of X is bounded by $\binom{n}{\lfloor n/2 \rfloor}$. This bound can be attained by the family of all subsets of cardinality $\lfloor n/2 \rfloor$. During the past two decades, there has been extensive research into problems generalizing Sperner's result in various directions. Such tremendous efforts cumulate to the so-called extremal theory of finite sets. See [2-4]. However, the following relativized version of Sperner's problem does not seem to have attracted enough attention. Let Y be a fixed subset of X of cardinality $|Y| = k > 0$. A family A is called a Sperner family of X over Y if A is a Sperner family of X and each member of A has a nonempty intersection with Y. The relativized Sperner problem is to determine the maximum cardinality $f(n, k)$ of Sperner families of X over Y. In this paper we will show that $f(n, k) = \binom{n}{\lfloor n/2 \rfloor} - \binom{n-k}{\lfloor n/2 \rfloor}$. Our discourse will be conducted in the context of graded posets. In this way the whole problem is put into a wider perspective which enables us to formulate a conjecture in the concluding section.

2. MAIN THEOREMS

A finite graded poset P is a finite partially ordered set with a rank function r. That is, r is an integer-valued function defined on P such that $r(x) = 0$
for every minimal element \(x \), and \(r(x) = r(y) + 1 \) whenever \(y < x \) and \(y < z < x \) for no \(z \). We call \(r(x) \) the rank of \(x \). A set \(A \) of elements of \(P \) is an antichain in \(P \) if two arbitrary distinct elements of \(A \) are not related by the partial order of \(P \). Let \(P_m \) denote the set of elements in \(P \) having rank \(m \). The number \(|P_m| \) is called the \(m \)th Whitney number of \(P \) by Crapo and Rota [1]. \(P \) is said to be Sperner if \(\max_m |P_m| = \max|A| \mid A \) is an antichain in \(P \). The common value is henceforth called the Sperner number of \(P \). An order-filter \(F \) in \(P \) is a subset of \(P \) such that, for any \(a \in F \) and \(b \in P \), \(a \leq b \) implies \(b \in F \). The principal order-filter \(\langle a \rangle \) generated by \(a \) is defined to be the set \(\{ b \mid a \leq b \} \). An order-filter \(F \) is generated by \(a_1, a_2, \ldots, a_k, k > 0 \), if \(F = \langle a_1 \rangle \cup \langle a_2 \rangle \cup \cdots \cup \langle a_k \rangle \). We write \(F = \langle a_1, a_2, \ldots, a_k \rangle \). If we furthermore suppose that \(a_1, a_2, \ldots, a_k \) are of a fixed rank, then the rank function \(r \) of \(P \) will induce a canonical rank function \(r' \) on \(F \). That is, \(r'(x) = r(x) - r(a_1) \) for all \(x \in F \). \(F \) thus becomes a graded poset.

The graded poset that mainly concerns us here is \(B^n \), the Boolean algebra of all subsets of \(\{1, 2, \ldots, n\} \) ordered by inclusion. \(B^n \) has the rank function \(r(x) = |x| \). The classical theorem of Sperner in fact says that \(B^n \) is Sperner and its Sperner number is \(\binom{n}{\lfloor n/2 \rfloor} \). We are going to establish the following stronger results.

Theorem 1. Let \(a_1, a_2, \ldots, a_k, 0 < k \leq n, \) be distinct elements of rank 1 in \(B^n \). Then \(F = \langle a_1, a_2, \ldots, a_k \rangle \) is Sperner.

Proof. We first elucidate two basic facts about \(F \).

Fact 1. For \(S \subseteq F_m \), \(0 \leq m < n-1 \), let \(S^* = \{ y \in F_{m+1} \mid (\exists x \in S)(x \leq y) \} \). Then \((n-m-1) |S| \leq (m+2) |S^*| \).

Fact 2. For \(S \subseteq F_m \), \(0 < m \leq n-1 \), let \(S_* = \{ y \in F_{m-1} \mid (\exists x \in S)(y \leq x) \} \). Then \(m |S| \leq (n-m) |S_*| \).

\(F_m \) and \(F_{m+1} \) altogether form a bipartite graph such that \(u \in F_m \) and \(v \in F_{m+1} \) are adjacent if and only if \(u \leq v \). Similarly, \(F_m \) and \(F_{m-1} \) form a bipartite graph. Now, for \(x \in F_m \), there are exactly \(n-m-1 \) elements in \(F_{m+1} \) adjacent to \(x \) since \(y \in B^n_{m+2} \) and \(x \leq y \) imply \(y \in F_{m+1} \). Looking downward, we have two possibilities. In the first case, there are at least \(a_i \) and \(a_j \), \(i \neq j \), such that \(a_i \leq x \) and \(a_j \leq x \). Thus, if \(y \in B^n_m \) and \(y \leq x \), then it must be the case \(y \in F_{m-1} \). So \(x \) is adjacent to \(m+1 \) elements in \(F_{m-1} \). In the second case, there is exactly one \(a_i \) such that \(a_i \leq x \). Then, except the element \(x \langle a_i \rangle \), \(x \) is adjacent to \(m \) elements in \(F_{m-1} \). Facts 1 and 2 now can be visualized simply by counting edges between \(S \) and \(S^* \), between \(S \) and \(S_* \), respectively.

