
Extensions of Standard Weak Bisimulation
Machinery: Finite-state General Processes,
Refinable Actions, Maximal-progress and

Time

Mario Bravetti 1,2

Dipartimento di Scienze dell’Informazione
Università di Bologna

Bologna, Italy

Abstract

We present our work on extending the standard machinery for weak bisimulation to deal with: finite-
state processes of calculi with a full signature, including static operators like parallel; semantic action
refinement and ST bisimulation; maximal-progress, i.e. priority of standard actions over unprioritized
actions; representation of time: discrete real-time and Markovian stochastic time. For every such topic
we show that it is possible to resort simply to weak bisimulation and that we can exploit this to obtain,
via modifications to the standard machinery: finite-stateness of semantic models when static operators
are not replicable by recursion, as for CCS with the standard semantics, thus yielding decidability of
equivalence; structural operational semantics for terms; a complete axiomatization for finite-state processes
via a modification of the standard theory of standard equation sets and of the normal-form derivation
procedure.

Keywords: CCS, Weak bisimulation, Action refinement, Maximal Progress, Timed actions

1 Introduction

This paper presents work that we have done on how to extend standard machinery
to cope with several extensions of standard process algebra. Every extension is
presented by using the same structure: basic ideas on how to resort to standard
machinery and definition of operational semantics; set of axioms that compose the
axiomatization; technique to prove completeness: variation to the standard theory
of standard equation sets and to the procedure for deriving normal forms from
terms.

1 Research partially funded by EU Integrated Project Sensoria, contract n. 016004.
2 Email: bravetti@cs.unibo.it

Electronic Notes in Theoretical Computer Science 209 (2008) 83–106

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.005
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82495878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bravetti@cs.unibo.it
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

The standard machinery for basic CCS with recursion [16], i.e. for a calculus
with prefix α.P (where α is either a visible action a or τ), choice P +Q and recursion
recX.P , and full CCS without recursion [15], i.e. when also static operators like
parallel P |Q and restriction P\L are considered, is presented at the beginning of
the paper (in Sect. 2).

We then show (in Sect. 3) how to extend such machinery to finite-state processes
of a full calculus that includes both static operators and recursion, more precisely to
processes such that static operators are not replicable by recursion [2,3,1]. The basic
idea is to express hiding mechanisms explicitly via an hiding operator P/L (like e.g.
the hiding mechanism that is part of the CCS parallel operator) and to introduce a
new axiom for exchange of hiding and recursion and a new normal-form derivation
procedure that combines unguardedness removal with static operator elimination
in an inductive way. The work presented in Sect. 3 has been done in cooperation
with Jos Beaten.

The approach is further extended (in Sect. 4) to deal with actions that can be
refined by means of a semantic action refinement operator “P [a � Q]”, where every
visible action “a” executed by P is refined by a term “Q” [7,5]. The basic idea is
to express weak ST bisimulation (needed to get a congruence in the presence of
refinement) via standard weak bisimulation by using: the dynamic name technique
or the stack technique to obtain semi-actions with indexes in semantic models in
a way that preserves finite-stateness and the levelwise reindexing technique to be
able to express the two semantics above in a compositional way (in Structural
Operational Semantics and in axioms for parallel).

We then (in Sect. 5) endow basic CCS (with recursion) with an unprioritized
action σ to express maximal progress [8,5,9]. The basic idea is to introduce an
auxiliary operator pri(P) that denotes the scope of priority. Such an operator is
used to produce a new version for the axioms that allow weak unguardedness to be
removed: a new unguardedness removal procedure is produced. The work presented
in Sect. 4 and 5 has been done in cooperation with Roberto Gorrieri.

Finally, (in Sect. 6) we extend the basic calculus with maximal progress above
with static operators by interpreting σ actions to be timed actions [4,9]. More
precisely, we consider two different kinds of time: discrete real-time (see, e.g., [12]),
where σ is a “tick” and Markovian stochastic time (see, e.g., [14,13,6]), where σ is
a positive real number representing a rate of an exponential distribution. The basic
ideas are: make use of a parallel operator that (for both kinds of time) is compatible
with standard weak bisimulation, i.e. is such that a process can execute a σ action
only when other processes in parallel with it can explicitly execute a σ action too;
show that in this context we can use, when merging guarded standard equation sets,
a simpler reformulation of standard weak bisimulation that considers just strong “σ”
moves instead of weak “σ” moves (by exploiting maximal progress, guardedness and
non-idempotence of sum over timed actions due to time determinism in discrete real
time and stochastic delay summation in Markovian stochastic time); and perform
τ saturation after σ prefixes in normal forms before showing that they are equated
by the axiomatization via standard equation sets.

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–10684

The paper is concluded (in Sect. 7) by reporting possible applications and ex-
tensions of the machinery produced.

2 Standard Machinery

The set of action names A is ranged over by a, b, c, The set of actions Act =
A∪{a | a ∈ A}∪{τ}, which includes co-actions and the silent action τ denoting an
internal move, is ranged over by α, α′, The set of term variables is Var , ranged
over by X, Y, The set E of CCS behavior expressions, ranged over by E,F is
defined by the following syntax.

E ::= 0 | X | α.E | E + E | E|E | E\L | E[ϕ] | recX.E

The meaning of the operators is the standard one of [15,16], where “recX.E” denotes
recursion. Closed terms are terms that do not include free variables (i.e. variables
X not bound by a “recX.E” operator) and are called processes, ranged over by
P ,Q.

A variable X is serial in E if every free occurrence of X in E (if any) is in the
scope of operators α.F , F ′ + F ′′ or recY.F (for any variable Y) only. Furthermore,
a variable X that is serial in E is also: weakly guarded if every free occurrence of
X in E is in the scope of an operator α.F , strongly guarded (or simply guarded) if
it additionally holds that α �= τ , fully unguarded if it is not weakly guarded, fully
unguarded if it is not strongly guarded.

Basic CCS is the calculus considered in [16], i.e. the set of terms of CCS obtained
by considering a restricted syntax where static operators (i.e. “E|E”, “E\L” and
“E[ϕ]”) are not included. In particular here we will distinguish between basic CCS
without recursive definitions (i.e. excluding from the CCS syntax also the “recX.E”
operator and variables X), simply called basic CCS and denoted by BCCS, and
basic CCS with recursive definitions, denoted by BCCSrec. A recursion “recX.F”
occurring in a BCCSrec term E is a guarded recursion if X is guarded in F . We use
BCCSgrec to denote the subset of BCCSrec terms that include guarded recursive
definitions only.

