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ABSTRACT Spontaneous otoacoustic emissions (SOAEs) are indicators of an active process in the inner ear that enhances the
sensitivity and frequency selectivity of hearing. They areparticularly regular and robust in certain lizards, so theseanimals are good
model organisms for studying howSOAEs are generated.We show that the published properties of SOAEs in the bobtail lizard are
wholly consistent with a mathematical model in which active oscillators, with exponentially varying characteristic frequencies, are
coupled together in a chain by visco-elastic elements. Physically, each oscillator corresponds to a small group of hair cells, covered
by a tectorial sallet, so our theoretical analysis directly links SOAEs to the micromechanics of active hair bundles.

INTRODUCTION

Spontaneous otoacoustic emissions (SOAEs) provide the

most direct evidence of an active process in the inner ear,

which is believed to aid the detection of low-level sounds by

mechanically amplifying the incoming oscillatory stimuli.

First detected in humans (1), they have also been recorded in

a wide range of terrestrial vertebrates including other mam-

mals (2), birds (3), frogs (4), and lizards (5). A similar phe-

nomenon has been reported in some insects, such as the

mosquito (6) and fruit fly (7), where the sensory antennae

have been observed to vibrate at well-defined frequencies.

Because the properties of SOAEs are readily measured,

they provide a convenient way of probing the active process

without causing damage to the cochlea. Indeed, it is now

routine to use the related transiently evoked otoacoustic

emissions—emissions that are generated in response to a

stimulus—to test the hearing of newborn infants (8). If we

understood how the properties of SOAEs are determined, the

study of their spectra and theway that frequency peaks shift in

response to external stimuli would shed light on the under-

lying active process. In nonmammalian vertebrates, a great

deal of evidence indicates that active amplification is inti-

mately related to the sensory hair cells. In particular, in vitro

experiments have shown that the stereovillar bundles of hair

cells in the bullfrog sacculus oscillate spontaneously, and that

this results in the addition of self-generated energy to signals

at the corresponding frequency (9). Subsequently, an in vivo

study of the modulation pattern of otoacoustic emissions

generated by electrical stimulation of the inner ear of a lizard

also implicated the stereovillar bundles as the source of the

active process (10).

Lizards are particularly good model organisms for inves-

tigating SOAEs. Some species, including the bobtail lizard

Tiliqua rugosa (5) and the Tokay geckoGekko gecko (11,12),
display a distinct spectrum of SOAEs with ;10 sharp,

roughly equidistant frequency peaks, that can be suppressed

and to a certain extent shifted by external tones (13). These

emissions are thought to be generated in a region of the

basilar papilla where the hair cells are covered by a tectorial

membrane that is not continuous, but subdivided into sallets.

In the gecko, this corresponds to the postaxial area of the

apical (high frequency) segment (14) and in the bobtail lizard

to the basal (high frequency) segment (15). The size of a

sallet, the number of hair bundles attached to it, as well as the

height of the bundles and the number of stereocilia they

contain, vary with the position on the papilla, from the basal

to the apical end (15,16).

The fact that the number of peaks in the SOAE spectrum is

much smaller (by a factor of 8 in the bobtail lizard and smaller

still in the Tokay gecko) than the number of sallets suggests

that the peaks might result from coupled oscillations of a

group of neighboring sallets, as originally suggested by

Köppl and Manley (5), following the model assumptions of

Manley et al. (16,17). In this article, we construct a theoret-

ical model to test this hypothesis. Because of the amount of

experimental data available (5,10,13,18–20), we use the

properties of the bobtail lizard papilla in the quantitative

aspects of our model. In the basal segment of this papilla, the

tectorial membrane is subdivided into;80 sallets, connected

by a ropelike interconnection in the middle (15). Each sallet

is attached to ;10–25 hair cells.

A previous theoretical model for the similar papilla of

Gekko gecko (21) describes it as a chain of passive oscillators
and describes its mechanical properties in great detail. This

model can reproduce the resonant response of sallets, but,

lacking an active mechanism, it is not intended to reproduce

the spontaneous otoacoustic emissions. Models of active

coupled oscillators, on the other hand, have been proposed
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previously for the mammalian cochlea (22) and a related

model produces a nonuniform otoacoustic emission spec-

trum, due to entrainment and suppression of oscillations (23).

