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SUMMARY

Potassium channels embedded in cell membranes
employ gates to regulate K+ current. While a specific
constriction in the permeation pathway has histori-
cally been implicated in gating, recent reports sug-
gest that the signature ion selectivity filter located
in the outer membrane leaflet may be equally impor-
tant. Inwardly rectifying K+ channels also control the
directionality of flow, using intracellular polyamines
to stem ion efflux by a valve-like action. This study
presents crystallographic evidence of interdepen-
dent gates in the conduction pathway and reveals
the mechanism of polyamine block. Reorientation
of the intracellular domains, concomitant with acti-
vation, instigates polyamine release from intracel-
lular binding sites to block the permeation pathway.
Conformational adjustments of the slide helices,
achieved by rotation of the cytoplasmic assembly
relative to the pore, are directly correlated to the
ion configuration in the selectivity filter. Ion redistri-
bution occurs irrespective of the constriction, sug-
gesting a more expansive role of the selectivity filter
in gating than previously appreciated.
INTRODUCTION

Potassium currents across cell membranes are essential for the

propagation of electrical signals in multicellular organisms,

notably in the recovery phase of action potentials. Conduction

occurs via the highly selective pore of K+ channels and is

switched on and off in response to regulatory cues. The switch-

ing process utilizes specific regions of the ion permeation

pathway, termed gates, which are thought to work by altering

the diameter of the pore or otherwise modifying the energetic

barrier to permeation. Ion conduction is contingent upon gates

in the permeation pathway adopting an open status. A weakness

of present paradigms describing the nature of the gates and
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gating process is that they are predicated upon comparison of

unrelated K+ channel structures.

Potassium channels are tetramers, with the ion conduction

pathway forming at a common subunit interface coincident with

the molecular axis. Within its conserved core, each subunit

comprises two transmembrane helices (inner and outer) support-

ing a shorter angled pore-helix spanning the outer leaflet of the

membrane (see Figure 1A for nomenclature). This molecular scaf-

fold serves to position a flexible ion selectivity filter. Considerable

functional evidence based on pore-blocking and binding studies

suggests that a gate is located at the inner-helix bundle at the

face of the membrane (Armstrong, 1969, 1971; Armstrong and

Hille, 1972; Baukrowitz and Yellen, 1996; Miller, 1987; Yellen

et al., 1991), and it is thought to govern K+ access by adopting

discrete closed or open conformations. Substantial conforma-

tional variation in reported structures lends qualified support to

this hypothesis. While the inner helix conformation in structures

of KcsA is invariant, elegant mutagenesis studies from the Perozo

laboratory have demonstrated that alternative conformations are

accessible. Additional evidence is provided by Zhou, who identi-

fied electron density representing the bulky organic tetrabutylan-

timony within the permeation pathway of C-terminally truncated

KcsA (Yohannan et al., 2007). Nonetheless, a K+ channel from

chlorella virus (ATCV-1) gates despite the inner helices being

too short to cross over (Gazzarrini et al., 2009), implying that

the selectivity filter in ATCV-1 is acting as a classical activation

gate. Analogously, evidence that large permeant ions enter freely

past the bundle crossing of large-conductance BK channels in

their closed state (Wilkens and Aldrich, 2006) implies that the

selectivity filter may act as a primary gate in that family.

Since the discovery of C-type inactivation (Hoshi et al., 1991)

in Shaker channels, several lines of evidence have implicated

the ion selectivity filter in gating. Single-atom substitutions

involving exchange of amide with ester carbonyls in the selec-

tivity filter exhibit dramatic effects on gating kinetics and con-

ductance (Lu et al., 2001). Pore helix mutants of KcsA that per-

turb interaction of Glu71 with the signature Asp (GYGD) alter

inactivation kinetics while leaving gating at the helix bundle

crossing unaltered (Cordero-Morales et al., 2006; Cordero-

Morales et al., 2007). Fluorescence lifetime measurements

carried out on wild-type and pore helix mutants of KcsA labeled
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at the bundle crossing reveal comparable bimodal distributions,

which are inconsistent with the open probability assessed by

single-channel recordings (Blunck et al., 2006), suggesting that

other factors influence ion permeation. There is also evidence

that gating at the intracellular bundle crossing is coupled to

gating at the selectivity filter (Ader et al., 2009; Baukrowitz and

Yellen, 1995) (Gao et al., 2005). For pore gating to be effectively

studied, both the bundle crossing and the selectivity filter must

be considered, and whether and how they communicate with

one another ascertained.

Inward rectifiers (Kir) are ligand-gated K+ channels that stabi-

lize the resting membrane potential (Hille, 1992, and are impor-

tant in cardiac (Gribble et al., 1998) and pancreatic function

(Ashcroft et al., 1988). Their defining characteristic is that ion

efflux is naturally stemmed by diffusion of cellular factors into

the conduction pathway, occluding intracellular ion access.

Physiological blockers include polyvalent cations such as

putrescine, spermidine, and spermine (Lopatin et al., 1994)

and, to a lesser extent, the divalent cations Mg2+ and Ca2+ (Mat-

suda et al., 1987; Vandenberg, 1987). Kinetic studies indicate

that polyamine block is a sequential process, where intracellular

binding sites harbor rectification agents prior to deep block in the

transmembrane pore (Shin et al., 2005).

The study described here uses Kir channels to investigate

molecular reorganisation during K+ channel gating. Comparative

analysis of a series of prokaryotic Kir channel structures reveals

that the ion distribution in the selectivity filter is systematically

correlated to conformational changes elsewhere in the assembly

and that transmission of signals to the pore involves the intracel-

lular N and C termini of the channel acting on the intracellular

domains. Changes in selectivity filter configuration occur without

widening at the helix-bundle crossing, suggesting a more prom-

inent role for the selectivity filter in gating than has previously

been appreciated. Moreover, identification of the polyamine

binding sites in occupied and unoccupied states lends valuable

clues to mechanism and indicates that polyamine release

from an intracellular site to the permeation pathway is synchro-

nous with specific conformational changes in the intracellular

assembly heralding activation.