The standard structural operational semantics for BCCSrec operators and CCS
static operators is presented in Tables 1 and 2, respectively. type(α) yields the name
in A of the action α or τ if α is the silent action.

As in [16] we use α−→∗ to denote computations composed of all α−→ transitions
whose length is possibly zero. Let α=⇒ denote τ−→∗ α−→ τ−→∗. Moreover we define

α̂=⇒ = α=⇒ if α �= τ and τ̂=⇒ = τ−→∗.

Definition 2.1 A relation β over processes is a weak bisimulation if, whenever
(P,Q) ∈ β:

• If P
α−→ P ′ then, for some Q′, Q

α̂=⇒ Q′ and (P ′, Q′) ∈ β.

• If Q
α−→ Q′ then, for some P ′, P

α̂=⇒ P ′ and (P ′, Q′) ∈ β.

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 85

α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q′

P + Q
α−→ Q′

P{recX.P/X} α−→ P ′

recX.P
α−→ P ′

Table 1
Structural operational rules for BCCSrec

P
α−→ P ′

P |Q α−→ P ′|Q
Q

α−→ Q′

P |Q α−→ P |Q′

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′

P
α−→ P ′

P\L α−→ P ′\L type(α) /∈ L
P

α−→ P ′

P [ϕ]
ϕ(α)−→ P ′[ϕ]

Table 2
Structural operational rules for static operators

Two processes P , Q are weakly bisimilar, written P ≈ Q, iff (P,Q) is included in
some weak bisimulation.

Definition 2.2 Two processes P , Q are observationally congruent, written P � Q,
iff:

• If P
α−→ P ′ then, for some Q′, Q

α=⇒ Q′ and P ′ ≈ Q′.
• If Q

α−→ Q′ then, for some P ′, P
α=⇒ P ′ and P ′ ≈ Q′.

Both weak bisimulation and observational congruence are extended to open
terms in the standard way [16,15] so to have that: two (open) terms E and F

are equivalent if for every substitution of free variables for closed terms, the closed
terms obtained by applying the (same) substitution to E and F are equivalent.

2.1 Completeness for BCCS with Recursive Definitions

2.1.1 The Axioms
The standard axiomatization is composed by the axioms in Tables 3, 4 and 5. As
we observed in [2], an alternative equivalent smaller axiomatization can be obtained
by replacing the axioms (WUng1) and (WUng2) with the unique axiom:

(WUng) recX.(τ.(X + E) + F) = recX.(τ.(E + F))

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–10686

(A1) E + F = F + E

(A2) (E + F) + G = E + (F + G)
(A3) E + E = E

(A4) E + 0 = E

(Tau1) α.τ.E = α.E

(Tau2) E + τ.E = τ.E

(Tau3) α.(E + τ.F) + α.F = α.(E + τ.F)

Table 3
Axioms for BCCS

(Unfold) recX.E = E{recX.E/X}
(Fold) F = E{F/X} ⇒ F = recX.E X strongly guarded in E

Table 4
Unfolding and folding recursion axioms

(FUng) recX.(X + E) = recX.E

(WUng1) recX.(τ.X + E) = recX.(τ.E)
(WUng2) recX.(τ.(X + E) + F) = recX.(τ.X + E + F)

Table 5
Axioms for unguarded recursion

2.1.2 Completeness for BCCS with Guarded Recursive Definitions
Completeness for observational congruence over BCCSgrec terms is shown by re-
sorting to standard equation sets.

Definition 2.3 (Equation Sets) An equation set with formal variables X̃ =
{X1, . . . , Xn} and free variables W̃ = {W1, . . . , Wm}, where X̃ and W̃ are dis-
joint, is a set S = {Xi = Hi | 1 ≤ i ≤ n} of equations such that the terms Hi

(1 ≤ i ≤ n) have free variables in X̃ ∪ W̃ .
A solution of the equation set is a set of terms E1, . . . , En such that: for every

1 ≤ i ≤ n we have that Ei = Hi{Ej/Xj | 1 ≤ j ≤ n} 3 can be shown by using the
axiomatization above. A single term E is said to be a solution of the equation set
if there exists a solution E1, . . . , En such that E ≡ E1.

Definition 2.4 (Standard Equation Sets) An equation set S = {Xi = Hi |
1 ≤ i ≤ n}, with formal variables X̃ = {X1, . . . , Xn} and free variables W̃ =
{W1, . . . , Wm}, is standard if each term Hi (1 ≤ i ≤ n) is of the form: 4

Hi ≡
∑

j∈Ji

αi,j .Xf(i,j) +
∑

k∈Ki

Wg(i,k)

3 The notation used here stands for the syntactical replacement of Ej for every occurrence of Xj (for every
j) inside Hi.
4 We assume

P
j∈J E ≡ 0 if J = ∅.

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 87

As in [16], for a standard equation set S, we let Xi
α−→S X stand for “α.X occurs

in Hi”. α−→S
+ denotes a non-zero length sequence of α−→S .

Definition 2.5 A standard equation set S with formal variables X̃ = {X1, . . . , Xn}
is guarded if there is no cycle Xi

τ−→+
S Xi.

It is crucial to observe that guarded standard equation sets have one and only
one solution. More precisely we have the following properties:

• Existence of a solution for standard equation sets, i.e. generalization of (Unfold)
axiom: given a standard equation set it is always possible to build a set of
BCCSgrec terms which constitutes its (canonical) solution.

• Unicity of the solution for guarded standard equation sets, i.e. generalization of
(Fold) axiom: different solutions of the same guarded standard equation set can
be equated by using the axiomatization above (it is shown that every solution
can be equated to the canonical one).

Finally, the completeness result is obtained by showing: that every BCCSgrec

term can be represented by a guarded standard equation set (for which the term is
a solution) and that for every pair of guarded standard equation sets satisfied by
observationally bisimilar BCCSgrec terms we can build a common guarded standard
equation set that is satisfied by both terms.

Proposition 2.6 (representability) For every BCCSgrec term E there is a guarded
standard equation set that is satisfied by E.

Proposition 2.7 (mergeability) Let E,F be BCCSgrec terms. If E � F then,
given a guarded standard equation set satisfied by E and a guarded standard equation
set satisfied by F , there exists a common guarded standard equation set satisfied by
both E and F .

