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The irreducibility of the energy representation of the group of smooth mappings 
from a Riemannian manifold of dimension d > 3 into a compact semisimple Lie 
group is proven. The nonequivalence of the representations associated with different 
Riemann structures is also proven for d > 3. The case d = 2 is examined and 
irreducibility and nonequivalence results are also given. The reducibility in the case 
d = I is pointed out (in this case the commutant contains a representation 
equivalent with the energy representation). 

1. INTRODUCTION 

In this paper we study the energy representation of the group GX of 
smooth mappings with compact support from a Riemannian manifold X into 
a semisimple compact Lie group G. Such representations have been 
introduced in [l-4]. The irreducibility and the mutual nonequivalence of 
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such representations for different metrics depend strongly on the dimension 
of X and the first proof of these properties was given by Ismagilov [ 1 ] in the 
case d> 5 and G = SU2. The crucial point in the Ismagilov’s proof 
[ 1, Theorem 31 is a result about the Gaussian measure on the Schwartz 
space 8’(U), U an open set in IRd, with covariance given by the Laplacian 
and its translations by linear combinations of Dirac measures. Vershik, 
Gelfand and Graev [2] were able to improve the method of Ismagilov. First, 
they show that the algebraic elements in the proof are essentially the same 
when G is an arbitrary compact semisimple Lie-group (this is remarked 
without proof in [ I]) and more importantly they extend for d > 4 the result 
about the Gaussian measure, alluded to above, by developing a different 
method and hence obtaining the irreducibility and the nonequivalence results 
for d > 4. 

In the present paper we tackle the case d > 3 and also give results on the 
remaining cases, d = 2 and d = 1. As far as the irreducibility and none- 
quivalence results are concerned, the algebraic part of our work is the same 
as that used in [ 1, 21, however, we differ from those papers by having a 
stronger method of controlling the Gaussian measure mentioned above. Our 
main technical tool is in fact Theorem 4.1 below, which is concerned with 
that Gaussian measure; and this result is in fact an extension of the recent 
results which served to proved the triviality of the exponential interaction 
Pm: in the cases d > 3 for all a or d = 2 for 1 a / big in quantum field theory 
[8, 91 (see also [lo, 111). 

In Section 2 we give the definitions; we describe the problems and state 
the results. In Section 3 we reduce the proof of the results to estimations on 
Gaussian measures which are given in Section 4. 

2. THE GROUP GX AND ITS ENERGY REPRESENTATION. 
DESCRIPTION AND STATEMENT OF THE RESULTS 

Let X be a Riemannian manifold of dimension d and let G be a compact 
semisimple Lie group with Lie algebra g. Let GX be the space of C”- 
functions from X to G with compact support. GX is a group with respect to 
the pointwise multiplication. 

The space of smooth l-forms with values in g will be denoted by Q(g). If 
o E Q(g) then w(x) is a linear operator from the tangent space r,(X) at x of 
X into the Lie algebra g. Q(g) is a vector space and it is a real prehilbert 
space if one defines the scalar product by 

(w,, %I= SP (~,(x)wz(x)*)~(x)dx, i X 
(2.1) 
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where p(x) dx is a measure on X with strictly positive P-density p(x) with 
respect to the volume measure dx on X, and where w(x)* is the adjoint of 
o(x) with respect to the canonical Euclidean structure on 7’,(X) and the 
Euclidean structure on g given by (--K), K being the Killing form. The 
symbol Sp denotes the normalized trace in the space of linear operators on g. 

Note that, except for d = 2, we can always reduce ourselves to the case 
p(x) = 1 by using another Riemann structure on X. 

We denote by H(g) the complex Hilbert space generated by Q(g). The 
elements of H(g) can be identified with currents on X with values in the 
complexification gc of g, using the canonical identification of g with its dual. 
These currents are actually (classes for the equality almost everywhere with 
respect to dx of) locally integrable sections of the bundle T(X)* @ gc. 

G* acts on H(g) by the pointwise adjoint representation V, i.e., for 
yEGX, coEH(g) we have 

V’(Y) w)(x) = Adv(x) Mx>, 

which we also write as 

WY) o)(x) = Y(X) 4x1 ‘Y(x)-‘. (2.2) 

Due to the invariance of the Killing form with respect to the adjoint 
representation, this formula defines a unitary representation V of GX acting 
on the classes of sections. 