RESULTS

Structure Determination
We took advantage of substantial recent improvements in

data correction and refinement algorithms (Adams et al., 2002;

Strong et al., 2006) to reinterrogate improved density maps

of three structures determined previously. The structures of

KirBac1.1 (1P7B) and KirBac3.1 (1XL4 and 1XL6) were refined

with data deposited in the PDB. New refinement statistics for

these structures (I, II, and VIII, respectively) are included in

Table S1 (available online). In structure I (3.7 Å), more of the N

terminus was traceable than previously, and eight peaks of

strong positive difference density at the junction of inner, outer,

and slide helices were modeled as partial phospholipids carried

through in the purification. After evaluation of the possibilities,

an outer site (10.5 s in omit maps) was assigned as the tertiary

amine moiety of a neutral phosphatidyl choline, but equally may

represent the head of an anionic lipid. The inner site (12.5 s)
was judged to accommodate a phosphate. While the hydro-

carbon tails were insufficiently ordered for modeling, weak

electron density consistent with their presence is located along-

side aliphatic side chains of the inner and slide helices. New

refinements of 1XL4 (II) and 1XL6 (VIII) took into account that

both crystals had been soaked in 50 mM spermine prior to data

collection (soaking solutions respectively contained MgCl2 or

CaCl2). In both II (2.6 Å) and VIII (2.8 Å), spermine was modeled

into contiguous residual electron density that was not present

in the maps of any other structure (the highest peak in each

instance is 8 s). The Rfree of VIII was significantly reduced by

inclusion of a conformational variant at 40% occupancy.

Five new structures (III–VII) of KirBac3.1 were phased by

molecular replacement, using previously determined KirBac3.1

structures (1XL4 and 1XL6) as search models. Full-length histi-

dine-tagged recombinant channels crystallized in a range of

space groups, diffracting to resolution limits between 3.1 and

4.2 Å. Crystallization conditions, data collection, reduction, and

refinement statistics are provided in Tables S1 and S2.

In addition, three structures of a point mutant of KirBac3.1

(Q170A) were determined. The mutant channels are structurally

and functionally similar to the wild-type, but consistently exhibit

superior diffraction, and are used here for this reason (range 2.7

to 3.3 Å). Of crystals IX–XI derived from identical conditions,

X was soaked in 5 mM BaCl2 and XI in 2 mM samarium acetate

(Sm3+ is isosteric with Ca2+), and data were collected at wave-

lengths that maximized the anomalous signal. The only apparent

peak (28 s) in anomalous difference maps (15–5 Å) of X is consis-

tent with Ba2+ binding in the selectivity filter. While the possibility

of minor sites cannot be ruled out, none were obvious. Two

strong peaks (18 and 11 s) in the anomalous difference density

of XI unequivocally identified Sm3+ binding sites at Asp36 and

Glu173, respectively. In structure XI, electron density represent-

ing the outer transmembrane helices is stretched out, indicating

high anisotropic mobility, which was verified by TLS modeling.

Twisting: Global Conformation Is Correlated
to Slide Helix Orientation
Nomenclature is depicted in Figure 1A, and a reference sum-

mary of the structures is provided in Table 1. The three-helix

topology describing the canonical pore of K+ channels (Doyle

et al., 1998) is elaborated by an amphipathic slide helix, first

observed in the structure of KirBac1.1 (Kuo et al., 2003), and the

N- and C-terminal domains of all four subunits coalesce into an

intracellular assembly. No significant differences are discernable

in the transmembrane regions of the channel; superposition of the

Ca positions in the transmembrane helices of the 11 structures

relative to structure VII yields an RMSD of <1 Å on 91 Ca atoms

[residues 45–135 inclusive (Figure 1B and Figure S1A), with the

exception that in KirBac1.1 (I) residues 92–96, corresponding to

a distinctive turret conformation, were omitted]. The conformation

is essentially as observed for Kir2.2 (Tao et al., 2009).

The structures cluster into two groups with distinct conforma-

tions, independent of space group and crystal form. The differ-

ence between the groups corresponds to a rigid body rotation

of 23� (viewed from the membrane), about the molecular four-

fold, of the entire intracellular assembly relative to the transmem-

brane pore (Figure 1C) (Movie S1). The global nontwist
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Figure 1. Two Conformations Are Related by a Rotation of the Intracellular Assembly Relative to the Pore

(A) Nomenclature. Y132 indicates the position of the bundle crossing.

(B) A single subunit of each of the 11 structures is superimposed over the transmembrane scaffold (residues 45 to 135) of structure VII. The structures diverge

significantly only in the intracellular region, where conformational changes in the vicinity of the b hairpin and slide helices cluster according to twist. *XI (pink)

represents a slide helix/b hairpin outlier due to destabilization of molecular contacts by Sm3+.

(C) The intracellular assemblies of a twist (orange) and nontwist (green) channel are viewed from the membrane relative to superimposed pore domains (not shown).

(D) Gating intermediate II viewed in the plane of the membrane. The N terminus and membrane region are sky blue, the pore helices tan, and the intracellular

assembly gray, with one subunit picked out in green.