2.1.3 Completeness Technique
The standard completeness technique is based on two steps.

• Completeness for BCCSgrec (open) terms presented above.
• Normal form derivability: BCCSgrec terms can always be derived as “normal”

forms by using the axiomatization.

Proposition 2.8 (normal form derivability) For every BCCSrec term E there
exists a BCCSgrec term F such that E = F .

Normal form derivability (i.e. the proof of the proposition) involves elimination of
unguarded recursion by using the (FUng) and (WUng) axioms of Table 5 (see [16]).

In general the two step schema above is used to prove completeness over (un-
guarded) terms of a full calculus by turning them into normal form.

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–10688

2.2 Completeness for Full CCS without Recursive Definitions

2.2.1 The Axioms
The axiomatization is composed by the following axioms.

• The axioms for BCCS of Table 3.
• Axioms for static operators elimination (this requires the introduction of auxiliary

operators like left merge and synchronization merge for parallel).

The axioms in the last item guarantee that, for each static operator, when the static
operator is applied to BCCS term(s) E, a BCCS term can be obtained by applying
the axioms.

2.2.2 Completeness Technique
The standard completeness technique is, again, based on two steps.

• Completeness over BCCS terms.
• Normal form derivability: BCCS terms can always be derived as “normal” forms

by using the axiomatization.

Proposition 2.9 (normal form derivability) For every CCS term P there ex-
ists a BCCS term Q such that P = Q.

Normal form derivability (i.e. the proof of the proposition) involves elimination
of static operators by an inductive structural bottom-up transformation.

3 Finite State General Processes

In this section we report about work on extending the standard weak bisimulation
machinery to deal with both recursion and static operators [2,1]. For example the
following observationally congruent CCS terms

((recX.a.X) | (recX.a.X)) \{a} � recX.τ.X � τ.0

cannot be equated by using the standard axioms presented before. The idea here is
that, if we just deal with terms whose semantics is finite-state like the above one, we
can still develop a complete axiomatization by extending the standard machinery.

Technically, the problem with the term above arises from the hiding behavior of
the CCS parallel operator which can generate new τ actions and, as a consequence,
weakly unguarded recursions. In order to solve this problem we need to express
such a hiding behavior explicitly by a separate hiding operator (we use the operator
E/L which hides all the actions in the set L) and to introduce the new axiom
(recX.E)/L = recX.(E/L) that allows us to exchange recursion and hiding, so
to evaluate the effect of hiding inside serial terms E. The CCS parallel is then
expressed as a combination of ACP parallel and hiding.

The focus of [2] is on producing a general process algebra such that all the
operators of CCS, CSP and ACP can be expressed as a combination of the operators
of such an algebra, so, e.g., in addition to ACP parallel and hiding also sequencing

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 89

“E1;E2” and successful termination “1” are considered (in addition to prefixing and
0, that now represent just deadlocked termination).

In [2] we consider the following syntactical characterization for closed terms E

of the general process algebra, which guarantees finite-stateness. For any subterm
recX.F of E, (free) occurrences of X in F must not be in the scope of static
operators (i.e. operators E′|E′′, E′\L, E′/L, E′[ϕ]) or on the left-hand side of the
sequencing operator “E; E”.

3.1 The Axioms

The axiomatization is composed by the following axioms.

• The axioms for BCCSrec of Tables 3, 4 and 5, where the “X serial in E” require-
ment is added in the folding axiom (Fold): the new requirement “X serial in E”
makes the existing requirement “X guarded in E” well defined on the extended
syntax.

• The new axiom (RecHid) for recursion and hiding exchange:

(RecHid) (recX.E)/L = recX.(E/L) X serial in E

• Axioms for static operator elimination (including sequencing operator “E;E”).

The axioms in the last item are of the same kind of those considered in Section 2.2.1:
they guarantee static operators (or sequencing) to be eliminated when applied to
(non-recursive) BCCS terms. Concerning the general process algebra above, they
guarantee that, for each static operator (including the sequencing operator), when
the operator is applied to term(s) E of the form 5

∑
i∈I αi.Ei (or

∑
i∈I αi.Ei + 1),

where Ei are unrestricted general terms, a term of the same form can be obtained
by applying the axioms.

3.2 Completeness Technique

Completeness over finite-state terms belonging to the syntactical characterization
above is obtained as usual (see Section 2.1.3) in two steps.

• Completeness for BCCSgrec terms presented in Sect. 2.1.2 (successful termination
can be just seen as a special new action used in BCCSgrec terms).

• Normal form derivability: BCCSgrec terms can always be derived from terms
belonging to the syntactical characterization above as “normal” forms by using
the axiomatization.

Concerning normal form derivability, terms belonging to the syntactical charac-
terization above are shown to be transformable into normal form by combining
unguarded recursion elimination of BCCSrec (see Sect. 2.1.3) with static operator
elimination of CCS (see Sect. 2.2.2). In particular an inductive structural bottom-
up transformation of terms into normal form is performed. The inductive step

5 We assume
P

i∈I E ≡ 0 if I = ∅.

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–10690

consists in generating a term in normal form by applying some operator to term(s)
in normal forms. This is done as follows:

• Only in the case of a recursion or hiding operator: we remove generated unguarded
recursion via the standard (WUng) and (FUng) axioms plus the new axiom
(RecHid) (and the other standard elimination axioms for hiding). In the case
of recursion, this is done just as in the standard case (Sect. 2.1.3). In case
of hiding, we preliminarily propagate structurally the hiding operator top-down
until leaves and then again bottom-up to the top-level to introduce new taus
in the previous normal form (obtained as the effect of hiding) and then remove
generated unguarded recursion.

• We then obtain a normal form by applying, if necessary, the unfolding and the
static operator elimination axioms and then the folding axiom: each state of the
finite-state operational semantics of the term is first turned into a sum of prefixes
leading to other states and then into a variable of a system of equations, that is
expressed by recursion.