Themechanism is similar to the onewe discuss here, although

the physical basis of our model is quite different, due to the

nature of sallets and the coupling between them.

Many of the properties of SOAEs that we describe with our

model have also been observed in other lizard species that

lack the tectorial structure (24). In this case, coupling be-

tween hair cells is likely to be hydrodynamic. While an ap-

propriate model for this situation would have many

similarities with the one discussed here, the long-range nature

of the interactions would make it more complex. We there-

fore choose to concentrate on lizards with sallets, for which

the physical situation is much better known.

THE MODEL

Our basic premise is that each of the hair bundles in the

papilla is an active mechanical system that can generate self-

sustained oscillations at a characteristic frequency. More-

over, we suppose that each hair bundle has a feedback control

system that maintains it on the verge of its oscillatory insta-

bility (25,26). Then each of the sallets will vibrate with a

small amplitude of displacement, driven by the dynamics of

the hair cells that lie beneath it. We assume that, in the ab-

sence of any connection between the sallets, each sallet

would vibrate at a different frequency, varying monotoni-

cally along the papilla, as a consequence of the changing

architecture. However, the ropelike connection between the

sallets will cause the dynamics of neighboring sallets to be-

come coupled and might result in collective oscillatory dy-

namics.

Based on this premise, we introduce a model of N active

oscillators, coupled through elastic (reactive) and viscous

(dissipative) elements. Each oscillator describes one sallet

and its connected hair bundles. We choose N ¼ 80, corre-

sponding to the number of sallets in the bobtail lizard (15). It

has been shown before that, unlike in freestanding hair

bundles, inertia is important in determining the characteristic

frequency of a sallet (21). Each oscillator is therefore de-

scribed by the equation of motion,

Mjẍj ¼ �Kjxj � Gj _xj 1Oðx3Þ1Fj 1 zj; (1)

whereMj is the mass of jth oscillator, Kj is its spring constant,

and Gj is the effective damping (which can be negative for an

active oscillator). O(x3) denotes cubic terms that describe the

nonlinearity, which is inevitable in an active oscillator and

determines the amplitude of spontaneous oscillations. Fj

represents the force exerted on a sallet by its neighbors and

reads

Fj ¼ kðxj11 � xjÞ1 kðxj�1 � xjÞ
1 gð _xj11 � _xjÞ1 gð _xj�1 � _xjÞ; (2)

for sallets that are not at the ends of the chain (Fig. 1). Here k
represents the reactive nearest-neighbor coupling (corre-

sponding to elastic elements that connect the oscillators)

and g the dissipative coupling (corresponding to viscous

damping of the relative motion between neighboring oscil-

lators).

In addition, each sallet is subject to noise. We assume that

the major source of noise is thermal, from the Brownian

motion of the surrounding fluid, and neglect the contributions

of the dissipative coupling between the sallets (g) and of the

active driving mechanism within the hair bundles. Then ac-

cording to the fluctuation-dissipation theorem, the magnitude

of the noise is related to the corresponding friction coefficient

GF and the Brownian force on each sallet is given by

ÆzjðtÞzjð0Þæ ¼ 2GFkBTdðtÞ: (3)

We first rewrite Eq. 1 using the complex notation

zj ¼ xj � 1

vj

i _xj; (4)

giving

_zj ¼ ivjzj 1 2eji Imzj 1 2idIReðzj11 1 zj�1 � 2zjÞ
1 2idRImðzj11 1 zj�1 � 2zjÞ1 iz̃jðtÞ1Oðz3Þ (5)

where

vj ¼
ffiffiffiffiffi
Kj

Mj

s
; (6)

ej ¼ � Gj

2Mj

; (7)

dI ¼ �1

2

kffiffiffiffiffiffiffiffiffiffi
KjMj

p ; (8)

dR ¼ 1

2

g

Mj

; (9)

z̃jðtÞ ¼ zjðtÞ
Mjvj

: (10)

Equation 5 for each oscillator can be transformed to the

normal form of a Hopf bifurcation (27). If the system is close

to the bifurcation (ej � vj) and the amplitudes are small, this

transformation simply means that all terms containing �z; �z3;
z�z2; and z3 can be neglected. Equation 5 then simplifies to