(E) In structures III–VII, the intracellular assembly (orange and gray) is rotated by 23� relative to structure II.
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Table 1. Comparison of Differentiating Features in Structures I–XI

KirBac

ID

Structure

ID

Space

Group

Molecular

Symmetry

b

Hairpins

Present

Interfaces

Latchedc

Interfaces

Unlatchedc

Interfaces

Q170Ac

Intracellular

Status

Interdomain

Conformer

Other

Ions

in SF

Ion Sites

Occupied

Selectivity

Filter

Status

1.1 I I222 four-fold 0 4 0 – Latched Nontwist Mg2+

(Block)

S1, S2, S3/4

(S3/4 = Mg2+)

Blocked

3.1 II P21212 two-fold 2 2 2 – Semi Nontwist Ca2+

(Block)

S1, S2, S4

(S4 = Ca2+)

Blocked

3.1 III P21212 two-fold 2 2 2 – Semi Twist – S1, S3, S4 Stalled

3.1 IV I222 two-fold 2 2 2 – Semi Twist – S1, S3, S4 Stalled

3.1 V C2221 one-fold 3a 1a 2a – Semi Twist – S1, S3, S4 Stalled

3.1 VI P1 four-fold 4 0 4 – Unlatched Twist – S1, S3, S4 Stalled

3.1 VII P4212 four-fold 4 0 4 – Unlatched Twist – S1, S3, S4 Stalled

3.1 VIII P21212 four-fold 4 0 4 – Unlatched Nontwist

(60%)b
– S1, S2,

S3, S4

Conductive

3.1

Q170A

IX P4212 four-fold 4 – – 4 d Twist – S1, S3, S4 Stalled

3.1

Q170A

X P4212 four-fold 4 – – 4 d Twist Ba2+

(Block)

S1, S2, S4

(S4 = Ba2+)

Blocked

3.1

Q170A

XI P4212 four-fold 4 – – 4 d Nontwist – S1, S2, S3, S4 Conductive

Definitions are provided in the text. Note that ‘‘Selectivity Filter Status’’ (final column) represents an interpretation based on preceding columns of

correlated parameters.
a In structure V, a crystal lattice contact results in more pronounced asymmetry of the intracellular domains.
b Both conformations are evident in the crystal lattice, but only the one corresponding to the major fraction is listed.
c See Figure 3 and Figure S6.
d The conformation at the subunit interface of Q170A is unique: close to unlatched but lacking some molecular interactions.
conformation of structure II (Figure 1D) is representative of struc-

tures I, II, and Q170A XI. In the remainder (native IV–VII; Q170A

IX–X), the alternative twist conformation occurs (Figure 1E), and

an accompanying rotation of the slide helices about an orthog-

onal axis brings the side chains of residues His39 and Asp36

into register with Glu169 and Arg167 (respectively) (Figure 1F

and Figures S1B and S1C), stabilizing the conformation. In non-

twist structures, there are no obvious interdomain stabilizing

contacts. In crystals of VIII, where the nontwist conformer is

present at 60% occupancy and the twist conformer at �40%,

both conformations of the slide helix are refined. The constriction

at the helix bundle crossing is essentially identical in all struc-

tures, notwithstanding small differences in the position of

a blocking side chain, whereas the aperture to the cytoplasmic

assembly (18 Å below the bundle crossing) exhibits systematic

variations of up to 6 Å (Figure 1G).

Interdomain Linkers Are Reconfigured
by Bound Phospholipids
The C linkers are extensions of the inner helices that connect the

pore to an intracellular C-terminal domain and have been impli-
(F) Two polar interactions linking the slide helices to the intracellular assem

(Kraulis, 1991).

(G) Representative structures depicting the constriction at the helix bundle crossi

are depicted, with CPK representations of Tyr132 (Phe146 in I). The surface of th

red spheres representing the Ca of Gln252 (266 in I as a positional marker for

diagonal distortion in II, and a wider aperture in VII and XI.

See also Figure S1 and Movie S1.
cated in the phosphatidyl inositide (PIP2) sensitivity of eukaryotic

Kirs (Huang et al., 1998; Lopes et al., 2002; Soom et al., 2001)

and noted as a hotspot for PIP2-sensitive residues (Logothetis

et al., 2007). In structure I, which has an additional arginine in

the C linker, specific interactions between phospholipid and

conserved residues (Figures 2A and 2B and Figure S2) restrain

the C linkers. An exclusive set of interactions, involving arginine

and proline residues in the C linker (Figures 2C and 2D), com-

presses the intersubunit spacing at the vestibule entrance

(Figures 1D and 1G), stabilizing a constriction and isolating an

intracellular vestibule from the pore. Despite a three-residue

insertion that alters the curvature of the C linker and adds addi-

tional charges (Tao et al., 2009), Kir2.2 exhibits very similar

features to the structures without bound lipid.
Unlatching: Two Molecular Arrangements Characterize
Subunit Interfaces
Eight wild-type structures pinpoint regions of the channel that

alternate between distinct conformations, revealing correlated

structural changes. Two discrete molecular arrangements at
bly stabilize the twist conformation. Figures were prepared with Molscript

ng (above) and intracellular aperture (below). The inner helices of I, II, VII and XI

e intracellular tetramer (residues 136–295) is viewed from the membrane, with

the constriction). The red spheres are joined to indicate the constriction in I,

Cell 141, 1018–1029, June 11, 2010 ª2010 Elsevier Inc. 1021



Figure 2. Structural PhospholipidsReconfig-

ure Interdomain Linkers, Stabilizing a Narrow

Aperture to an Intracellular Vestibule

(A) The critical residues (highlighted) are two polar

residues separated by a small hydrophobic residue.

(B) The well-ordered head group of a structural lipid

molecule (P, magenta spheres; O, red; C, yellow; N,

blue) at the junction of inner, outer and slide helices

connects adjacent subunits.

(C) Stereoview. In structures II–VIII, no ordered

phospholipid is present, and the subunits are

spaced apart at the apex. Arg137 stabilizes the

spacing, making two hydrogen bonds to the bH-bI

loop of the adjacent subunit.

(D) Stereoview. In structure I, Arg151 and Arg153

contact the slide helix and bound phospholipid (for

clarity, phospholipid is not shown), and Pro152

packs against the bH-bI loop, confining the C linkers

centrally.

See also Figure S2.
subunit boundaries (Figure 3A) accommodate different orienta-

tions of individual intracellular domains.

In structures II–IV, two arrangements (described hereafter

as latched and unlatched) alternate about the four-fold

(Figures 3B and 3C and Figures S3A and S3B). This reduces

the symmetry of the assembly to two-fold, and, although not

appreciable in the transmembrane pore, it is apparent in the

intracellular domains (Table 1). The key features are a salt bridge

between two highly conserved Kir residues (Figure S3C) and an

N-terminal b hairpin (AN-BN) that spans unlatched subunit inter-

faces (Figure S3D) but is only partially ordered at latched inter-

faces (Table 1). Additionally, the loops bD-bE and bL-bM are

only well ordered at unlatched interfaces.