4 Refinable Actions

In this section we show how to extend the standard machinery for weak bisimu-
lation in order to deal with refinable actions, i.e. actions which can be refined by
means of an action refinement operator “P [a � Q]” that performs the semantic
refinement of “a” executed by “P” into “Q” [7,5]. It is well known that ST bisimu-
lation [11] is the coarsest bisimulation equivalence that is a congruence with respect
to semantic action refinement. Weak ST bisimulation matches visible (non-τ) ac-
tions of concurrent systems as if they had a duration. In particular, actions are
not treated as being executed atomically like in standard interleaving semantics,
but the execution of an action is split into the two distinguished events of action
start and action termination (pair of semi-actions). Moreover, enough information
is included in semantic models so that the event of an action termination uniquely
determines to which event of action start it refers to, even in the situation of auto-
concurrency (i.e., multiple actions of the same type being in execution at the same
time). Weak ST Bisimulation over terms of a process algebra can be expressed in
several equivalent ways by using different combination of “semantics+equivalence”
definitions (see [7] and the references therein). Here we consider definitions of ST
semantics (taken from [7]) that allow us to obtain weak ST bisimulation by just
using standard weak bisimulation on the generated special transition systems. This
allows us to deal with weak ST bisimulation by a smooth extension of the standard
machinery and to obtain a complete axiomatization over finite-state terms. More
precisely, since the definitions of ST semantics of [7] yield finite-state transition sys-
tems for all terms which are finite-state with the standard interleaving semantics,
we obtain a axiomatization which is complete for observational congruence over
terms satisfying the syntactical characterization previously presented in Sect. 3.

The process algebra considered in [7] is an extension of BCCSrec that (apart
from the action refinement operator “P [a � Q]”) is similar to the general process

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 91

a.P
a+
1−→ a−

1 .P a−
1 .P

a−
1−→ P

P
a+

i−→ P ′

P ‖S,M Q
a+
new(M,a)−→ P ′ ‖S,upd+(M,a,li)

Q

a /∈S

P
a−

i−→ P ′ a : (j, li) ∈ M

P ‖S,M Q
a−

j−→ P ′ ‖S,upd−(M,a,li)
Q

a /∈S

P
ai−→ P ′ Q

ai−→ Q′

P ‖S Q
ai−→ P ′ ‖S Q′ a ∈ S

Table 6
Structural operational rules for refinable actions

algebra of Sect. 3, with the difference that the CSP parallel E ‖S E, where the
actions in the set S are required to synchronize (while other actions are executed
independently), is employed instead of ACP parallel and restriction. In particular,
like in Sect. 3 we consider hiding, sequencing “E1;E2” and successful termination
“1” (it is well known that distinguishing between deadlocked termination and
successful termination 1 is necessary for the semantic action refinement operator to
be a congruence).

Here we consider two definitions of ST semantics from [7], corresponding to two
different techniques for associating action termination events to action start events:

• Dynamic name technique: action termination is associated to action start by
using a common unique name (positive integer index), generated at the moment
of action start with a fixed rule.

• Stack technique: action termination is associated to action start by a pointer
(positive integer index).

The dynamic name technique is based on the idea of dynamically assigning, dur-
ing the evolution of the system, a new name to each action that starts execution, on
the basis of the names assigned to the actions already started. Names are indexes
i ∈ NI + that distinguish actions of the same type. In particular the event of starting
of a visible action a is represented in semantic models by a transition labeled by a+

i

where i is the minimum index not already used by the other actions a that have
started but not terminated yet. This rule for computing indexes guarantees that
names are reused and that finite models can be obtained also in the presence of re-
cursion. The termination of the action is simply represented by a transition labeled
by a−i , where the “identifier” i uniquely determines which action a is terminating.
Since the method to compute the index for a starting action is fixed, it turns out
that actions of processes that perform the same execution traces of actions get the
same names. As a consequence, ST bisimilarity can simply be checked by applying
standard bisimilarity to the semantic models of processes.

In order to obtain a smooth extension of standard machinery, the ST semantic
models that assign indexes to semi-actions a+ and a− according to the dynamic
name technique explained above must be obtained by a simple extension of standard

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–10692

structural operational semantics, hence in a compositional way. To do this, we make
use of our idea of levelwise reindexing of actions. For obtaining compositionality,
it is necessary to determine, e.g. in the case of the parallel composition operator,
the computations of P ‖S Q from the computations of P and Q. This is done
by parameterizing in state terms each parallel operator with a mapping M . For
every action a /∈ S started by P ‖S,M Q, M records the association between the
name ai, generated according to the fixed rule above for identifying a at the level
of P ‖S,M Q, and the name aj (which in general is different from ai), generated
according to the same rule for identifying the same action a inside P (or Q). In
this way when, afterwards, such an action a terminates in P (or Q) the name aj

can be re-mapped to the correct name ai at the level of P ‖S,M Q, by exploiting the
information included in M . In M the action a of P ‖S,M Q which gets index i is
uniquely identified by expressing the unique name j it gets in P or in Q and the
“location” of the process that executes it: left if P , right if Q. Such an association
is, therefore, represented inside M by the triple (a, i, locj) with a ∈ A, indexes
i, j ∈ NI + and location loc ∈ Loc = {l, r}, where “l” stands for left and “r” for
right. In the following we use a : (i, locj) to stand for (a, i, locj) ∈ M . Formally,
we denote by ia an index association, whose elements are associations (i, locj). ia
ranges over the set IA of partial bijections from NI + to Loc × NI +. A mapping M

is a relation from A to NI + × (Loc × NI +) such that ∀a ∈ A. M(a) ∈ IA, i.e. M is a
set including an independent index association for each different action type.

The non-standard structural operational semantics rules for terms are those pre-
sented in Table 6 (plus symmetrical ones, where “li” is replaced by “ri”). According
to what we explained above, we assume new(M,a) = min{k | k /∈ dom(M(a))},
upd+(M, a, li) = M ∪ {a : (new(M,a), li)} and upd−(M,a, li) = M − {a : (j, li)},
with j the only index such that a : (j, li) ∈ M . Note that, for expressing the ST
semantics we need to use an extended syntax for state terms that includes semi-
action prefixes and the extended CSP parallel operator P ‖S,M Q, where we consider
P ‖S,∅ Q to stand for P ‖S Q in the initial term.