FIGURE 1 Mechanical equivalent of the model. Sallets are represented as

inertial oscillators (massMj, spring Kj), coupled to their neighbors by elastic

(constant k) and damping (constant g) elements. In addition, there exists an

active driving mechanism within each oscillator (not shown).
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_zj ¼ ðivj 1 ejÞzj 1 ðdR 1 idIÞðzj11 1 zj�1 � 2zjÞ
1 z̃jðtÞ � Bjzjj2zj: (11)

Naturally, the second term differs for the oscillators at the

ends of the chain; it should be replaced by (dR 1 idI)(z2 – z1)
for j¼ 1 and by (dR1 idI)(zN�1 – zN) for j¼N. The coefficient
B describes the intrinsic nonlinearity of the oscillators and is

necessary to preserve a finite amplitude. Equation 11 is a type

of complex Ginzburg-Landau lattice equation (28–30) with

a nonuniform distribution of characteristic frequencies vj.

It displays two symmetries: under the transformation vj /
vj 1 const while preserving dI; and under the transformation

vj / const – vj, with dI / � dI. The first symmetry means

that the properties of the model only depend on characteristic

frequency differences between oscillators, but not on their

absolute values. The second means that we do not lose any

generality by discussing the model with a negative dI; a
positive value would lead to the same effects with a reversed

frequency range. As one can see, elastic springs between

sallets result in a complex coupling constant d¼ dR1 idI (also
called nonscalar coupling). Purely dissipative connections, on

the other hand, result in a real (i.e., scalar) coupling constant d.

RESULTS

Model system: regular and noiseless

It is instructive to start our analysis by investigating the so-

lutions of Eq. 11 in the absence of noise (z̃j ¼ 0), and for a

regular system in which the characteristic frequencies vary

linearly along the chain, vj ¼ v1 1 (j – 1)Dv. To provide

a wide range of frequencies, we choose Dv such that

vN/v1 ¼ 5. Because we have scant information about the

physical nature of the coupling between the oscillators, we

consider the simplest situation in which the coupling con-

stants dR and dI do not varywith position. Further, we suppose
that each of the oscillators is close to its Hopf bifurcation, such

that ej ¼ e for all j, where e is a small positive number.

In general, we find that the oscillators entrain one another

such that the chain splits up into a number of clusters. The

group of oscillators within a cluster all vibrate at the same

frequency, and the frequency shifts abruptly from one cluster

to the next. The precise way that this clustering occurs,

however, depends on whether the coupling is dissipative or

reactive.

Clustering with dissipative coupling

The system with a real coupling parameter has been studied

previously, initially using phase oscillators (31) and subse-

quently using Ginzburg-Landau oscillators (32). The two

models do not behave identically: the frequency plateaus

observed in the Ginzburg-Landau model (32) are more reg-

ular and equidistant than those seen in weakly coupled phase

oscillators (31).

An example of the time-averaged frequencies and ampli-

tudes of the oscillators in a dissipatively-coupled chain is

shown in Fig. 2 A. The oscillators synchronize themselves

within clusters, with each cluster containing Nn �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8dR=Dv

p
oscillators (32). This behavior is apparent in Fig.

2 A, where a smaller value of Dv permits a larger number of

oscillators to synchronize with one another, and also reduces

the size of the jump between frequency plateaus. The ordered

structure of the frequency plateaus is symmetric with respect

to the direction along the chain, and each cluster oscillates at

a frequency close to the average characteristic frequency of

the oscillators that it contains.

We note that the coupling constant needs to be relatively

strong to split the chain into just a few clusters, as illustrated

FIGURE 2 (A) Average frequency Ævj=2pæ (line with circles) and ampli-

tude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆðRe zjÞ2æ

q
(continuous line) of each oscillator in a dissipatively

coupled chain. The dashed line shows the characteristic frequency vj/2p of

each oscillator. The parameters are v1¼ 2p,vN¼ 53 2p (solid), vN¼ 33
2p (shaded), N ¼ 80, dR ¼ 16, dI ¼ 0, e ¼ 4, and B ¼ 1. (B) Results for a

chain with complex coupling. The parameters are v1 ¼ 2p, vN ¼ 5 3 2p

(solid), vN ¼ 33 2p (shaded), N ¼ 80, e ¼ 1.0, dR ¼ 0.15, dI ¼ �1.0, and

B ¼ 1. Clearly visible is the entrainment of the chain from high toward low

frequencies.
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in Fig. 2 A where dR ¼ 2.5v1. Such strong coupling tends to

lead to ‘‘oscillator death’’ (32), i.e., it kills the active vibra-

tion of individual oscillators, and so the value of the control

parameter e has to be increased to compensate. As a result, the

oscillators are quite far from their Hopf bifurcation, and we

might expect this to impact on their sensitivity and dynamic

range. For this reason, dissipative coupling appears to be less

than ideal.