Intersubunit connections are clustered near the membrane in

the latched arrangement, but they reorganize, in the unlatched

arrangement, into a more extensive array of interactions. The

net effect of staged unlatching at all four interfaces (structures

VI–VIII) is a symmetrical iris-like dilation of a narrow opening to

the intracellular vestibule by approximately 4.5 Å relative to I

(Figure 1G), extending the permeation pore through both

domains (Movie S2). The opening in question is located 18 Å

from the bundle crossing (Figure 1D).

Molecular Pulleys Link Unlatching
to Domain Reorientation
Structural interdependency links rearrangement at the sub-

unit interfaces to systematic reorientation of the intracellular

domains, where latched and unlatched differ by approximately

5�. Coupling is facilitated by actions of the N and C termini, which

effectively act as a pulley system. The intracellular domain of

each subunit is an immunoglobulin-like b sandwich, overlaid

on the surface by N and C termini. Its C terminus is tethered

both to the N terminus and the underlying b sandwich such

that all motions are interdependent. In addition, parallel b sheet

interactions formed between bCN on one subunit and bM on

another (Figure 3D) adapt the basic fold by interweaving neigh-
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boring subunits into a circle, coupling the motion of each subunit

to that of its neighbor.

Twin Polyamine-Binding Sites Are Identified
Distinct polyamine-binding sites have been identified in the intra-

cellular assembly and pore, and in the presence and absence of

bound polyamines.

In II, spermine molecules partially buried within the two latched

subunit interfaces are modeled in alternate conformations distin-

guished by their interactions with neighboring residues (Fig-

ure S4A). Two counter ions designated as chlorides are coordi-

nated by side chains at the interface. The intracellular pockets

are preformed, those in II superimposing closely with the latched

interface in the corresponding unliganded structure III.

The open-ended sites accommodate polyamines of variable

length oriented parallel to the molecular axis. In II, one end of

each spermine points toward the pore (Figure 4A), while the

other juts from a distal opening such that the amines farthest

from the membrane are exposed and hydrated. A trio of resi-

dues, His177 and Asp197 from one subunit and Arg204 from

another, enclose the aliphatic pocket, while another (His255,

Glu173, Thr 244) lies between the polyamine and the bundle

crossing (Figure 4B). The morphology of each binding pocket

is determined by domain orientation; at unlatched interfaces

the pockets are diminished and incompatible with polyamine

binding (Figures 4C and 4D). In XI, Glu173 coordinates Sm3+,

suggesting that the intracellular binding pocket is a general

cation-binding site (Figure S4B).

In VIII, an axial spermine occupies the permeation pathway,

entering as far as the symmetry-related side chains of Leu124

(Figures 4E and 4F and Figure S4C). In the other KirBac struc-

tures, as well as some structures of KcsA (e.g., Phe103 in PDB

2IH3), an equivalently sited residue similarly constricts the

permeation pathway. In the Kir family, a moderately sized

residue is conserved at this position, where an acidic side chain

characterizes strong inward rectifiers (Wible et al., 1994). In



Figure 3. Two Distinct Molecular Arrangements Characterize

Subunit Interfaces

(A) The symmetry of the intracellular assembly of II, viewed from the membrane

along the molecular axis, is pseudo-four-fold. Adjacent subunits are colored

green and gray.

(B) Close-up view of the latched intracellular interface arrangement.

(C) The unlatched interface differs in that ordering of the bAN-bBN hairpin relo-

cates the core interactions further from the membrane (the * denotes a back-

bone amide interaction connecting an amide oxygen at the reflex point of the

hairpin to an amide nitrogen on bI located across the interface).

(D) Molecular pulleys determine subunit orientation: parallel b sheet interac-

tions formed between bCN on one subunit and bM (dark green) on another

interweave neighboring subunits. A turn of amphipathic helix connecting bM

to bN firmly anchors bM to the underlying scaffold (gray and mid-green).

The b hairpin (AN-BN) is connected back to its originating subunit by a b sheet

interaction with bI (a single hydrogen bond at the inflection of the b-hairpin).

A salt bridge, R13.E264, positions the N terminus.

See also Figure S3 and Movie S2.
Kir2.1, for example, the Leu124 equivalent is Asp172, and point

mutations decrease the binding affinity of polyamines (Guo et al.,

2003). Held in place by extensive van der Waals contacts, the

extended spermine molecule protrudes out of the membrane,

forming a cation-p interaction between the aromatic ring of

Tyr132 at the bundle crossing and the secondary amine, indi-

cating that as for the intracellular binding site a range of poly-

amine lengths can be accommodated.

Ion Configuration Is Linked to the Global Conformation
of the Channel
A major finding is that the number and site distribution of bound

ions in the selectivity filter are contingent on global conforma-

tional changes. Although the moderate resolution of the struc-

tures (2.6 to 4.2 Å) does not differentiate changes in the backbone

conformation of the flexible selectivity filter, the positions of

bound ions are clearly discernable (Figure 5A). For convenience,

discrete ion binding sites are denoted S1 to S4 (Figure 5B) after

Roux (Bernèche and Roux, 2001). The Q170A structures are

included in the analysis, as the pore does not differ from wild-

type protein.

To briefly summarize, the twist structures are characterized by

a specific three-ion configuration (S1, S3, S4). In nontwist forms,

four sites are occupied (S1, S2, S3, S4), corresponding to a

weighted mean of contributing two-ion and three-ion configura-

tions averaged over the crystal. When divalent ions occupy the

selectivity filter, a cation-specific blocked configuration occurs

(S1, S2, S4 = M2+). The details are elaborated below.