The ST semantics via dynamic name presented above has all the required char-
acteristics to be used as a smooth extension of the standard machinery to deal with
refinable actions, but one: in general it does not preserve finite-stateness when the
semantic action refinement operator “P [a � Q]” is applied (supposing both terms
P and Q to be finite state). With our approach the semantics of P [a � Q] can be
simply defined, in terms of simpler operators, as

(P [a ↔ e] ‖{e},∅!(e+
1 ;Q; e−1))/{e}

where: e is a distinguished action not occurring in the set of action names A; the
bijective relabeling α ↔ α′ is defined by α ↔ α′ = {(α, α′), (α′, α)} ∪ {(α′′, α′′) |
α′′ ∈ A∪{e}∧α′′ /∈ {α, α′}}; the bang operator “!P” may either terminate success-
fully or execute “P” in such a way that a new copy of !P in parallel is produced
after an initial action of “P” is executed; the semantics of action start semi-actions
prefixes e+

1 .P is defined in the obvious way (they generate a corresponding “e+
1 ”

transition to reach state P); and trailing “1” are omitted from prefixes, i.e. e+
1 and

e−1 stand for e+
1 .1 and e−1 .1.

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 93

The problem with finite stateness is related to the fact that the number of paral-
lel operators generated by the bang operator grows as new actions to be refined start
and terminate; therefore in the absence of an elimination rule for the terminated
parallel processes (and the involved parallel operator itself) we get infinite state
systems even when refining very simple recursive terms. The dynamic name tech-
nique however does not allow to introduce elimination of trailing terminated parallel
processes due to “holes” in the generated set of action dynamic names (see [7]), i.e.
if in a state the current set of indexes of actions a in execution (started but not
terminated) is {1, 3}, we have a “hole” in the position 2.

In order to obtain finite-stateness also in the presence of the action refinement
operator and to produce an axiomatization which is complete over terms that include
such an operator, the more complex “stack technique” must be used, which is based
on the idea of avoiding the generation of such “holes” in the sequence of started
action indexes upon action termination. In particular, started actions of a given
type are organized as a stack of coins over a table where the coin on the top of
the stack is the action with index 1 and the other actions are indexed in increasing
order from top to bottom. When a new action starts the corresponding coin is put
on the top of the stack (and the old actions are renumbered accordingly). When
an action terminates the corresponding coin is removed and the hole is “eliminated
by gravity” (causing a renumbering of all the actions below it). Since the index of
a started action change dynamically while other actions start and terminate, this
technique is not based on names (seen as identifiers for actions) but is more similar
to a pointer. In particular, the event of starting of an action a is represented in
semantic models by a transition labeled with a+ (so no index is observable) whilst
the event of termination of an action a is represented by a transition labeled with
a−i where i is the current position of the action on the stack.

Like the dynamic name technique, the stack technique is expressed composition-
ally in structural operational semantics by using the idea of levelwise reindexing.
In particular the non-standard rules are those of Table 6, where: indexes are elim-
inated from a+ semi-actions (in prefixes and labels), i.e. the new function is no
longer used; upd+(M,a, li) modifies M by adding a : (1, l1), by incrementing the
indexes k, k′ occurring inside every triple a : (k′, lk) and by incrementing the index
k′ inside every triple a : (k′, rk) for any k; and upd−(M, a, li) modifies M by remov-
ing a : (j, li), with j the only index such that a : (j, li) ∈ M , by decrementing the
indexes k, k′ occurring inside every triple a : (k′, lk) such that k′ > j (or equivalently
k > i) and by decrementing the index k′ inside every triple a : (k′, rk) such that
k′ > j (k is arbitrary).

4.1 The Axioms

The axiomatization is composed of the following axioms.

• The axioms for BCCSrec of Tables 3, 4 and 5, where α ranges over semi-actions
a+

i (a+ for the stack technique), a−i and τ and the “X serial in E” requirement
is added in the folding axiom (Fold).

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–10694

• The new axiom a.E = a+
1 .a−1 .E (for the dynamic name technique) or a.E =

a+.a−1 .E (for the stack technique).
• The (RecHid) axiom.
• Axioms for static operators elimination (including operator “E;E”): left merge

and synchronization merge must be parameterized by a mapping M like in the
case of parallel and in their axioms we use compositional levelwise reindexing like
in the S.O.S. rules.

• In the case of the stack technique, the axiom that turns semantic action refinement
into parallel:

P [a � Q] = (P [a ↔ e] ‖{e},∅!(e+; Q; e−1))/{e}
an axiom for turning the bang operator into a combination of left merge and
recursion and an axiom for elimination of trailing terminated parallel processes.

4.2 Completeness Technique

Completeness over finite-state terms belonging to the syntactical characterization
presented in Sect. 3 (where, in the case of the stack technique, also the semantic
action refinement operator is considered as a static operator) is obtained as usual
(see Section 2.1.3) in two steps.

• Completeness for BCCSgrec terms presented in Sect. 2.1.2 (successful termination
can be just seen as a special new action used in BCCSgrec terms).

• Normal form derivability: BCCSgrec terms can always be derived from terms
belonging to the syntactical characterization above as “normal” forms by using
the axiomatization.

Concerning normal form derivability, terms belonging to the syntactical characteri-
zation above are shown to be transformable into normal form by adopting the same
procedure as that of the previous Sect. 3.2. Note that in the current context this
means that during the inductive structural bottom-up transformation of terms, ac-
tion are reindexed at every level as an effect of the axioms for the elimination of
the parallel operator.

5 Maximal Progress

In this section we deal with the problem of extending standard process algebra
with special actions σ whose execution is unprioritized with respect to standard
actions [8,5,9]. As we will see, we can use such actions to represent the passage
of time. In this context the precedence of standard action execution over time is
often termed “maximal progress”. More precisely, since we consider visible actions
to represent just potential for execution (e.g. in CCS the actual execution depends
on the environment executing a corresponding co-action) and we regard them to
be actually executable only when they become τ , we assume just τ actions to
actually preempt σ actions. In this section we will consider the basic process algebra
BCCSrec and we will show how to adjust the standard machinery to deal with the

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 95

(FUng) recX.(X + E) = recX.E

(WUng1) recX.(τ.X + E) = recX.(τ.pri(E))
(WUng2) recX.(τ.(X + E) + F) = recX.(τ.X + E + F)
(WUng3) recX.(τ.(pri(X) + E) + F) = recX.(τ.X + E + F)

Table 7
Axioms for unguarded recursion

unprioritized actions σ. Concerning the definition of syntax, we just add σ /∈ A to
the set of actions Act; regarding semantics of “σ” actions, we replace the standard
rules for the “+” operator with the rule

E
σ−→ E′ F

τ
�−→

E + F
σ−→ E′

and its symmetric. This means that the semantic model of “σ.P +τ.Q” is isomorphic
to that of “τ.Q”.