Clustering with reactive coupling

If the oscillators are coupled with elastic elements only, one

can see from Eqs. 8 and 9 that the coupling constant d is

purely imaginary and that the imaginary part has a negative

sign, i.e., dR ¼ 0, dI , 0. This reactive coupling can lead to

very complex behavior, even when just two oscillators are

connected together (33). Chains of reactively coupled phase

oscillators have been studied in Rosenau and Pikovsky (29),

where they have been shown to have various different modes

of perturbations that can propagate along the chain.

One distinct feature of reactive coupling can be illustrated

in a system containing two oscillators. Suppose oscillator 1 is

forced to oscillate with a certain amplitude at its natural

frequency v1. The motion of the oscillator 2, coupled to it, is

described by

_z2 ¼ ðiv2 1 e2Þz2 1 ðdR 1 idIÞðz1 � z2Þ � Bjz2j2z2: (12)

If we further assume that oscillator 2 can be treated like a

phase oscillator, (jz2j ¼ const), we obtain the equation of

motion for its phase

_f2 ¼ v2 1 dRsinðf1 � f2Þ1 dIðcosðf1 � f2Þ � 1Þ: (13)

With dR ¼ 0 and dI , 0, one can see that the oscillator 2 can

only be entrained to the frequency v1 if v2 , v1 , v2 – 2dI,
i.e., the entrainment frequency must lie in an interval above

the characteristic frequency v2 of oscillator 2.

This feature pertains in a chain of oscillators. Each oscil-

lator can be entrained bymotion at a frequency higher than its

characteristic frequency, but not by motion at a lower fre-

quency. Therefore, in a chain of oscillators, the order spreads

from high to low frequencies. This can be seen clearly in the

example shown in Fig. 2 B. The oscillator at the end of the

chain with the highest characteristic frequency, vN, oscillates

at that frequency and entrains its near neighbors to form a

synchronized cluster. At some distance along the chain, an

oscillator with a lower characteristic frequency is unable to

keep pace; it therefore oscillates at its characteristic fre-

quency and, in turn, entrains its near neighbors to make a

second cluster; and so on down the chain.

Note that the symmetry of Eq. 11 mentioned above implies

that the directionality of entrainment is reversed if dI . 0, in

which case order would spread from low to high frequencies.

The quantity dI . 0 corresponds to negative elasticity in the

connections (k , 0), so such behavior would be unusual.

Emission spectrum and response to
external tones

We determine the emission spectrum as the power spectrum

S(v) of the summed displacement X of the oscillators

X ¼ +
N

j¼1

xj ¼ Re+
N

j¼1

zj; (14)

SðvÞ ¼ 1

T

����
Z T

0

XðtÞ eivtdt
����
2

: (15)

The spectrum (Fig. 3) clearly shows distinct peaks at the

frequency plateau values.

Of experimental, as well as theoretical, importance is the

response of the system to an external tone. We model a tone

FIGURE 3 (A) Emission spectrum as defined by Eq. 15 for the system

with parameters e¼ 1.0, dR ¼ 0.15, dI ¼�1.0, N¼ 80, v1 ¼ 13 2p, vN ¼
5 3 2p, and B ¼ 1. The top graph shows the unperturbed system and the

bottom graph the system in the presence of an external tone with amplitude

Fext ¼ 1.0 and frequency next ¼ 2.5. (B) Average frequency of oscillation for

each oscillator in the same system (shaded, unperturbed and solid, with an

external tone). The external tone mainly changes emission peaks and

frequency plateaus below its own frequency.
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as a sinusoidal force that acts on all oscillators in the same

way:

F̃jðtÞ ¼ FextcosðvexttÞ: (16)

If the external force is sufficiently large, it entrains a number

of oscillators (those with sufficiently close characteristic

frequencies) to its own frequency. For the reasons described

above, when the coupling is reactive the oscillators whose

characteristic frequency significantly exceeds the tone fre-

quency are unaffected, while the oscillators with lower

characteristic frequency reorganize into a different set of

synchronized clusters. This is reflected in the emission spec-

trum: for v � vext, the spectrum is largely unaffected; for

v * vext, the peaks are suppressed but they hardly shift in

frequency; and for v, vext, the peaks shift in frequency but

are not suppressed.