Structure I has three occupied ion sites: S1, S2, and an inner-

most site located between the previously described S3 and S4

locations, where it is coordinated by the carbonyls of Thr110. We

suggest that the S3/S4 site ion represents Mg2+, rather than a K+

as initially reported (Kuo et al., 2003). Mg2+ was present in crystal-

lization conditions and ion coordination distances persistently

refine to approximately 2.1 Å, inconsistent with K+ or water. The

density is consistent with either square planar or pentacoordinate

geometry (with an axial water), both inappropriate to K+ coordina-

tion. The S3/S4 site corresponds to a putative Li+ binding site

inferred on the basis of a combined electrophysiology, molecular

dynamics, and crystallographic analysis (Thompson et al., 2009)

and is most likely to represent a Mg2+-blocked configuration.

Similarly, in II, which has two-fold symmetry, only three sites

S1, S2, and S4 are occupied. The ion distribution is exclusive

to this structure, and interatomic distances of 2.4–2.5 Å between

carbonyl oxygens and the ion are indicative that S4 coordinates

a Ca2+ ion (present in crystallization conditions).

In the twist structures III–VII and IX, the ion configuration is S1,

S3, and S4. This distribution concurs with a predicted three-ion

conduction substate, d (in the notation of Bernéche and Roux),

in the low free energy pathway (Bernèche and Roux, 2001),

and potentially represents a direct view of substate d. Shifting

between multiple substates is a prerequisite for conduction,

however, implying that a single stable substate configuration

equates to stalled or inactive conduction status. In X, despite

the twist, a Ba2+ bound at S4 stabilizes the filter in a blocked

configuration (S1, S2, S4) similarly to I and II (Figure S5A).

Two structures, VIII (60% nontwist, 40% twist) and XI

(100% nontwist), have all four sites occupied. This indicates
Cell 141, 1018–1029, June 11, 2010 ª2010 Elsevier Inc. 1023



Figure 4. Identification of Two Polyamine-

Binding Pockets

(A) The latched intracellular interfaces accommo-

date polyamines within a closed pocket. The Ca

trace of II is represented as a black coil, with

two symmetry-related spermine molecules repre-

sented by colored spheres (N atoms are cyan;

C atoms are yellow).

(B) Stereoview of the intracellular binding pocket

observed from within the vestibule, with interacting

side chainsdepicted assticks. The stackedhistidine

side hains are just beneath the membrane (see

Figure 3). Spermine is represented by CPK spheres

with C atoms colored black (to contrast with the

atoms from yellow side chains) and N atoms blue.

Counter ons are depicted as violet spheres.

(C) A cutaway of the internal molecular surface of

II shows that spermine fits easily into a binding

pocket at a latched interface.

(D) A comparable view of the unlatched interface

of II reveals morphology incompatible with poly-

amine binding (changes in position and side chain

orientation of key residues backing the binding

site, notably Pro206, Ile172, and Leu242, reduce

the length of the pocket).

(E) Coil representation of the Ca trace of structure

VIII, with axial spermine represented as CPK

spheres.

(F) A longitudinal slice through the molecular

surface of VIII the polyamine-binding site.

See also Figure S4.
a conducting, or open, conformation of the selectivity filter,

consistent with predictions that the motions of ions in the filter

during conduction are highly correlated and that the pathway

of lowest free energy is via four contributing substates (Bernèche

and Roux, 2001). We cannot rule out the possibility that the

pattern of occupancy in VIII is an average of nonconductive twist

(present at 40%: S1, S3, S4) and Mg2+ block (S1, S2, S3 = Mg2+)

configurations. There is, however, no evidence for Mg2+ at the

position between S3 and S4 arguing, on balance, that VIII is in

a conducting conformation and that Mg2+ block is not favored

in the presence of spermine. Furthermore, the ion distribution

in VIII, which binds an extended axial spermine in the permeation

pathway, is indistinguishable from that of XI, which does not.

Soaking crystal XI with a trivalent cation that shares some of

the qualities of Ca2+ was particularly helpful, allowing us to

capture the nontwist form of the channel without a blocked ion

configuration (i.e. Sm3+ coordinates Asp36 on the slide helices,

abrogating interactions with the C-terminal domains that stabi-

lize the twist conformation) (Figure S5B). Structure XI is unique

in exhibiting marked anisotropic mobility of the outer transmem-

brane helices (Figures S5C and S5D), suggesting that a lack of

slide helix constraints and pore blockers permits increased

thermal motion. The data are summarized in Figure 5C.
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Recombinant KirBac3.1 Exhibits
Subconductance States
Patch clamping carried out on purified

wild-type KirBac3.1 channels reconsti-

tuted into giant unilamellar vesicles
(GUVs) (Battle et al., 2009) showed functional ion channels with

a predominant single channel conductance of 63 pS for both

WT (Figure 6A) and Q170A (Figure 6B) mutant channels. The

Q170A mutant (Figure S6) has a higher open probability than

the wild-type channels. KirBac3.1 current recordings closely

resemble reported recordings on KirBac1.1 (Cheng et al.,

2009), including gating heterogeneity and a range of subconduc-

tance states (Figure 6C).

DISCUSSION

Evidence for selectivity filter gating derives from several sources

(Baukrowitz and Yellen, 1995; Blunck et al., 2006; Cordero-

Morales et al., 2006; Cordero-Morales et al., 2007; Hoshi et al.,

1991). This study takes an important step, in which determina-

tion and analysis of multiple structures pinpoints areas of the

molecular scaffold that undergo localized transition, globally

correlates these changes, and lays a rational foundation for dis-

tinguishing structures of conducting K+ channels from those that

are nonconductive or blocked. Our findings provide strong evi-

dence that the selectivity filter can switch between noncon-

ducting and conducting configurations without significant dis-

placement of the inner helices. This is distinct from findings



Figure 5. Ion Configuration Is Linked to

Global Conformational Change

(A) Omit map jFoj � jFcj contoured at 5 s. K+

ions are green, and Mg2+/Ca2+/Ba2+ magenta (An

(2jFoj � jFcj) map at 4 s is used for structure I.