The modification of the operational semantics of BCCSrec does not affect the
congruence property of standard observational congruence (where σ is treated as a
standard visible action). However, as far as producing a complete axiomatization for
observational congruence over BCCSrec terms is concerned, the standard machinery
needs to be modified. The main reason is that the axiom

(WUng1) recX.(τ.X + E) = recX.(τ.E)

is no longer sound! For instance if E is σ.F we would obtain:

recX.(τ.X + σ.F) �� τ.σ.F

The modification to the standard machinery that is required (new set of axioms
considered plus new completeness proof) is far from trivial. The basic idea is to use
an auxiliary operator “pri(E)” to express the scope of priority. The semantics of
pri(P) is just defined by

P
α−→ P ′

pri(P) α−→ P ′
α �= σ

and represents how the behavior of P is modified in the presence of an alternative
initial τ transition, i.e. all initial “σ” actions (and consequent behaviors) are pre-
empted in P . In this way the axiom (WUng1) can be replaced by the new sound
axiom

(WUng1) recX.(τ.X + E) = recX.(τ.pri(E))

that allows to remove weakly guarded recursion in a similar way.

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–10696

(Pri1) pri(0) = 0
(Pri2) pri(α.E) = α.E α �= σ

(Pri3) pri(σ.E) = 0
(Pri4) pri(E + F) = pri(E) + pri(F)
(Pri5) pri(pri(E)) = pri(E)

Table 8
Axioms for the “pri” operator

5.1 The Axioms

The axiomatization is composed by the following axioms.

• The axioms for BCCS in Table 3.
• Unfolding and folding recursion axioms in Table 4 where the “X serial in E”

requirement is added in the folding axiom (Fold).
• The axiom (MPro) expressing maximal-progress:

(MPro) τ.E + F = τ.E + pri(F)

Note that from this axiom we can derive: τ.E + σ.F = τ.E.
• The modified axioms for unguarded recursion in Table 7 (an additional axiom

“(WUng3)” similar to the old ‘(WUng2)” is needed to remove weakly unguarded
occurrences of pri(X) terms).

• The axioms for the “pri(E)” operator in Table 8.

5.2 Completeness for BCCS with Guarded Recursive Definitions

In order to prove completeness for observational congruence over BCCSgrec terms
we need to introduce prioritized standard equation sets.

Definition 5.1 (Prioritized Standard Equation Sets) A standard equation
set S = {Xi = Hi | 1 ≤ i ≤ n}, with formal variables X̃ = {X1, . . . , Xn} and
free variables W̃ = {W1, . . . , Wm}, where we assume terms Hi (1 ≤ i ≤ n) to be
represented by 6

Hi ≡
∑

j∈Ji

αi,j .Xf(i,j) +
∑

k∈Ki

Wg(i,k)

is prioritized if:

∃j ∈ Ji : αi,j = τ ⇒ �∃j ∈ Ji : αi,j = σ .

A (not involved) adaptation of the standard machinery allows us to establish
one and only one solution, representability and mergeability for prioritized standard
equation sets (see [8,5,9]).

6 We assume
P

j∈J E ≡ 0 if J = ∅.

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 97

5.3 Completeness Technique

Completeness over (closed) BCCSrec terms is, as usual, obtained in two steps.

• Completeness for BCCSgrec terms presented above.
• Normal form derivability: BCCSgrec terms can always be derived as “normal”

forms by using the axiomatization.

The proof of normal form derivability (which involves elimination of unguarded
recursion via the modified “WUng” axioms) is the most involved change with respect
to standard machinery (see [8,5,9]).

6 Time

In this section we present the work on using unprioritized “σ” actions of the previous
section to represent time in process algebra [4,9]. More precisely, we consider timed
full calculi (that with respect to the basic language BCCSgrec consider also static
operators, like parallel) that preserve compatibility with the standard notion of
observational congruence, i.e. that allow terms that do not include “σ” actions to be
matched as with observational congruence without loosing the congruence property.
In this way we are able to adapt the standard machinery for weak bisimulation to
deal also with time.

In particular, we will consider two full calculi, each for a different “kind” of
time: discrete real-time and Markovian stochastic time (where time is probabilistic
and is expressed via exponential probability distributions). These two kinds of time
(as opposed to continuous real-time and stochastic time with arbitrary probability
distributions) can be expressed simply by “atomic” σ actions: in the case of discrete
real-time we see σ actions as a delay of a time unit, a “tick”; in the case of Markovian
stochastic time we see σ actions as positive real numbers, i.e. σ ∈ RI +, representing
the parameter σ of an exponentially distributed delay (σ is also called “rate” of
the distribution). The calculi that we use are based on the Hennessy-Regan ap-
proach [12] of considering time to be allowed to pass for a process, by executing “σ”
transitions, only if every other process that is in parallel with it, explicitly allow
time to pass via “σ” transitions as well. By taking such an approach, processes
that cannot execute “σ” actions are interpreted as time deadlocked processes that
block evolution of time in all the system, hence, e.g., it is correct to consider 0 to
be equivalent to recX.τ.X (that blocks the execution of time as well by executing
an infinite sequence of prioritized τ transitions) as in standard weak bisimulation.

In the following two subsections we present the two calculi that we consider, i.e. a
calculus for real-time like that in [12] and a revisitation of the calculus of Interactive
Markov Chain [13] that makes it compatible with standard weak bisimulation. Both
calculi are endowed with a special “timed” prefix αt.P and choice P +t Q that, like
in [12], allow time to evolve via explicit execution of “σ” transitions as required by
parallel (see above). Such operators are different from the “standard” prefix and
choice operators of BCCSrec that we considered in the previous Sect. 5 and here
we will use the “t” superscript to distinguish them. The idea is that “timed” prefix

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–10698

and choice and the other operators of the timed full calculi are used to specify timed
systems, i.e. the two timed full calculi are specification level calculi, while the basic
BCCSrec calculus with maximal progress (plus an auxiliary delay hiding operator
H(P) in the case of Markovian delays) is used to express normal forms for them
and to produce an axiomatization. Such an axiomatization will be complete over
finite-state terms belonging to a syntactical characterization (on the specification
level calculus) analogous to that presented in Sect. 3.