Exponential frequency distribution

Measurements of characteristic frequencies of nerve fibers in

bobtail lizard indicate that these frequencies vary approxi-

mately exponentially with the position on the papilla (34).

We therefore use the distribution

vj ¼ v1

vN

v1

� � j�1
N�1

: (17)

The resulting average frequencies are shown in Fig. 4. Note

that the even spacing of the frequency plateaus is largely

unaffected by the exponential variation of characteristic

frequencies; rather, it is the number of oscillators per cluster

that adjusts to maintain an approximately uniform spacing of

cluster frequencies.

Realistic system: disordered and noisy

Experimentally measured spectra of SOAEs from lizards’

ears do not display the regularity and the sharpness of the

peaks seen in the model system discussed in the previous

section. To construct a more realistic mathematical model of

SOAE generation, we shall use the exponential frequency

distribution, given by Eq. 17, and make the following mod-

ifications:

1. Physical irregularities. Because the spatial patterning of

the papilla is imperfect, we assume that the actual

characteristic frequencies vj deviate by 61% from the

value given by Eq. 17. Likewise, we assume a 620%

randomness in the control parameter ej and in the cou-

pling constants dR and dI between each pair of oscillators.
These irregularities are assumed to be fixed and not to

vary with time. A higher level of variations would make

the peaks less regular, but more stable against external

tones.

2. Thermal noise. We include a stochastic force z̃jðtÞ; which
has the autocorrelation function

Æz̃jðt1 tÞz̃jðtÞæ ¼ 2D̃dðtÞ: (18)

An estimate for the amplitude of the noise term, using the

Einstein relation, is given in the Appendix.

While we know the number of oscillators N and their

characteristic frequencies vj, other parameters are more dif-

ficult to determine. We have chosen values of dR and dI to
reproduce a realistic number of peaks in the spectrum (;10 in

total). We know little about the control parameter e except
that its value should be sufficiently smaller than v if the os-

cillators are to operate in the vicinity of a Hopf bifurcation,

where they have the greatest sensitivity (25). We therefore

choose a value that is an order-of-magnitude smaller than the

lowest characteristic frequency v1. The absolute value of the

nonlinear coefficient B is not important, because it only de-

termines the amplitude z of oscillation and does not affect the
properties of the model in a qualitative fashion.

Emission spectrum and response to
external tones

The clustering of the oscillators in this realistic model, and

the corresponding emission spectrum, are shown in Fig. 5. The

main consequence of the disorder is that the locations of the

frequency plateaus, and thus the frequencies of the peaks in

the spectrum, are not determined exclusively by ordering

from the high frequency end; instead, they tend to be pinned

to a few preferred values where the local realization of the

disorder favors synchronization.

The spectra reproduce well those observed in Köppl and

Manley (5). Some discrepancy can be seen with regard to the

width of emission peaks and the baseline emission between

peaks. The latter is not fully comparable, because the cal-

FIGURE 4 Average frequency of each oscillator (line with circles) in a

chain with an exponential distribution of characteristic frequencies vj

(dotted line). All other parameters correspond to those in Fig. 2 B.
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culated spectra only contain the indirect influence of noise

acting on sallets, but not direct noise sources. A possible

explanation for the wider peaks is that the characteristic

frequencies are not entirely stable on the timescale at which

the spectra are recorded. Alternatively, the noise amplitude

calculated in the previous section may be an underestimate.

When an external tone is applied, the oscillators whose

characteristic frequencies are close to the tone frequency are

entrained by the stimulus. As a result, the emission peaks

closest to the tone frequency vanish, while some of the other

peaks shift in frequency. The shifts are particularly strong

for peaks with frequencies below that of the external tone,

reflecting our earlier observation that the oscillators are

entrained from the high frequency end of each cluster.

The results reproduce the behavior seen in Köppl and

Manley (13).