(B) Refined ion sites positioned relative to the

selectivity filter backbone of structure VIII indicate

that K+ channels have distinct conducting, non-

conducting, and blocked configurations: a, VIII

(conducting); b, 1K4C KcsA (conducting); c, VII

(twist); d, 1K4D KcsA; e, I (Mg2+ block); f, II (Ca2+

block); and g, (Ba2+ block).

(C) Correlated structural changes shift the equilib-

rium status ion configuration. Roman numerals

refer to the structures. The inset at lower left

defines the structural elements. Top left: a noncon-

ductive channel has four latched interfaces and

a blocked selectivity filter. Top center: interme-

diate with alternating latched and unlatched

interfaces; structure II (Ca2+ blocked) is depicted.

Top right: four unlatched arrangements at subunit

interfaces and a conductive selectivity filter. Bot-

tom: the selectivity filter of all nonblocked twist

conformers assumes a three-ion substate.

See also Figure S5.
that inactivation at the selectivity filter is driven by widening at the

bundle crossing, and vice versa (Blunck et al., 2006; Cordero-

Morales et al., 2007). While research into selectivity filter gating

has primarily focused on C-type inactivation, our data indicate

that the selectivity filter is not limited to this and is susceptible

to subtle global conformational change, suggesting a more

universal role in gating than hitherto expected. The correlation

of twist to ion configuration in Kir channels suggests that global

motions shift the equilibrium between conducting and noncon-

ducting metastable states and is likely to be reversible on a short

time scale. That the effect is mediated by the slide helices poses

a plausible rationale for why disrupting interactions between

slide helices and the intracellular domains of Kir2.1 leads to

defective gating (Decher et al., 2007). It also supports an argu-

ment for generality of selectivity filter gating, as, unlike the intra-

cellular assembly, the slide helices are conserved in most K+
Cell 141, 1018–102
channels (e.g., the S4-S5 linker in Kv fami-

lies). Importantly, our data indicate that

ion distribution transcends channel type

and reflects gating status. For example,

the ion distribution observed in nontwist-

nonblocked structures (VIII, XI) is iden-

tical, within coordinate error, to that in

a 2.0 Å structure of conductive KcsA

(Zhou et al., 2001), yet the occupancy in

twist-nonblocked structures is compa-

rable to that observed in a conduction-

compromised state crystallized in an

almost complete absence of K+ (although

S3 was assigned as water) (Zhou et al.,

2001).

The KirBac structures collectively

define a process of conformational inter-
change mediated at the intracellular subunit interfaces. The

structures do not follow a conformational continuum, but rather

illustrate a staged path to activation via two-fold symmetric inter-

mediates, where in the midrange only every other subunit is

unlatched, distorting the symmetry along a cross-sectional

diagonal (Figure 1G and Table 1). Similar symmetry was ob-

served for the ligand binding domains of a glutamate receptor

(Armstrong et al., 2006; Sobolevsky et al., 2009), whereas in

the K2P channels true bilateral symmetry becomes pseudo-

four-fold at the selectivity filter (Kollewe et al., 2009), suggesting

a common theme.

The combination of structure and function data indicates that

unlatching, and consequent reorientation of the cytoplasmic

domains, is coupled to the selectivity filter and hence represents

an auxiliary gate in Kir channels. Our analysis shows that only

when all four interfaces have eschewed the latched arrangement
9, June 11, 2010 ª2010 Elsevier Inc. 1025



Figure 6. Purified Recombinant KirBac 3.1

Forms Functional Ion Channels in GUVs

(A and B) Single-channel recordings from wild-type

(A) and Q170A mutant (B) KirBac3.1 channels.

(Ai and Bi) Individual channel traces recorded at

a holding potential of �60 mV. Closed and open

channel levels are labeled C and O, respectively.

(Aii and Bii) Representative all points amplitude

histograms of KirBac3.1 channel activity from

100 s of continuous recording at �60 mV for

the wild-type channel and 20 s of continuous

recording for Q170A. Fits of Gaussian distributions

to multiple histograms yielded at a single channel

current of 3.7 ± 0.1 pA at �60 mV for both WT

and Q170A channels.

(C) KirBac3.1 channels exhibit significant gating

heterogeneity and subconductance states.

(Ci) Recording shown from a patch containing

KirBac3.1 channels with multiple conductance

states (dashed lines).

(Cii) All points amplitude histogram of the data

shown in (Ci). Fits of multiple Gaussian distribu-

tions to the data showed peaks at 0, 1.15 pA,

2.01 pS, 3.49 pA, and 4.57 pA corresponding to

the conductance levels in (Ci).

See also Figure S6.
can the selectivity filter acquire a conducting conformation,

suggesting that unlatching is concomitant with activation. We

note that the three Q170A mutants are effectively unlatched at

all four interfaces but have fewer molecular constraints than

the wild-type (Figure S6), resulting in a small, consistent, differ-

ence (�1�–2�) in the orientation of the cytoplasmic domains while

the pore is unchanged. The structural difference is reflected in

the higher open-probability of Q170A relative to the wild-type.

Furthermore, fluorescence resonance energy transfer experi-

ments on a series of differentially labeled Kir3.1/Kir3.4 hetero-

mers indicate that activation entails a composite relative motion

of the intracellular subunits, qualitatively consistent with unlatch-

ing (Riven et al., 2003).

The conformational interrelationships described herein sug-

gest a general explanation for the effects of ligands and regula-

tory binding partners, such as the Gbg subunits on Kir3

channels. We earlier described how the mutual orientation of

adjacent intracellular domains is affected by the N and C termini

of the protein. Perturbation of either terminus by a regulatory

molecule is likely to elicit domain reorientation, presenting a

means of rapid signal transmission from the intracellular

assembly to the gates. By the same token, molecules preventing

reorientation must stabilize the closed state. While Gbg subunits

are thought to utilize the N and C termini of Kir3 channels during

activation (Jones et al., 2001), the binding site of ATP, which

inhibits activation of Kir6 channels, has been attributed primarily

to the N terminus (Tucker et al., 1998). Our hypothesis explains

why functional experiments alone have been unable to pinpoint

regulatory binding sites (e.g., PIP2 and ATP) with any precision,
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as ligand binding at any point in the network could potentially

draw an effect.