The right logarithmic derivative defined by 

B(Y)(X) = 44x) Y(X)-’ (2.3) 

is an element of O(g) and /I is a one-cocycle (the so-called Maurer-Cartan- 
cocycle) with respect to the representation V. This means that for all v/, 
q E GX 

P(‘n) = VW> P((P> + P(w)* (2.4) 

Let now 8(B) be the Fock space built over the one particle space H(g), i.e., 

where H(g)$& is the symmetric Hilbert n-fold tensor product of H(g) with 
itself and the sum is a direct Hilbert one. 

Then one defines a representation U of GX in eHtg), the so called energy 
represenfation of GX (associated with the weight p) ([l-4]), by giving the 
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action of U(w), YE Gx, on the total set of coherent states {ewlo E H(g)}, 
with ew = C,“=O (l/n!)(o @ . . . @ o) ( see, e.g., [5, 141) in the following way: 

U(w) 
ew = ,-lDcrw~ e-wmJ,4(o)) eY(dhJtO(o,) 9 (2.5) 

where 11 ]I is the norm in H(g). 
In other words U is the unitary representation of GX in the representation 

space $Ifg) which one obtains by exponentiating the action of the Euclidean 
group of transformations of H(g) given by o + V(w) o +/3(w), w E GX, 
wEQ(L?)- 

An equivalent description of this representation is the following. Let ,u be 
the Gaussian measure canonically associated with the dual a’(g) of R(g). 
Then the canonical isomorphism of P(p) with L*(&) identifies U with the 
unitary representation in L2(&) given by f(o’) + ei(D(0)*w’)f( V-‘(w) w’), 
w’ E J2’( g), w E GX. For more details on this representation see the original 
references [l-3]. 

The irreducibility of the energy representation has been proven for 
dim X > 5 (in the case G = SU2) by Ismagilov [l] and for dim X > 4 by 
Vershik, Gelfand and Graev [2]. In the present paper we improve this to 
d > 3 and we also discuss the interesting situations that arise for d = 1, 2. 
Let us formulate shortly the main results of the present paper: 

THEOREM 2.1. For d 2 3 the energy representation of GX associated to 
any weight p is irreducible. For d = 2 the energy representation is irreducible 
if the roots I of the Lie algebra satisfy /II > dm for all x E X (where 
IA I is the length of the root vector A in g). 

There is a natural conjecture concerning the case d = 2 and 2 < v’&$$ 
for any root of g and some point x E X, namely, that the energy represen- 
tation associated with the weight p should be reducible. This is based on 
results obtained [ 131 ( see also [8,9]) for the exponential interaction in 
quantum field theory. The remaining cases for d = 2 are also in close 
relation with as yet unsolved problems of quantum field theory with 
exponential interaction; on the basis of [lo] one should actually obtain 
irreducibility in the whole region (AI > v’-. Concerning reducibility in 
the region I/l I < dm 7~ x we have presently only the following weaker result: 

THEOREM 2.2. Let d = 2 and let R be the open set of x E X such that 
IA <dGmf or all roots 1 of g. Let exp (t*) be the set of elements of GX 
which are of the form 

(exp A)(x) = ew (A (x>> 
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for some smooth function A with compact support in A and values in an 
abelian Lie algebra t of g. Then the restriction of U to exp(t’) generates an 
abelian algebra of operators with a spectrum which is not simple. 

We have also the following result concerning the nonequivalence of the 
energy representations given by different weights on the Riemannian 
manifold X: 

THEOREM 2.3. Let U,, U be the two energy representations of GX 
associated with two different weights p,, and p,. Then U, and U, are 
inequivalent if either d = 2 and / 2 / > dq for a = 0, 1, and all x E X 
and all roots 1 of g, or d 2 3. 

