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Recombinant proricin binds galactose but does not depurinate 28 S 
ribosomal RNA 
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Preproricin transcripts microinjected into Xenopus oocytes were expressed and the product was segregated by the oocyte 
endoplasmic reticulum and core glycosylated. Recombinant proricin was soluble, stabilised by intramolecular disulfide 
bonds and biologically active in that it could bind to immobilized lactose (selectin 2) or immobilized asialofetuin. Affinity- 
purified proricin did not catalyse the depurination of 28 S ribosomal RNA unless it was reduced, when slight but signifi- 
cant activity was observed. Gel filtration of the reduced proricin fraction showed that this depurination activity was not 
associated with proricin. The activity was apparently due to ricin A chain released by reduction from mature ricin which 

was, in turn, generated from proricin, presumably via endogenous oocyte endoprotease activity. 

Proricin; Galactose binding; Depurination 

1. I N T R O D U C T I O N  

Ricin is a potently cytotoxic, heterodimeric pro- 
tein found in the seeds of  the castor oil plant, 
Ricinus communis. One polypeptide subunit (the A 
chain) is an enzyme which catalytically inactivates 
60 S subunits of  eukaryotic ribosomes and thereby 
causes cell death [1]. The second polypeptide (the B 
chain), which is covalently joined to the A chain by 
a single disulfide bond,  is a galactose-specific lectin 
[1]. Recently, it has been shown that ricin A chain 
is an N-glycosidase which removes a specific 
adenine residue located within a highly conserved 
region of  26 S and 28 S ribosomal RNAs [2,3]. 

During its biosynthesis in Ricinus seeds, mature 
ricin is derived f rom a precursor - preproricin - by 
a series of  contranslational and post-translational 
modifications during intracellular t ransport  f rom 
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the site of  synthesis in rough ER, via the Golgi 
complex, to the site o f  accumulation within 
organelles termed protein bodies [4,5]. The 
preproricin polypeptide consists of  a 35-residue N- 
terminal leader peptide followed by the mature A 
chain sequence which, in turn, is joined to the B 
chain sequence by a 12 amino acid linking sequence 
[6]. This linking sequence is proteolytically remov- 
ed within the protein bodies [7]. 

There are, at present, no data available on the 
biological activity of  ricin precursor polypeptides. 
Here  we demonstrate that preproricin can be ex- 
pressed by microinjecting in vitro-generated 
transcripts into Xenopus laevis oocytes. The ex- 
pressed product was segregated into the oocyte en- 
domembrane  system, core glycosylated and the N- 
terminal signal peptide was removed. This in vitro 
expression system has previously been shown to 
segregate, process and fold efficiently recombinant 
ricin B chain into a soluble, biologically active con- 
f irmation [8]. Recombinant  proricin has been 
purified f rom oocyte homogenates and its 
biological activity has been determined. 
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2. E X P E R I M E N T A L  

2.1. Bacterial strains and plasmid constructs 
Escherichia coli K12 strain DHI was routinely used except 

during oligonucleotide site-directed mutagenesis when strains of 
71.18 and 71.18 mut L were substituted [9]. Preproricin cDNA 
was created from a clone, pRCL617, which lacks the full signal 
sequence by just three bases [10]. The missing ATG was in- 
troduced into the 5'-poly(G) tail of the eDNA, together with a 
unique Xhol restriction site, by oligonucleotide site-directed 
mutagenesis. The oligonucleotide used had the following se- 
quence: 

5' G9C*T*C*GA*GGA*T*GAAACCG33 ' 

where the asterisks indicate mismatches. 
Mutagenesis was carried out using the oligonucleotide and a 

recombinant M 13 template following standard procedures [11]. 
The length of the oligonucleotide (27-mer) and its unusually 
high G content precluded conventional plaque screening in 
6×SSC at the Td-5°C and the Td of the mutagenic 
oligonucleotide probe. Instead, sequential hybridizations were 
performed in 6 × SSC and 5°C steps from room temperature to 
60°C. Mutant sequences were excised with XhoI and Sail and 
recloned into the Sail site of the transcription vector pGEM1. 
Plasmid DNAs were prepared by the alkline lysis method [12] 
and purified by centrifugation in cesium chloride-ethidium 
bromide. 

2.2. Synthesis o f  preproricin mRNA and microinjection 
Preproricin mRNA was synthesized in vitro in the presence of 

the capping dinucleotide 7-Me(5')GpppG(5')OH and T7 RNA 
polymerase as described [8]. Purified RNA was dissolved in 
distilled water at approx. 100/~g/ml. Microinjection into bat- 
ches of 100 oocytes from X. laevis, pulse labelling with 
[35S]methionine and oocyte homogenization were performed ex- 
actly as in [8]. 