Kir channels also regulate current directionality, and this study

illuminates specific features tailored to effect rectification. At

resting potential, intracellular binding sites at latched interfaces

locally concentrate cations. Unlatching causes the intracellular

vestibule to connect with the pore, simultaneously disrupting

the binding sites and facilitating polyamine release into an open-

ing conduction path. A recent study of the isolated intracellular

assembly of Kir3.1 correlates spermine binding to small changes

at the subunit interface, leading the authors to conclude that

polyamine binding stabilizes the resting state (Osawa et al.,

2009). Although our structures indicate that the binding pocket

is preformed, the essence of the argument, that binding is

contingent upon the relative orientation of the subunits, is ther-

modynamically commensurate with our findings.

The geography of the intracellular polyamine-binding site pro-

vides a plausible explanation for experimental data implicating

His216 in pH titratable rectification in Kir6.2 (Baukrowitz et al.,

1999). In KirBac3.1, the counterpart of His216 is His177, which

interacts with Asp197 in enclosing the binding pocket. Consis-

tent with the Kir6.2 study, protonation of His177 at low pH would

offset the negative charge of Asp197, reducing the electrostatic

attraction of the site to polyamines, whereas at higher pH an

unshielded negative charge would favor polyamine binding. In

Kir channels, one or both of the residues corresponding to

Glu173 and Thr244 is invariably acidic, maintaining a ring of

negative electrostatic surface charge near the apex of the vesti-

bule and favoring polyamine retention. In human Kir2.1, the



corresponding residues Glu224 (Taglialatela et al., 1995; Yang

et al., 1995) and Glu299 (Kubo and Murata, 2001) have been

implicated in rectification.

Spermine fully occludes the narrow pore entrance of VIII,

consistent with findings that linear cations confer stronger recti-

fication than bulkier molecules (Lopatin et al., 1994; Loussouarn

et al., 2005), which may be unable to enter past the constriction.

If opening a long pore is concomitant with polyamine release,

entry of hydrated of K+ ions ahead of the polyamine should be

largely excluded. Further investigation will be essential to pin

down the mechanistic aspects of current rectification and to

provide an explanation for a small current efflux under depolar-

isation conditions (Guo et al., 2003; Lopatin et al., 1994).

The inner helix conformation determines the width at the

bundle crossing and is commonly attributed to gating state.

This has been questioned with reference to HERG (Hardman

et al., 2007) and Kir channels (Shang and Tucker, 2008). To

date, multiple structures of any native channel have exhibited

identical conformations, suggesting that inner helix conforma-

tion may relate to the specific electrical signature of a channel

or channel family rather than to its conduction status. For exam-

ple, all crystal structures of Kv channels feature similar pro-

nounced curvature of the inner helices. While perturbation at

the bundle crossing unquestionably influences the open proba-

bility of channels, the way in which this is achieved is shaping

up to be more complex than previously thought and pro-

vides ample fodder for discussion. It is notable that the only

structure representing the large-conductance BK family has

curved helices and a wide pore (Jiang et al., 2002), consistent

with rapid ion and water diffusion. Aldrich’s finding that a

benzoyl-derivatised butyl quaternary ammonium does not

become trapped in a closed BK channel (Wilkens and Aldrich,

2006) is consistent with a wide aperture at the bundle crossing

in both open and closed states. It reinforces the argument that

the selectivity filter can act independently as a permeation

switch as well as a means of inactivation.

The study presented here provides evidence of selectivity filter

gating distinct from C-type inactivation and governed by global

conformational changes. As the relative twist determines the

equilibrium status of the selectivity filter, it will be important

to discern whether this is a threshold effect or a continuum.

A continuum of tiny conformational adjustments of the selectivity

filter transitioning between twist and nontwist forms could repre-

sent an ancillary influence in conduction, but whether such filter

breathing contributes to the subconductance levels observed for

KirBac channels remains to be established. Overall, we antici-

pate that the findings and analyses presented here will provide

the groundwork for future investigations into K+ channel action.
EXPERIMENTAL PROCEDURES

Protein Expression, Purification, and Crystallization

Full-length KirBac3.1 from Magnetospirillum magnetotactium and a Q170A

mutant channel were expressed at 25�C in E. coli BL21 (DE3) star cells. After

harvesting, cells were lysed at 20,000 psi in a high-pressure homogenizer.

Protein was extracted by incubating the lysate with 1% Anzergent 3,12 at

room temperature for 1 hr. Cellular debris was removed by centrifugation,

and the protein was purified by affinity chromatography with Ni2+-loaded

IMAC resin, followed by size-exclusion chromatography. Peak fractions
were pooled and concentrated to �8 mg/ml for crystallization, which was

carried out by vapor diffusion at 19�C at the Bio21 C3 crystallization facility.

Precipitant conditions are listed in Table S2.

Data Collection and Processing

Data collection was carried out on cryocooled single crystals of KirBac3.1 at

either the Australian Synchrotron (beamline 3BM1) or at the Swiss Light Source

(microfocus beamline X06SA). New refinements of previously determined

structures I, II, and VIII utilized publicly available data sourced from the Protein

Data Bank under respective PDB codes 1P7B, 1XL4, and 1XL6. Data from

1P7B were anisotropically corrected with the National Institutes of Health

(NIH) server at the NIH-MBI laboratory at University of California, Los Angeles

(Strong et al., 2006). Test sets containing 5% of the reflections selected

randomly or in thin resolution shells were flagged for noninclusion in refinement

procedures.

Structure Determination and Refinement

Electron density in structures III–VII was phased by molecular replacement.

Whole or partial models were derived from 1XL4 and 1XL6, with all ions and

water molecules removed from the models prior to performing searches.