3. ALGEBRAIC PART OF THE PROOFS 

Let us start by choosing a maximal torus T in G and let t be the 
associated Cartan subalgebra in g. Let t1 be the orthogonal complement of t 
in g. The following objects are defined as before, replacing G by T and g by 
t resp. P: TX, Q(t), a(P), H(t), H(I). Remark that e“(‘) and e?(‘l) are 
canonically imbedded in Peg), as ?(‘) @ e” resp. e” @ ?(I’), and one has 

(see, e.g., IS]). 

@(RI = eHw @ fl(f-) (3.1) 

Let ?’ be the set of smooth functions with compact support in X and with 
values in t. The element exp A of TX c GX defined by 

(exp A)(x) = exp A(x) (3.2) 
satisfies 

p(expA)=dA (3.3) 

and one can easily check that 

U(exp A) = W(dA) @ evCexp ‘), (3.4) 

where W(dA) is the Weyl operator associated with u!A E O(t) c H(t) c H(g) 
defined by 

w(dA) ew = e-~~dAll*/Z e-(w.dA)ew+dA (3.5) 

for all w E H(t), and we use the notation e“’ for the operator on p(g) defined 
by 

Fe” = eMw (3.6) 

for w E H(g) and M an operator on H(g). 
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In formula (3.4) the part eYCexpA) is easily diagonalized. First of all, it 
leaves invariant the subspaces H(t)& and in each of these spaces, using a 
decomposition of (t’)’ with root vectors in g’, one sees that ev(exp.4) acts 
multiplicatively. Then there is a direct integral decomposition of the 
restriction of U to the set exp (?‘), on a constant Bore1 field of Hilbert spaces 
all isomorphic to $I(‘), given by 

U(exp A) = I” IV(&) eixca)dvk), 
@ 

(3.7) 

where Q, is the set of elements of (?)’ which are of the form 

XtA) = 2 ajCA(xj)) 
j=l 

(3.8) 

for some xj E X, aj E 9, denoting by 9 the space of roots of g. In (3.7) one 
also uses the measure space structure on @ which is given by identifying @ 
with the disjoint union of (XX 9):,, for n = 0, 1,2,..., (we use the 
convention (X X Z-P)&, = (O}). @ has a natural Bore1 structure. v is the 
measure on @ whose restriction v” to (XX .9)&,,, is @(x) dx 0 N)‘“, where 
N is the counting measure (see, e.g., [ 141). v is thus the canonical Poisson 
measure on @. As it is well known, the spectral measure associated with 
W(dA) is the Gaussian measure ,U on (?‘)’ with Fourier transform 

i@) = exp C-4 IId II’>. (3.9) 

We can summarize the preceding discussion by the following. 

PROPOSITION 3.1. The spectral measure associated with the restriction of 
U to exp rY is the convolution ,u * v of ,u and v, where ,u is the Gaussian 
measure on (1y)’ with Fourier transform (3.9) and v is the canonical Poisson 
measure on @. 

The crucial point in the proof of Theorem 2.1 is the following lemma, 
which will be proven in Section 4. Let us say that two probability measures p 
and ,D’ are disjoint if there exist two measurable sets which are disjoint and 
have measure 1 for ~1 and ,u’, respectively. 

LEMMA 3.2. Let ,u be the Gaussian measure on (p)’ with Fourier 
transform (3.9). Then p * v, and ,u * v2 are disjoint, for any mutually disjoint 
probability measures v, and v2 on @. 

Let us now formulate two important corollaries of this lemma. 
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COROLLARY 3.3. The commutant of U(exp Ty) is contained in the set of 
decomposable operators of the integral decomposition (3.7). 

COROLLARY 3.4. The operator W(a!A) for all A E a”, is in the von 
Neumann algebra generated by U(GX). 

For the proofs of these Corollaries see Lemmas 2,3 of [2]. 
The irreducibility of U in the cyclic component of e” follows from 

Corollary 3.3. In fact, let Q be an operator in the cornmutant of U(GX), then 
U is decomposable with respect to the decomposition (3.7) for any Cartan 
subalgebra t in g. The projection onto 8”’ in Ptg) is diagonalized and it 
follows that eHu) is invariant by Q for any Cartan subalgebra t in g. Thus 
Qe” belongs to eHu) for any Cartan subalgebra t in g. By the semisimplicity 
of G, Qe” is a scalar multiple of e” and this is just the irreducibility of U(GX) 
in the cyclic component of e”. 