6.1 Discrete Real-time

Concerning discrete real-time, we consider the approach of [12]. For a specification
calculus with prefix, summation, hiding and CSP parallel operator, in addition to
the usual rules for standard action transitions we have also the rules in Table 9 for σ

transitions 7 . Moreover we assume the calculus to be also endowed with a recursion
recX.P operator with the standard operational rule (that holds for σ transitions as
well).

The transition systems obtained with the operational semantics are time de-
terministic: in every state at most one outgoing σ transition is derivable by the
structural operational rules (where different ways of deriving σ transitions leading
to the same target states are considered as originating multiple transitions, i.e., as
violating time determinism).

Standard weak bisimulation (where σ is considered as a standard visible action)
is a congruence with respect to all the operators above, apart summation, as ex-
pected. However, in order to obtain a congruence with respect to all the operators
we have to consider an equivalence notion that is finer than standard observational
congruence: the “root” condition of the equivalence (where standard transitions are
matched as in standard observational congruence) can be “left” only by executing
standard transitions (and not by executing σ transitions).

Definition 6.1 A relation β over processes is a rooted discrete real-time weak
bisimulation if, whenever (P,Q) ∈ β:

• If P
α−→ P ′ with α �= σ then, for some Q′, Q

α=⇒ Q′ and P ′ ≈ Q′.
• If Q

α−→ Q′ with α �= σ then, for some P ′, P
α=⇒ P ′ and P ′ ≈ Q′.

• If P
σ−→ P ′ then, for some Q′, Q

σ−→ Q′ and (P ′, Q′) ∈ β.
• If Q

σ−→ Q′ then, for some P ′, P
σ−→ P ′ and (P ′, Q′) ∈ β.

Two processes P , Q are discrete real-time observationally congruent, written P �DRT

Q, iff (P,Q) is included in some rooted discrete real-time weak bisimulation.

7 Differently from [12] here we consider the CSP parallel operator, that allows us to keep the hiding and par-
allel operations expressed in a separated way. This is needed, e.g., for producing a complete axiomatization
via the (RecHid) axiom (see Sect. 3).

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 99

at.P
σ−→ at.P σt.P

σ−→ P

P
σ−→ P ′ Q

σ−→ Q′

P +t Q
σ−→ P ′ +t Q

P
σ−→ P ′ Q

σ−→ Q′

P ‖S Q
σ−→ P ′ ‖S Q

P
σ−→ P ′ 	∃a ∈ L. P

a−→
P/L

σ−→ P ′/L

Table 9
Rules for Discrete Real-Time

6.2 Markovian Stochastic Time

Concerning Markovian stochastic time, we consider Revisited Interactive Markov
Chains [4,9]. For a specification calculus with prefix, summation, hiding and CSP
parallel operator, in addition to the usual rules for standard action transitions we
have also the rules in Table 10 for σ ∈ RI + transitions. In the operational rule for
prefix, σ̃ is any rate: since, as we will see, equivalence over terms abstract from
the rate of selfloops (transitions going from one state to itself) of σ transitions the
particular choice of σ̃ ∈ RI + is not important. Note that, the interleaved execution
of σ actions in parallel and choice is justified by the Markov property of exponential
probability distributions, and correctly represents independent passage of time both
in P and Q. Moreover we assume the calculus to be also endowed with a recursion
recX.P operator with the standard operational rule (that holds for σ transitions as
well).

The equivalence that we consider is a simple stochastic extension of weak bisim-
ulation, called weak Markovian Bisimulation [4,9], where equivalent terms P and
Q are required to have matching weak transitions of σ actions as for standard
visible actions and we also have a quantitative requirement about the values of
σ of matching weak transitions that is derived from (selfloop insensitive) Marko-
vian bisimulation: sums of alternative σ moves that reach same equivalence classes
(excluded the equivalence class that includes P and Q themselves) must match.

The selfloop insensitive variant of Markovian bisimulation that we introduced
in [4,9] is, in turn, a coarser variant of standard strong Markovian bisimulation [14]
(which instead considers also the equivalence class that includes P and Q them-
selves) that preserves the steady state behaviour of the underlying Continuous Time
Markov Chains. The transient behavior and the performance evaluation of the
model in general is not changed, provided that the termination events of individ-
ual timed σ actions are considered to be unobservable, e.g. successive execution of
two timed actions is not distinguished from the execution of a single correspond-
ing timed action: the equivalence just guarantees correspondence in terms of the
probabilistic distribution of the overall amount of time passed.

Weak Markovian bisimulation is a congruence with respect to all the operators
above, apart summation, as expected. In order to obtain a congruence with respect
to all the operators we have to introduce a “root” condition in a similar way as for
the discrete real-time case: the “root” of the equivalence, where standard transitions
are matched as in standard observational congruence and σ actions are matched as

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106100

at.P
σ̃−→ at.P σt.P

σ−→ P

P
σ−→ P ′ Q

σ′
−→

P +t Q
σ−→ P ′ +t Q

P
σ−→ P ′ Q

σ′
−→

P ‖S Q
σ−→ P ′ ‖S Q

P
σ−→ P ′ 	∃a ∈ L. P

a−→
P/L

σ−→ P ′/L

Table 10
Rules for Exponentially Timed Moves

in (strong) selfloop insensitive Markovian Bisimulation, can be left only by executing
standard transitions (and not by executing σ transitions). We call this equivalence
Markovian stochastic time observational congruence, written �MST (see [4,9] for a
precise definition).

We would like to note explicitly that, the possibility of adopting a coarser equiv-
alent notion with respect to standard Markovian Bisimulation, where Markovian
delays are considered as unobservable, is a consequence of the adoption of the time
choice operator “P +t Q” instead of the standard operator “P + Q” of the basic
BCCSrec calculus (and of all the other Markovian calculi like e.g. [13]): while in
“P + Q”, where σ actions resolve the choice, an initial selfloop of σ actions in-
side P or Q becomes a σ transition that changes the system state, this does not
happen in “P +t Q”. Technically, this allows “P +t Q” to be a congruence with
respect to “�MST ” that is selfloop insensitive. The adoption of a selfloop insensi-
tive equivalence besides being convenient (in that is coarser) is also adequate for
the definition of the semantics of operator “αt.P” where we do not want the actual
system behavior to be dependent on the particular σ̃ that is chosen.