The effect of an external tone with a given frequency on an

emission peak with a different frequency is best represented

by an amplitude input/output function. This measures the

amplitude of the emission peak (whether or not it has shifted

in frequency) as a function of the external tone amplitude. A

typical example is shown in Fig. 6 A. For strong stimuli, the

I/O function invariably exhibits a steep decline. This reflects

the fact that the oscillators that form a synchronized cluster in

the absence of the tone (and thereby generate the spontaneous

emission) get entrained by a strong stimulus (so that the

emission is diminished, or disappears). The I/O function of

some emission peaks shows a remarkable feature: in an in-

termediate range of amplitudes of the external tone, the

stimulus can actually augment the amplitude of the emission

FIGURE 5 (A) Emission spectrum for the disordered system in the

absence (top) and presence (bottom) of an external tone with a frequency

of next ¼ 3.4 kHz. Parameters: e ¼ 628 s�1, dR ¼ 157 s�1, dI ¼ – 754 s�1,

2D̃ ¼ 0:157 s�1; and B¼ 6280 s�1. A Gaussian filter (s ¼ 15 Hz) is applied

to the spectra. (B) Average frequency of each oscillator in the absence

(shaded) and in the presence (solid) of the same external tone. The dotted

line shows the characteristic frequencies of individual oscillators.

FIGURE 6 (A) Amplitude input/output function for the peak at 2.8 kHz in

response to an external tone at 3.4 kHz. This I/O function shows the

phenomenon of facilitation: the amplitude of the emission peak is aug-

mented for moderate amplitudes of the external tone. (B) Iso-suppression

function of the peak at 2.8 kHz. The circles show for each frequency next the

amplitude of the external tone that is necessary to suppress the emission peak

at 2.8 kHz by 2 dB. The hatched field shows the region where the emission is

facilitated (augmented) by at least 2 dB. Both insets show comparable

experimental data from Köppl and Manley (13).
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(see Fig. 6 A). This phenomenon has been reported experi-

mentally and is known as ‘‘facilitation’’ (13). The explana-

tion of this effect is best understood by reference to Fig. 5 B,
and by examining the oscillators that spontaneously form the

synchronized cluster with a frequency slightly lower than the

frequency of the external tone. A stimulus of moderate am-

plitude entrains many, but not all of these oscillators. As a

result, the cluster breaks up and some of the oscillators join

the adjacent cluster at lower frequency, increasing its size.

Thus, the amplitude of the corresponding emission peak is

enhanced. We find that facilitation is mostly limited to situ-

ations where the external tone has a higher frequency than the

emission peak. Its exact shape depends on the peak chosen

and on the particular representation of the random disorder in

frequencies and control parameters.

Another way of presenting the effect of an external tone on

an emission peak is to plot the iso-suppression curve. This

shows, as a function of the external tone frequency, the

amplitude that is needed to suppress a given peak by 2dB

(Fig. 6 B). Likewise, one can determine the regions of fa-

cilitation, where the peak is augmented by at least 2dB

(hatched area in the graph). The results of the model cor-

respond quite closely to experimental observations (13). As

reported for emissions from the bobtail lizard, the facilitation

windows are typically restricted to the right side of the graph,

where the external tone frequency is higher than the emission

frequency, although we observe facilitation over a more ex-

tensive range of amplitudes than is seen experimentally. The

redistribution of oscillators among synchronized clusters of

sallets may be only a partial explanation of facilitation, for the

phenomenon has also been observed in species that have a

continuous tectorial membrane (35) and in species that have

no tectorial membrane (24).

Sensitivity of a coupled chain of
active oscillators

The close correspondence between the behavior of our model

system and the experimental data on emissions from the

bobtail lizard strongly support the hypothesis that the emis-

sions result from the reactive coupling of a chain of active

oscillators. One question that arises is whether this arrange-

ment confers any advantages that improve the performance

of the cochlea in its principal function—the detection of

sound. To explore this issue we compare the realistic model

system of coupled oscillators, described in the previous

section, with a system of similar oscillators with minimal

coupling, consisting only of the dissipative part dR. We use

two criteria to evaluate the potential sensitivity of such a

system: the relative amplitude response and the degree of

phase locking. These quantities directly determine the post-

synaptic firing rate and the regularity of spike timings in the

auditory nerve, as measured experimentally (36,37). While

the firing rate is thought to be used to differentiate different

levels of sound at moderate and high intensities, phase

locking allows for a more sensitive way of detecting low

intensity sound.