2.3. Assay for galactose binding activity 
Recombinant proricin was assayed for sugar binding activity 

by measuring its ability to bind to immobilized asialofetuin. 
Bound proricin was measured using rabbit anti-ricin-B chain an- 
tibodies followed by ~25I-labelled protein A, as described 
elsewhere [13]. 

2.4. Purification o f  proricin 
Homogenate from approx. 25 oocytes in 1 ml oocyte 

homogenization buffer (20 mM Tris-HCl, pH 7.6, 100 mM 
PMSF) was passed through 1 ml immobilized lactose (selectin 2, 
Pierce, Rockford, IL). The homogenate was passed through the 
column a total of three times. The column was washed with 
homogenization buffer (minus PMSF) until no further protein 
emerged. Bound material was eluted in the same buffer contain- 
ing 100 mM galactose. Samples from the collected fractions 
were then prepared for immunoprecipitation [14] and SDS- 
polyacrylamide gel electrophoresis [ 15] or for reduction and fur- 
ther fractionation by gel filtration. Usually the first 1 ml of the 
100 mM galactose eluate contained virtually all of the bound 
material. This was reduced at room temperature for 30 min in 
50 mM dithiothreitol. The sample was then passed through a 
1 × 30 cm Sephadex G-75 column equilibrated in homogeniza- 

tion buffer containing 50 mM dithiothreitol. Typically, 
48× 1-ml fractions were collected and analysed by SDS- 
polyacrylamide gel electrophoresis or for depurination activity. 

2.5. Ricin A chain catalysed depurination of  28 S ribosomal 
RNA 

Samples of the crude oocyte homogenate or 30/zl aliquots of 
the fractions from the selectin 2 affinity chromatography or gel 
filtration steps were incubated with an equal volume of rabbit 
reticulocyte lysate for 30 min at 30°C. An equal volume of water 
was added and the solution was made 1 °70 in SDS. RNA was 
prepared from the lysates by standard phenol/chloroform ex- 
traction followed by ethanol precipitation. The RNA was 
redissolved in water and a volume equivalent to 8 #g RNA was 
incubated with 40/~1 of 1 M aniline, pH 4.5, for 2 min at 60°C 
in the dark. Ethanol-precipitated RNA samples were then 
dissolved in 20/d of 60070 formamide in 0.1 × E buffer (3.6 mM 
Tris, 3 mM NaH2PO4, 0.2 mM EDTA) [16] and incubated at 
65°C for 5 min before cooling. RNA was electrophoresed in 
1.2070 agarose, 0.1 x E buffer and 50070 formamide. 

2.6. Other methods 
mRNAs were translated in vitro in wheat germ lysates as 

described [17]. Immunoprecipitated or affinity-purified protein 
samples were treated with endo H (Miles, Elkhart, IN) as in [5]. 

3. R E S U L T S  A N D  D I S C U S S I O N  

T h e  p r e p r o r i c i n  s ignal  s e q u e n c e  is pa r t  o f  a 

35 - re s idue  N - t e r m i n a l  l e ade r  p e p t i d e  a n d  is r e s p o n -  
s ible  f o r  d i r ec t ing  p r o r i c i n  in to  t h e  l u m e n  o f  t he  

r o u g h  e n d o p l a s m i c  r e t i c u l u m  [5,6]. A p r e p r o r i c i n  
c D N A  c l o n e  in i t i a l ly  i so l a t ed  e n c o d e d  34 o f  these  

35 l eade r  r e s idues  [10] b u t  l a c k e d  the  5 ' A T G  c o d o n  

s u b s e q u e n t l y  i den t i f i ed  as t he  t r a n s l a t i o n a l  s tar t  

s i te  [18]. A 1.94 kb  P s t I  f r a g m e n t  e n c o d i n g  

p r e p r o r i c i n  bu t  mi s s ing  o n l y  the  e x t r e m e  5 '  c o d i n g  
r e g i o n  A T G  was  l iga ted  in to  M 1 3 m p l 9 .  