Moreover, using Corollary 3.4, we can actually prove that e” is a cyclic 
vector. To see this we remark that the von Neumann algebra U(GX)” 
contains all operators 

W(Vw) d-4) = f-J(w) W(Q!A) WV’), (3.10) 

for w E GX, A E g”, and the cyclicity of e” follows from (51 and the 
following Lemma. 

LEMMA 3.5. The set (V(w) dA 1 IC/ E GX, A E g’} is total in H(g). 

Proof. Let us show first that the set of elements dA or [B, ~91, 
A, B E g”, is total in H(g). If w E H(g) is orthogonal to these elements, one 
has (w, dA) = 0 and (0, [B, dA]) = 0. An easy calculation shows then that 
[&I, w] = 0 almost everywhere. From the semisimplicity of G we have then 
w = 0. The lemma is now a consequence of the observations that 
V(v) dA = dA if I&) = e for all x E supp A and of the fact that 

I$ f [ V(exp tB) dA - dA] = [B, dA]. I + 

Let us now discuss the proof of Theorem 2.2. This proof is based on the 
following. 

LEMMA 3.6. Let X be an open bounded ball of R2 and assume that 
IL1 em f or all roots A of g and all x E X. Let ,u be the Gaussian 
measure given by (3.9) and let v be the canonical Poisson measure on the 
corresponding space @. Then the measures p and p * v are equivalent. 
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Proof. The proof is a consequence of Ref. [ 13, pp. 45,461. Note that ,U is 
the transform of the free Euclidean field measure pf of [ 131 with Dirichlet 
boundary conditions on aA’ and mass zero by the transformation <-’ < * G,, 
G,(y) = G(x - y) being the kernel of the inverse of the Laplacian operator 
with zero boundary conditions. One has 

for v with support on aBxr 

the right-hand side being the exponential interaction on X, which is shown in 
[ 131 to be in L*(d&) for all a < dm. Since r induces a unitary transfor- 
mation of L*(dp) to L*(d&) this implies d(u * v)/dp E L*(dp). The general 
case of v with support on (x1 6,, + . . . + a,~?,., is treated by the same 
method. I 

The proof of Theorem 2.2 follows immediately from Lemma 3.6, using an 
atlas on X. The proof of Theorem 2.3 is based on the following lemma, as we 
shall see in Section 4, together with the proof of the lemma. 

LEMMA 3.1. Let l-J,, U, be the energy representations of GX associated 
with two weights p0 and p, such that pO(x) #PI(x) for all x E X. Let ,u,,,ul be 
the Gaussian measures with Fourier transforms (3.9) (the norm 11 11 
depending on pO, p,). Let v be any bounded measure on @ with v{O} = 0. 
Then one has that ,u, * v is disjoint from ,ul * v and from ,u, . 

4. RESULTS ON GAUSSIAN MEASURES AND PROOF OF THE BASIC RESULTS 

The main result of this paper, which yields also the proof of the 
Theorems 2.1, and 2.3, is the following 

THEOREM 4.1. Let B be a bounded open cube in Rd and let 572(B) resp. 
W(B) be the space of real Coo-functions with compact support in B resp. of 
distributions on B. Let us consider the two bilinear forms on 622(B) defined by 

P;(x) $2 dx 
I J 

(4.1) 

for a = 1,2, where P”(x) = ((PC(x)) are real symmetric d x d matrices, 
smoothly depending on x E B and such that for some m, M > 0 and all x E B 

ml < P”(x) < Mll, 

P”(x) # P’(x), 

where 1 is the unit matrix. 

(4.2) 
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Let p, be the Gaussian measures on W(B) with Fourier transforms 

k(f) = exp - ( Gp). (4.3) 

Then for all d > 2 there exists a Bore1 set Q in g’(B) with the following 
properties : 

6) ludQ) = 1; 

(ii) PJQ + AS,> = Of or all x E B and all real A # 0 in the case d > 3, 
resp. all 

(iii) ,u,(Q + 18,) = 0 f or all x E B, and all real A in the case d > 3, 
resp. all 

IAl > 4fi$ or /I = 0 in the case d = 2. 