We define the amplitude response as

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆðRe zjðFÞÞ2æ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÆðRe zjð0ÞÞ2æ

q ; (19)

where zj(F) represents the complex variable of the oscillator

j in the presence of the external force and zj(0) in the

unperturbed system.

A measure for the degree of phase locking is the absolute

vector size, defined as

vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æsinðfj � f0Þæ2 1 Æcosðfj � f0Þæ2

q
; (20)

where fj is the phase of zj and f0 ¼ vextt is the phase of the
external tone. Angle brackets denote time-averaging. Note

that the maximum response occurs in oscillators whose

characteristic frequency is somewhat below the tone fre-

quency, which is a property of the chain with reactive

coupling.

A comparison of both quantities for the realistic system

with full coupling and the system without a reactive coupling

component is shown in Fig. 7. This comparison could shed

some light on the benefits conferred by elastic connections

between sallets, while dissipative coupling is inevitable due

to hydrodynamic effects. In the realistic system, the ampli-

tude response is stronger but also much more scattered, with

some oscillators increasing in amplitude while others de-

crease. More significantly, the degree of phase locking is

FIGURE 7 Comparison between the full model with reactive and dissi-

pative coupling (solid, dR ¼ 157 s�1, dI ¼ – 754 s�1) and a model with no

reactive component in the coupling (shaded, dR ¼ 157 s�1, dI ¼ 0). The top

panel shows the relative amplitude response Rj of each sallet (as a function of

its characteristic frequency nj) to an external tone with frequency 3 kHz. The

bottom panel shows the degree of phase locking vj of each sallet to the

external tone. These response functions are similar throughout the spectrum,

except for the fine structure of the irregularities.
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substantial for a much larger number of oscillators in the

realistic system. This suggests that reactive coupling may be

beneficial for the detection of faint sounds.

SUMMARY

Our theoretical results provide compelling evidence that

SOAEs in lizards are a by-product of the active micro-

mechanics of hair bundles. By extension, it seems likely that

SOAEs in other nonmammalian vertebrates originate in the

active movement of hair bundles, and that the varying

properties of emissions among species are a consequence of

different physical coupling between hair cells. SOAE gen-

eration in the mammalian cochlea is considerably more

complex, as a result of the propagating wave on the basilar

membrane; in this case, the spectrum of emission modes most

likely depends on constructive interference of waves, deter-

mined by properties of the cochlea as a whole (38). Because

the performance of lizards’ ears almost matches that of

mammals, our results indicate that good hearing can be

achieved by fairly simple means. All that is needed for sen-

sitive, frequency-selective, and tonotopic audition is a cou-

pled chain of grouped hair cells, incorporating an active

process in their bundles that generates oscillations with

characteristic frequencies that vary monotonically along the

chain.

APPENDIX

In the following, we estimate the amplitude of the stochastic force in the

noisy system. The amplitude of the physical noise in the real system is

determined by the Einstein relation, Eq. 3. Using the transformation given by

Eq. 10, the amplitude of the dimensionless noise term, z̃j; that appears in Eq.

11 is

D̃j ¼ GFkBT

ðMjvjÞ2
: (21)

For the sake of simplicity, we assume that the noise term has identical

magnitude for all oscillators. The viscous friction coefficient GF of a sallet

can be estimated from its Q factor

GF ¼ Mv

Q
; (22)

which leads to the expression

D̃ ¼ kBT

QMv
: (23)

Finally, because we wish to know the magnitude of the noise term relative to

the magnitude of spontaneous oscillations, we calculate the quantity 2D̃/A2.

We estimate it by using the following values for a sallet with a frequency in

the middle of the spectrum: v¼ 2p3 3000 s�1,M¼ 10�11 kg (16),Q¼ 10

(16), A¼ 30 nm, and kBT¼ 4.13 10�21 J. We then obtain 2D̃/A2� 4.8 s�1.

In the simulation, the dimensionless amplitude was Ã ¼ ffiffiffiffiffiffiffiffiffiffi
Æjz2jæp � 0:21; and

we therefore estimate the noise amplitude as 2D̃ � 0:2 s�1:
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5. Köppl, C., and G. A. Manley. 1993. Spontaneous otoacoustic emis-
sions in the bobtail lizard. I: General characteristics. Hear. Res.
71:157–169.
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