O l i g o n u c l e o t i d e  s i t e -d i rec ted  m u t a g e n e s i s  us ing  a 

syn the t i c  2 7 - m e r  c o n t a i n i n g  6 m i s m a t c h e s  

s i m u l t a n e o u s l y  c r ea t ed  an  X h o I  site a n d  i n t r o d u c -  
ed  t h e  miss ing  i n i t i a t i on  c o d o n  a t  t he  e x t r e m e  

5 ' - e n d  o f  t he  c o d i n g  r e g i o n  (fig.  1). A f t e r  c o n f i r m -  
ing  t h e  m u t a t i o n  by  s e q u e n c i n g ,  an  X h o I - S a l I  f rag-  

m e n t  c o n t a i n i n g  the  en t i re  p r e p r o r i c i n  c o d i n g  se- 

q u e n c e  was  s u b c l o n e d  in to  Sa / I - l i nea r i z ed  p G E M 1  
a n d  t h e  o r i e n t a t i o n  o f  the  p r e p r o r i c i n  c o d i n g  se- 

q u e n c e  wi th  respec t  to  t he  T7 p r o m o t e r  was  c o n -  
f i r m e d  by  r e s t r i c t i on  m a p p i n g  ( f i g . l ) .  Th i s  c o n -  
s t ruc t  was  used  to  g e n e r a t e  p r e p r o r i c i n  m R N A  in 

v i t r o  us ing  the  T7 p r o m o t e r  a n d  T7 R N A  
p o l y m e r a s e .  

F ig .  2 s h o w s  the  expres sed  p r o d u c t s  o f  
p r e p r o r i c i n  m R N A  t r ansc r ip t s  a f t e r  t r a n s l a t i o n  in a 
w h e a t  g e r m  ce l l - f ree  lysa te  o r  a f t e r  m i c r o i n j e c t i o n  
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Fig.l. Construction of preproricin in a transcription vector. 
Site-directed mutagenesis was used to create an ATG and XhoI 
site within the PstI insert of pRCL617 [10] which had been 
subcloned into Ml3mplS. The resulting XhoI-SalI fragment 
containing preproricin cDNA was recloned into the SalI site of 

pGEMI to generate pGEMpp617. 

into X. laevis oocytes. Proricin was recovered from 
oocyte homogenates by immunoprecipitation with 
anti-ricin B chain antibodies. The wheat germ 
system gave a major product which indicates the 
apparent molecular size of unprocessed preproricin 
(fig.2, lane 2). The product immunoprecipitated by 
anti-B chain antibodies from a total homogenate of 
oocytes after injection of preproricin mRNA was 
clearly larger than the wheat germ product (fig.2, 
lane 4), suggesting that the former had been 
glycosylated. This was confirmed by the decrease 
in apparent size upon treatment of the oocyte pro- 
duct with endo-N-acetylglucosaminidase H (fig.2, 
lane 3). Fractionation of the oocytes prior to im- 
munoprecipitation showed that the expressed pro- 
ricin was present in the particulate vesicle fraction 
rather than the soluble cytosolic fraction (not 
shown), confirming that it had been segregated in- 
to the lumen of the endoplasmic reticulum to per- 
mit N-glycosylation. Proricin presumably contains 
5 intrachain disulfide bonds (the bond which 
ultimately joins the A and B chains plus 4 bonds 
within the B chain [1 ]). The mobility of the proricin 
was significantly increased in the absence of 
dithiothreitol (fig.2, lane 5) compared to that in its 
presence (fig.2, lane 4), indicating that in- 
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Fig.2. Synthesis of recombinant proricin. The in vitro transcript 
encoding preproricin was translated in a wheat germ cell-free 
system or microiniected into Xenopus oocytes in the presence of 
[35S]methionine. Proricin was recovered from oocyte 
homogenates by immunoprecipitation using anti-ricin B chain 
antibodies, analysed by SDS-polyacrylamide gel ¢lecrophoresis 
and visualized by fluorography. Lanes: (1) molecular mass 
markers (values indicated on the left, in kDa), (2) wheat germ 
product, (3) oocyte product after treatment with endoH, (4) 
oocyte product prepared under normal (reducing) conditions, 

(5) unreduced oocyte product, (6) control oocytes. 