Before coming to the proof of this Theorem we will show how this result 
implies Lemma 3.2 and Lemma 3.7. For this we shall derive Lemma 4.2 and 
Lemma 4.3, using Theorem 4.1. 

Let px be the Gaussian measure on the space W(X) of distributions on X 
with Fourier transform 

where p(x) is a Cm density with respect to the volume measure dx on X. For 
any open subset B of X we denote by Z~ the projection from g’(X) onto 
W(B) obtained by restricting the distributions to B. Let ,q, be the image of 
cux by 7c,. 

LEMMA 4.2. There exists for d > 2 a Bore1 subset Q in g’(X) and a 
countable basis B, for all open sets in X such that 

6) PAQ> = 1 

(ii> pB, (nBn (Q> - ‘B,((D)) = ofor av 9 E @-l(X) 

such that ~~“(9) = A6, for all x E B, and all real A # 0, in the case d > 3, 
resp. all ) A / > 4 v’- in the case d = 2. 

Proof For d > 3 one can take an arbitrary countable basis B, for all 
open subsets in X and charts I,u,, such that y/,(B,) are bounded cubes in Rd. 
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Applying Theorem 4.1 to y/,(B,) one obtains a countable number of sets Q, . 
having the properties of the set Q of Theorem 4.1. Setting then 

Q = f-l 7cg,' K' (Qn>> (4.5) 
n 

we see that Q has properties (i), (ii) of the lemma. 
In the case d = 2 using dilations in R* and the invariance of the Dirichlet 

form 

under dilations, one can suppose that B, is replaced by B,+, with B,,, c B, 
and such that the oscillation of the C” function p on B,,, is less than l/p. 
We can then procede further as in the case d > 3. 1 

Let now @A for ,I > 0 be the set of all linear combinations of 6, for x E X 
with coefficients in AZ. @,% is equipped with a Bore1 structure similar to the 
one of @, replacing &? by (A} in the definition given in Section 3. 

LEMMA 4.3. Let Q be as in Lemma 4.2. Define for 9 E @.I - (0) the 
subset Qw of Q by 

where the union on n is over all n such that B, f’ supp 9 = (x). Then for 
d>3andallA>Oorford=2and~>4~~forallxEX,wehave 

6) cl,(Q”) = 4 
(ii) Q”’ + 9r n Q”* + 9* = 0 if V,f(D*, 

(iii) ifE is a Bore1 set in Qp, - (O), then the set Q” = U,,, Q”’ + 9 is 
universally measurable in W(X). 

ProoJ: Property (i) is trivial. Property (iii) follows from the fact that if 
M is the Bore1 set in g’(X) X (@A - {0)) X (2 - (0)) x X X N defined by 

and the result is a consequence of the theorem on the universal measurability 
of analytic sets (e.g., [6]). 

Suppose now (ii) is false, then there exist 9r, 9*, 9, #(Do, a, E Qq’, 
a, E Q”’ with a, + 9, = a2 + 9*. As 9, f (02, there exists x such that 6, 
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appears with different coefftcients Ap,, Apzp, with p, ,p2 E Z. Taking now n 
such that B, fl supp 9 = (x) one gets 

%,G-4> + J(Po, - Pz) 6, = %&A 

which, however, contradicts the definition of QV*, thus proving the 
Lemma. I 

We shall now prove the Lemma 3.2. Taking an orthonormal basis in t, one 
can suppose that dim t = 1, so that ? = g(X), (?‘)I = S?‘(X), and that CD is 
replaced by some Gn with A > 0 (see [ 12, pp. 122-1361). Let E,, E, be Bore1 
subsets on Gin such that vI(E,) = 1, vz(E,) = 1 and E, f’ E, = 0. If E, = (0) 
then the function 9 -p(Q@ - 9) is v2 - almost everywhere zero for some 
9 # 0, as a consequence of Lemma 4.3ii). This allows us to suppose that E, 
and E, are in @A - {O). One has 