Returning to the proof of Theorem 1, we assume that, among all maximum-sized antichains in \(F \), \(A \) has the minimum value of \(d(A) = \max \{ r'(x) \mid x \in A \} - \min \{ r'(x) \mid x \in A \} \). Now suppose \(d(A) > 0 \).
Case I. \(\min \{|r'(x)| \mid x \in A\} = m < \lfloor n/2 \rfloor - 1 \). Since \(m \leq \lfloor n/2 \rfloor - 2 \leq (n-3)/2 \), we have that \(n - m - 1 \geq m + 2 \). It follows from fact 1 that \(|S| \leq |S^*| \) for any \(S \subseteq F_m \). Now let \(S = A \cap F_m \) and replace \(S \) in \(A \) by \(S^* \) to obtain \(A' \). Since \(A \) is an antichain, none of those elements in \(S^* \) are included in elements of \(A \). This shows that \(A' \) is also a maximum-sized antichain in \(F \). However \(d(A') - d(A) = 1 \), a contradiction.

Case II. \(\max \{|r'(x)| \mid x \in A\} = m > \lfloor n/2 \rfloor - 1 \). In this case \(m > n - m \), from which \(|S| \leq |S^*_n| \) follows by fact 2 for any \(S \subseteq F_m \). Reasoning as in case I, we may replace \(A \cap F_m \) by \((A \cap F_m)^* \). We immediately see that there exists a maximum-sized antichain \(A' \) in \(F \) with \(d(A') = d(A) - 1 \), a contradiction.

If \(A \) does not satisfy either case I or II, then all elements in \(A \) are of the constant rank \(\lfloor n/2 \rfloor - 1 \) which contradicts the assumption \(d(A) > 0 \). After all these contradictions, we come to the conclusion \(d(A) = 0 \), i.e., \(A \subseteq F_m \) for some \(m \). Obviously, each \(F_m \) is an antichain. Hence we can choose \(A \) to be that \(F_m \) with maximum Whitney number.

Remark. If we adjoin \(\phi \) to \(F \), then the extended family turns out to be a Sperner lattice and the ranks agree with the cardinalities of the sets.

\section*{Theorem 2.} Let \(F \) be the same as in Theorem 1. Then the Sperner number of \(F \) is \(\binom{n}{\lfloor n/2 \rfloor} (\binom{n-k}{\lfloor n/2 \rfloor}) \).

\textbf{Proof.} It is easy to see \(|F_m| = \binom{n}{m+1} - \binom{n-k}{m+1} \). Theorem 2 follows from Theorem 1 if we can show that \(d_m = \binom{n}{m} - \binom{n-k}{m} \) attains its maximum over the segment \(0 < m \leq n \) when \(m = \lfloor n/2 \rfloor \). Of course, we are here under the usual convention \(\binom{n}{m} = 0 \) if \(m > n \). Consider \(d_{m+1} - d_m = \left[\binom{n}{m+1} - \binom{n}{m}\right] - \left[\binom{n-k}{m+1} - \binom{n-k}{m}\right] \). When \(1 < m + 1 \leq (n-k)/2 \), both differences inside brackets are nonnegative and the first difference is greater than the second difference. This latter fact can be seen by an easy induction on \(n \). Hence \(d_{m+1} - d_m > 0 \). When \((n-k)/2 < m + 1 \leq \lfloor n/2 \rfloor \), the first difference is still nonnegative but the second difference is nonpositive. Again \(d_{m+1} - d_m > 0 \). In other words, \(d_m \) is increasing as \(m \) steps up from 1 to \(\lfloor n/2 \rfloor \). When \(\lfloor n/2 \rfloor \leq m \leq n \), we need another form for \(d_m \), i.e., \(d_m = \sum_{j=1}^k \binom{n-j}{m-1} \). This can be shown by induction on \(n \) since

\[
\binom{n+1}{m} - \binom{n+1-k}{m} = \left[\binom{n}{m} - \binom{n-k}{m}\right] + \left[\binom{n}{m-1} - \binom{n-k}{m-1}\right]
\]
Now \(d_m - d_{m+1} = \sum_{j=1}^{k} \left(\binom{n-j}{m-1} - \binom{n-j}{m} \right) \) and \(|(n-j)/2| \leq |n/2| - 1 \leq m - 1 \) for \(j = 1, 2, \ldots, k \). So we have \(\binom{n-j}{m-1} - \binom{n-j}{m} \geq 0 \) for \(j = 1, 2, \ldots, k \); hence \(d_m - d_{m+1} \geq 0 \). In other words, \(d_m \) is decreasing as \(m \) steps up from \(|n/2| \) to \(n \). This completes the proof.

Incidentally, the above proof also establishes the following.

Theorem 3. Let \(F \) be the same as in Theorem 1. Then the sequence of Whitney numbers of \(F \) is a unimodal sequence.

3. Concluding Remark

It seems that not enough investigation has been penetrated into the substructures of Sperner graded posets. In view of Theorem 1, we offer the following plausible conjecture.

Conjecture. If \(F \) is an order-filter in \(B^n \) generated by elements of a fixed rank, then \(F \) is Sperner.

Note that the conjecture is false if \(B^n \) is replaced by an arbitrary Sperner poset. The following counterexample is supplied by the referee. Consider the poset \(P \) with these sets ordered by inclusion: \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{4\}, \{5\}, \{4, 5\}. Let \(F \) consist of all sets in \(P \) except \{1\}. Then \(P \) is Sperner and \(F \) is not.

References