tramolecular disulfide bonds maintain the product 
in a compact structure of lower apparent molecular 
mass than its reduced counterpart. No im- 
munoprecipitated product was found in 
homogenates from control oocytes that had been 
mock-injected with water (fig.2, lane 6). 
Homogenates from oocytes injected with 
preproricin mRNA and incubated with 
[35S]methionine were applied to an immobilized 
lactose column. While the bulk of the proteins 
passed straight through, the column effectively 
bound the recombinant proricin, which was readily 
released from the column by 100 mM galactose 
(fig.3a). The identity of affinity-purified proricin 
was confirmed by immunoprecipitation (not 
shown). The amount of proricin capable of binding 
galactose was determined by measuring its ability 
to bind to asialofetuin, a glycoprotein with ter- 
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Fig.3. Affinity purification of recombinant proricin and confirmation of its lectin activity. (a) Total homogenates from [35S]methionine- 
labelled oocytes expressing proricin were passed through an immobilized lactose (selectin 2) column. After washing the column to 
remove all unbound material, bound product was eluted with 100 mM galactose. Lanes: (1) molecular mass (in kDa) markers, (2) total 
homogenate, (3-7) unbound material passing through the column, (8-10) material eluted with galactose. Polypeptides were analysed 
by SDS-polyacrylamide gel electrophoresis and visualized by fluorography. (b) Aliquots of homogenates from oocytes injected with 
preproricin mRNA were added to microtiter plate wells coated with asialofetuin. Bound proricin was measured by subsequent addition 
of anti-ricin B chain antibodies followed by 125I-labelled protein A. The amount of bound proricin was estimated in terms of its B chain 
component using a calibration curve prepared with oocyte homogenates spiked with known amounts (0-50 ng) of biochemically purified 

ricin B chain. 50/d homogenate is equivalent to one oocyte. 

minal galactose residues. Results obtained with 
homogenates prepared from oocytes expressing 
proricin indicated that approx. 5 ng B chain bin- 
ding equivalents were produced per oocyte (fig.3b). 
High-speed centrifugation of  freshly prepared 
oocyte homogenates showed that the recombinant 
proricin was initially completely soluble. 

The ability of  proricin to depurinate 28 S 
ribosomal RNA was assayed. The specific, ricin A 
chain-mediated depurination of  28 S ribosomal 
RNA renders the RNA susceptible to hydrolytic 
cleavage of  the sugar-phosphate backbone at the 
depurination site. Because this site is close to the 
3'  -end of  28 S ribosomal RNA, hydrolysis of  ricin- 
treated RNA generates a small (390-nucleotide) 
RNA fragment which is diagnostic for the 
depurination reaction [2]. 

Aniline hydrolysis of  rabbit reticulocyte 
ribosomal RNA treated with homogenates from 
oocytes expressing proricin to which dithiothreitol 
had been added generated a faint band visible on 
RNA gels which was apparently identical in size to 
the small fragment generated by treatment with 
purified ricin A chain (not shown). This band was 
not observed after treating the ribosomes with non- 
reduced homogenates of  proricin-expressing 
oocytes or with reduced homogenates from control 
oocytes. 

When the affinity-purified, [3SS]methionine- 
labelled proricin fraction was reduced with 
dithiothreitol, subsequent electrophoresis 
demonstrated not only the presence of  proricin but 
two additional faint bands whose mobility was 
typically that of  ricin A and B chains (not shown). 
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Fig.4. Depurination activity present in purified, reduced proricin is not associated with the precursor. Reduced proricin was fractionated 
on a Sephadex G-75 column and collected fractions were analysed by immunoprecipitation to locate proricin, and for their ability to 
depurinate 28 S ribosomal RNA. (a) Proricin immunoprecipitated from collected fractions was present in fractions 13, 16 and 19; (b) 

the same fractions were tested for depurination activity which was present in fractions 31 and 34. 

Further,  both of  these smaller bands were im- 
munoprecipitated,  together with proricin, under 
non-reducing conditions using anti-ricin B chain- 
specific antibodies (not shown). Evidence that the 
depurination activity was associated with the 
smaller fragments,  rather than proricin, was ob- 
tained by size fractionating the reduced mixture on 
a Sephadex G-75 column. Fig. 4b shows that 
depurination activity was present in fractions 31 
and 34, whereas immunoprecipi tat ion showed that 
proricin was confined to fractions 13, 16 and 19 
(fig.4a). When reduced native ricin was frac- 
t ionated on the G-75 column, the individual A and 
B subunits were recovered in fractions 30-34 (not 
shown). 

Collectively, the present data  show that Xenopus 
oocytes translate injected preproricin m R N A  to 

produce soluble, recombinant proricin which is 
segregated, glycosylated and folded into a 
biologically active confirmation stabilized by in- 
tramolecular disulfide bonds. In this form proricin 
is capable of  binding to galactose via its B chain 
component  but is unable to depurinate 28 S 
r ibosomal RNA. The A chain component  is poten- 
tially active, however, because adventitious pro- 
cessing of  a small proport ion of  the proricin, 
presumably by endogenous oocyte en- 
doprotease(s),  produces disulfide-linked holotoxin 
which is capable of  depurinating 28 S ribosomal 
RNA after reductive release of  the A chain. 
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