Cu * Vi)(QE') = J' P 
Ei 

( U Q"" + Vi - V) dvi(V) 
WEEi 

> j P(Q” + v - W) dvi(V) =j P<Q’,> dVi(V> = ViCEi> = 1. 
E, E, 

Hence p * vi, i = 1, 2 are disjoint and Lemma 3.2 is proven. 
The proof of Lemma 3.7 is obtained in an analogous way. Using 

Theorem 4. I, one constructs a set Q, such that 

ruo(Qo) = 1, P,,&,~(Q,> - ~Jrp)) = 0 

for all n such that ~~“(9) = AS,, with the restriction 1 A ] = 0 or ] A ] > dm 
in the case d = 2. In a symmetric way, there is a set Q, such that 

~ul(Ql> = l~iuo,&,(Qd - 749>)=0- 

Moreover one can construct the sets, for 9 E @, - {O), 

QY=Q, u Gin’ h, (Qo>> - ~6x7 
Jl,XE S”PPrn 

PEZ 

where the unions are taken over n such that B, n supp 9 = {x}. Then one 
shows as in Lemma 4.3 that 

..@!!,o, QZ + 9 and u Q7+9 
QGcP,-lOI 
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are mutually disjoint, measurable and of measure 1 for ,u,, * v and ,u, * v, 
respectively, if v{O} = 0, and this ends the proof of Lemma 3.7. 

It remains now to prove the main Theorem 4.1. The main idea of the proof 
is a refinement of the one used for the study of the exponential interaction in 
191. It will be useful to introduce the Gaussian random field r(x) on B with 
zero mean and covariance 

W(x) C(Y)) = G&G ~1, (4.6) 

where, for d = 3, G,, is the kernel of the inverse of the operator -A,, with 

(4.7) 

and, for d = 2, G,, is the kernel of -Apn(-Apa + 1))‘. Note that for P = ‘I, 
G,(x, y) is a function, also denoted by Gd, of x - y. The measure ,D, 
corresponding to process (4.4) has exp (-4 JI p(x) Gpa(x, y) q(y) dx dy) as 
Fourier transform and is the image of p”” by the measurable transformation 
l-+ < * HPn acting on g’(B), where Hpa (x, y) is G,, (x, y) if d > 3 and 
Hpa(x, y) is the kernel of (-Apa + 1))’ for d = 2. In this description, the 
image of 6, for x E B is the distribution Hpm,X, where 

Hpe,x 0) E Hpa (~7 Y>- (4.8) 

We shall now use regularizations and dilations of the field 4. Let namely (p 
be a smooth function of compact support in R” such that lq(x) dx = 1. For 
k > 0 we define 

pk(x) z k%p(kx). (4.9) 

Putting & z q)k * r we obtain a Gaussian random field with mean zero and 
covariance E(&(x) &(y)) = G,,,, (x, y), where 

%qk Y> = V’k * G,u * qk* (4.10) 

It is easily shown that one has for d > 3 

Gpa,k(k-lX, k-‘y) = kd-*Gpa.k;; (x, Y), (4.11) 

where 

Pzjk (x) = e,j (kx), (4.12) 

and for d = 2 one has 

&logk-kk,<G,,,k(k-lx,k-ly)+- 1 logk+k,, 27tm 
(4.13) 
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for some positive constants k,, k,. Equation (4.13) follows from (4.2) using 

g (-A1 +;)-2 (-d,)<-&+A,,+ 1,-2+4*+;)-‘; (4.14) 

together with the logarithmic singularity of (-A, + 1)-i in dimension d = 2. 
For any b > 0 and any integer n let us now define the following sets 

and 

N,,, = {C E g’(B)1 IT2~(x>I < bn”2G,,,,(0)“2 for all x E B) (4.15) 

Q,-u n Nn,,. (4.16) 

We shall now compute ,D,(N,,~ + AH:). The image of N,*, + AH: under the 
mapping &+ rzn is the translation of the image of N,,, by H,* 2n, hence we 
need only estimate the Radon-Nikodym derivative 

(4.17) 

This is, however, equal to 

exP lt2, (x) - c GPO,*” (x, x)) = :exp A&,(x):, (4.18) 

the notation :exp At,,(x): being the one familiar from quantum field theory, 
[ 13, 91. But for {E Nn,b we have 

,&(x) -; GPU,2n(~, x) < IL1 bn1’2Gn,zn(0) -; G,m,,&x). (4a19) 