Solvent flattening and histogram matching protocols were used to improve

the electron density maps. Maps for structure I were B factor sharpened.

Model building and refinement involved iterative refinement of atomic coordi-

nates using maximum likelihood and simulated annealing procedures, alter-

nating with cycles of TLS and individual or group B factor refinement. Refine-

ment was monitored according to the decrease in Rfree. A number of residues

in each structure were omitted or had side chains truncated at Cb due to posi-

tional disorder, and are listed in the PDB depositions.

Ion Channel Reconstitution

KirBac3.1 was incorporated into GUVs prepared by rehydrating lipids in

sucrose solutions followed by protein reconstitution. In brief, a 10 mg/ml solu-

tion of 70:30 PE/PC lipid (Avanti Polar Lipids, AL) in chloroform was dried under

N2. Once dry, 3 ml purified water was added to the bottom (prehydration)

followed by 1 ml 0.4 M sucrose. The solution was incubated for 3 hr at 60�C.

Purified protein solubilized in 0.005% TDM was added at a 1: 200 protein-

to-lipid ratio, and the solution was shaken on an orbital mixer overnight until

a cloud of liposomes was seen to float in the solution. The sample was then

shaken for a further 3 hr at room temperature in the presence of Bio-Beads

(Bio-Rad) to remove traces of detergent.

Electrophysiology

An aliquot of liposomes (2–4 ml) was taken from the liposome cloud and intro-

duced to the recording bath. Channel activity was examined in inside-out

liposome patches with symmetrical bath and pipette solutions. Borosilicate

glass pipettes were of a diameter that corresponded to a pipette resistance

in the range of 3.0–5.0 MU. Ionic currents were recorded with an Axon 200B

patch-clamp amplifier, filtered at 2 kHz, and digitized at 10 kHz. Single-

channel analysis was done with pCLAMP10 software (Axon Instruments).

Complete experimental methods, including recipes for solutions and growth

parameters, along with references, are provided in the Extended Experimental

Procedures.

ACCESSION NUMBERS

Coordinates and structure factors have been deposited in the Protein Data

Bank. Accession codes are as follows: I, 2WLL; II, 2WLJ; III, 2WLI; IV,

2WLO; V, 2WLM; VI, 2WLN; VII, 2WLH; VIII, 2WLK; IX, 2X6A; X, 2X6B;

and XI, 2X6C.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, two tables, and two movies and can be found with this article online

at doi:10.1016/j.cell.2010.05.003.
Cell 141, 1018–1029, June 11, 2010 ª2010 Elsevier Inc. 1027

http://dx.doi.org/doi:10.1016/j.cell.2010.05.003


ACKNOWLEDGMENTS

We thank Janet Newman at the Bio21 C3 crystallization facility, Clemens

Schulze-Briese, support staff at the Swiss Light Source, support staff at the

Australian Synchrotron, Marc Kvansakul and Peter Czabotar for help with

data collection, Peter Colman, Pauline Crewther, and James Blake for input

on the manuscript, and Declan Doyle for the KirBac3.1 construct. We acknowl-

edge assistance from the Australian Synchrotron Research Program for travel

to the Swiss Light Source, the Australian National Health and Medical

Research Council (NHMRC) for project funding, NHMRC Independent

Research Institutes Infrastructure Support Scheme grant number 361646,

and Victorian State Government Operational Infrastructure Support grants.

J.M.G. thanks the Wellcome Trust for an International Senior Research Fellow-

ship and the Australian Research Council Centre of Excellence in Coherent

X-ray Science for travel assistance. O.B.C. is supported by an Australian Post-

graduate Award.

Received: November 13, 2009

Revised: February 19, 2010

Accepted: May 5, 2010

Published online: June 3, 2010

REFERENCES

Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J.,

Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C.

(2002). PHENIX: building new software for automated crystallographic struc-

ture determination. Acta Crystallogr. D Biol. Crystallogr. D58, 1948–1954.

Ader, C., Schneider, R., Hornig, S., Velisetty, P., Vardanyan, V., Giller, K.,

Ohmert, I., Becker, S., Pongs, O., and Baldus, M. (2009). Coupling of activation

and inactivation gate in a K+-channel: potassium and ligand sensitivity. EMBO

J. 28, 2825–2834.

Armstrong, C.M. (1969). Inactivation of the potassium conductance and

related phenomena caused by quaternary ammonium ion injection in squid

axons. J. Gen. Physiol. 54, 553–575.

Armstrong, C.M. (1971). Interaction of tetraethylammonium ion derivatives

with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437.

Armstrong, C.M., and Hille, B. (1972). The inner quaternary ammonium ion

receptor in potassium channels of the node of Ranvier. J. Gen. Physiol. 59,

388–400.

Armstrong, N., Jasti, J., Beich-Frandsen, M., and Gouaux, E. (2006). Measure-

ment of conformational changes accompanying desensitization in an iono-

tropic glutamate receptor. Cell 127, 85–97.

Ashcroft, F.M., Ashcroft, S.J., and Harrison, D.E. (1988). Properties of single

potassium channels modulated by glucose in rat pancreatic beta-cells.

J. Physiol. 400, 501–527.

Battle, A.R., Petrov, E., Pal, P., and Martinac, B. (2009). Rapid and improved

reconstitution of bacterial mechanosensitive ion channel proteins MscS and

MscL into liposomes using a modified sucrose method. FEBS Lett. 583,

407–412.

Baukrowitz, T., and Yellen, G. (1995). Modulation of K+ current by frequency

and external [K+]: a tale of two inactivation mechanisms. Neuron 15, 951–960.

Baukrowitz, T., and Yellen, G. (1996). Use-dependent blockers and exit rate of

the last ion from the multi-ion pore of a K+ channel. Science 271, 653–656.

Baukrowitz, T., Tucker, S.J., Schulte, U., Benndorf, K., Ruppersberg, J.P., and

Fakler, B. (1999). Inward rectification in KATP channels: a pH switch in the

pore. EMBO J. 18, 847–853.
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