In the case d > 3 one has GP01,2” (x,x) > Mp’G,,2n(0) hence by (4.11) we 
have that (4.18) goes to zero as n + co. In the case d = 2 we can draw the 
same conclusion if 

(4.20) 

as a consequence of (4.13). It follows thus that for any b > 0, x E B and all 
2 if d > 3 and all h satisfying (4.20) if d = 2, one has 

P,(Q~ + Aff,“) = 0. (4.2 1) 
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On the other hand, let B, be a fixed square and let B be any of the 2”d 
translates of B, forming a covering of the cube 2”B. Introducing for any 
such B the set 

we see that 

N n. 

I r,“P-nx)l G1,zn(0),,Z < bn”’ for all x E fi 
I 

, (4.22) 

,b - - 9 Mn.b,ii. (4.23) 

The processes x--f Ga,z,(0)-liZ &,(2-“x) are associated with Gaussian 
measures coming from matrices as in (4.2) which are translations or 
dilations (as in (4.12)) of P”. By (4.2) all the covariance of these processes 
are smaller than l/m, moreover they are almost everywhere bounded and 
continuous. It follows that the functions 

(4.24) 

are uniformly integrable for all j3 < m/2 (see [7a, p. 141) and this implies for 
P < (m/2). 

for some constant C. Hence from (4.23) 

Taking now b such that 

one can choose p < m/2 with y = 2 log 2 - pb2 > 0, obtaining then 

Consequently we have 

Po@,) = 1. (4.29) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

From this and (4.21) we see that the set Qb has properties (i, ii) of the set Q 
of Theorem 4.1, hence this part of the theorem is proven. 
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To prove part (iii) of Theorem 4.1 we first observe that ,u,,, ,u, as defined 
by (4.3) are disjoint, being Gaussian measures to different scalar products, 
by well known results on Gaussian measures. 

On the other hand, for the set Q,, whose definition is independent of the 
p,, a = 1,2, we have ,D, (Qb) = 1, a = I,2 under above choices of A, b for 
d=2. But for d>3 or d=2, (A1>4@M2/m3’*, we have 
,u,(Q* + As,) = 0, as shown above. Hence the set Qb has also property (iii) 
of Theorem 4.1. 1 

5. THE ONE DIMENSIONAL CASE 

Let G be a semisimple compact Lie group and g its Lie algebra, equipped 
with the inner product (<, , &) = - K(r,, r,), where K is the Killing form. g 
has then a positive definitive inner product (,) which is invariant under the 
coadjoint action of G on g. 

Let r(t) be the generalized stochastic process [ 151 which gives the 
standard white noise process on g, i.e., for any f E L,(R; g) we have that 

(6 f) = j t(f) f(t) d( (5.1) 

is a Gaussian random variable with mean zero and variance ]]f]]: = j(f(t), 
f(t)) dt. The standard Wiener process starting at 0 for t = 0 is then given by 

W(t) = 1’ r(t) dr. 
0 

(5.2) 

It is well known that IV(t) is continuous for almost all realizations. The 
standard Brownian motion q(t) on G is the stochastic process on G given by 
the following stochastic differential equation 

&(t)v - ’ (0 = t(t). (5.3) 

Another way to describe the solutions of (5.3) is to observe that the 
Wiener process IV(t) has almost surely continuous realizations hence defines 
a measure pu, on C(R + ; g), the space of continuous functions on R ’ with 
values in g. Moreover the integral equation 

I ’ dq(t)rj - ‘(5) = W(t) 
0 

(5.4) 

has a unique continuous solution q(t; h) such that a(O; h) = h for any h E G, 
for any WE C(R+; g). (See 1161.) 
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This gives a mapping from C(R ’ ; g) into C(R ‘, G). The image ,u,, of the 
Wiener measure ,u, by this map is the measure on C(R+, G) corresponding 
to the standard Brownian process v(t;h) on G which starts at h at t = 0. 
r(t;h) is a Markov process and it is well known that s(t - s; h) converges in 
probability to a homogeneous process r(t) as s + co, independent of h. q(t) 
is called the standard Brownian motion on G and satisfies (5.3). To r(t) 
there corresponds a measure ,U on C(R;G) which we call the standard 
Brownian motion measure on C(R ; G). Let S = R/Z and let ,D,, be the 
measure on C(S; G) obtained by conditioning the measure ,u on C(R, G) with 
respect to the condition ~(0) = q( 1). We shall refer to this measure ,u~ as the 
standard Brownian motion measure on C(S, G). It is well known that the 
measure ,u does only depend on the Riemann structure on G, i.e., the left 
invariant Riemann structure given by the negative Killing form. That is to 
say for any Riemann manifold there is a unique standard Brownian motion, 
and in the case of a compact semisimple Lie-group with the left invariant 
Riemann structure given by the negative Killing form the unique standard 
Brownian motion is given by q(t). 

Now since the adjoint action of G, as well as the inversion q + r-‘, leave 
the Riemann structure invariant we have the following proposition. 

PROPOSITION 5.1. The standard Brownian motion measures on C(R, G) 
and C(S, G) are both invariant under the adjoint action of G as well as 
under the inversion q(t)- q(t)-‘. 1 

Consider now the Sobolev Lie groups H(S, G) c C(S, G) and 
H(R, G) c C(R, G) of maps such that 

I ’ Idr,@)q-+)I’ ds < co and 
i m Idv(s)v-‘@)I* dz < co, (5.5) 

0 -m 

respectively, where 1 I* = (,). H(S, G) and H(R, G) are complete metric 
groups in the Sobolev metrics given by the square roots of the expressions in 
(5.5). See [3]. N ow (5.3) gives us a map q(t)- c(t) = r,-‘(t) dy(t) of 
C(R, G) in S’(R, g), the space of tempered distributions with values in g, 
which takes the standard Brownian motion on G into the standard white 
noise in g. Moreover we see that for any ~1 E H(R, G) we have under this 
map 

Hence if v(t) + r(t) then 

(5.7) 
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That is in the space of white noise, i.e., S’(R, g) we see that the right 
multiplication by H(R, G) is realized as the action of the Sobolev Lie group 
on the dual of the g-valued one forms on R. The same formula holds of 
course for the Sobolev Lie group H(S, G). Hence we get that ,U as well as ,u~ 
are quasi invariant under right translations by elements in H(R, G), respec- 
tively, H(S, G) and that the unitary representation of H(R, G) (H(S, G)) in 
L2ti) (L2cUo)) given by 

(u,f)(r) = (3) 1’2 f(w) (5.8) 

(resp. the same with ,D replaced by ,uJ is unitarity equivalent to the cyclic 
component of the vacuum of the energy representation of the Sobolev Lie 
group H(R, G), (H(S, G)). H ence we have proved the following theorem. 

THEOREM 5.2. The unitary representations of the Sobolev Lie groups 
H(R, G) and H(S, G) induced by the right translation v+ nick on L,(dp), 
respectively L,(dp,), in the following way: 

and 

are unitarily equivalent to the cyclic component of the vacuum of the energy 
representation of the corresponding Sobolev Lie groups. Moreover the 
unitary equivalences are given by the mapping q + d?(t) n-‘(t) from C(R, G) 
(C(S, G)) into the dual space of the g-valued one forms on R(S). a 

By Proposition 5.1 we have that ,u and iuo are both invariant under 
v(t) -+ v(t)-‘. Now since this mapping takes right translations into left tran- 
slations, we get that p as well as iuo are quasi invariant under left translation 
by elements in the corresponding Sobolev Lie groups. Hence the unitary left 
translation V, and v”, defined by 

(5.9) 

and correspondingly for v”, are unitary representations of the Sobolev Lie 
groups which are unitarily equivalent to U, and u”,, respectively, hence 
again unitarily equivalent to the energy representation. On the other hand it 
is obvious that U and V commute and therefore we get the following 
theorem. 
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THEOREM 5.3. The energy representation of the Sobolev Lie groups 
H(R, G) and H(S, G) is reducible. In fact, in the cyclic component of the 
vacuum, the commutant to the algebra generated by the energy represen- 
tation contains in both cases a unitary representation which is equivalent 
with the energy representation. 
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