6.3 The Axioms

Producing a complete axiomatization for the two full timed calculi requires them
to be extended to encompass new operators so to be able to express normal forms
of terms (e.g. the operators of the basic BCCSrec calculus) and manage and derive
them (e.g. the pri(P) operator and left and synchronization merge operators).

More precisely, in the case of the discrete time calculus, we use as terms for
normal forms the terms of the basic BCCSgrec calculus whose semantics is time
deterministic. Note that, including operators of the BCCSrec calculus requires
real-time observational congruence to be extended so that it is also defined over
terms whose semantics is not time deterministic. Such an extension is performed
by making the equivalence sensible to the number of derivable σ transitions that
states can execute, so that it preserves the property of time determinism (i.e. a
term equivalent to a time deterministic one is time deterministic).

In the case of the Markovian stochastic time calculus, we consider observable
Markovian delays, denoted by σo (to distinguish them from unobservable ones used
in the specification calculus) to be used in normal forms: in the BCCSrec syntax
and in the rules of Table 1 we consider α to range over standard actions in A∪{τ}
plus σo actions (with σ ∈ RI +), instead of σ actions. Markovian stochastic time ob-

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 101

servational congruence is consistently extended to deal with observable Markovian
delays σo as well: in equivalent terms P and Q, σo (weak) transitions are matched
like σ (weak) transitions, with the only difference that the target selflooping equiv-
alence class that includes P and Q themselves is not excluded when matching sums
of σo rates, as in standard Markovian bisimulation [14]. Normal forms also make
use of a delay hiding operator H(P) defined by:

P
α−→ P ′

H(P) α−→ P ′
α∈A ∪ {τ} P

σo−→ P ′

H(P) σ−→ P ′

Intuitively, H(P) turns every observable exponential action that is executed by P

as an initial action into an unobservable one with the same rate. Terms used as
normal forms are terms that include guarded recursive definitions only and belong
to the following basic calculus two-level syntax:

E ::= 0 | X | H(S) | recX.E

S ::= S + S | a.E | τ.E | σo.E

The idea is that, by exploiting the delay hiding operator H(P), we can express terms
of the Markovian stochastic calculus, which use unobservable Markovian delays, in
terms of normal forms which use observable Markovian delays and the standard “+”
operator which is compatible with them.

The axiomatization for the discrete real-time calculus is composed of the follow-
ing axioms.

• The axioms in Sect. 5.1 of the axiomatization of BCCSrec with maximal progress
where:
· The axioms (A3) and (FUng) expressing idempotence of “+” are replaced by

the axioms

(A3) E + pri(E) = E

(FUng) recX.(X + pri(E)) = recX.pri(E)

This is due to time determinism, i.e. in a time deterministic term P + Q, σ

actions cannot be executed by both P and Q, so full idempotence would not
preserve the property of time determinism as required by the equivalence.

· The (Tau1) and (Tau3) axioms are restricted to α ∈ A∪{τ} instead of a general
α action (that would include also timed actions).

· We consider an additional τ elimination axiom for time:

(Tau4) α.F{σ.τ.E/X} = α.F{σ.E/X} α∈A∪{τ} and X serial in F

This axiom is a restricted version of old axiom (Tau1) of the axiomatization of
BCCSrec with maximal progress in the case α = σ, that now we have excluded.
The restriction accounts for the new extended root condition of equivalence.
No timed counterpart is, instead, included for the axiom (Tau3), due to the
property of time determinism (as we will justify in the following).

Note that a consequence of the modification of (A3) and (FUng) is that (WUng2)
is now derivable from (WUng3).

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106102

• The (RecHid) axiom.
• Axioms for elimination of timed prefix “αt.E”, choice “E +t E” and static oper-

ators by means of auxiliary operators like, e.g., left merge and synchronization
merge for the parallel operator. In the case α �= σ, “αt.E” is eliminated by the
single axiom (that exploits maximal progress of“+”):

(TPre1) αt.E = recX.(σ.X + α.E) α∈A∪{τ}
in the case α = σ by the trivial axiom, called (TPre2), “σt.E = σ.E”.

The axiomatization for the Markovian stochastic time calculus is composed of
the following axioms.

• The same modification to the axioms in Sect. 5.1 of the axiomatization of BCCSrec

with maximal progress considered for the discrete real-time calculus (with the only
difference that, due to the structure of the basic calculus used for normal forms
described above, terms used in axioms are also endowed with delay hiding oper-
ators H(P), σo actions are used instead of σ actions, and the definition of serial
variable is extended to also admit the variable to be in the scope of operators
H(P)) plus the following two axioms:

(Exp) σo
1.E + σo

2.E = (σo
1 + σo

2).E

(ExpRec) recX.H(σo
1.X + σo

2.E + F) = recX.H(σo
2.E + F)

Axiom (Exp) characterizes stochastic delay summation performed by standard
Markovian bisimulation. Axiom (ExpRec) characterizes the self-loop insensitivity
property of our coarser notion of Markovian bisimulation.

Note that, while in the context of discrete real-time the modification of axioms
(A3) and (FUng) expressing idempotence of “+” and the exclusion of axiom
(Tau3) in the case α = σ is due to the time determinism property, here the same
modification is due to the stochastic delay summation property that similarly
causes non-idempotence of “+” over timed actions.

• The (RecHid) axiom.
• Axioms for elimination of timed prefix “αt.E”, choice “E +t E” and static op-

erators. These axioms are different from the discrete real-time case due to the
different treatment of timed actions (here they are interleaved instead of being
synchronized). Included in the set of axioms provided for the elimination of ev-
ery static operator here we must consider also an axiom for the operator H(P),
besides the other operators of BCCS. For timed prefix “αt.E” we have the single
axiom

(TPre) αt.E = recX.H(σo.X + α.E)

that corresponds to the axioms (TPre1) and (TPre2) presented for the discrete
real-time calculus. (TPre2) is obtained from (TPre) by using the selfloop insensi-
tivity axiom (ExpRec). Note that here the positive real value of σo is universally
quantified: any choice is acceptable due to selfloop insensitivity.

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 103

6.4 Completeness for Timed Basic Terms with Guarded Recursive Definitions

In order to prove completeness of the axiomatization for timed observational con-
gruence over the class of timed basic terms with guarded recursive definitions to
be used as normal forms (defined in the previous Sect. 6.3) we make use of timed
prioritized standard equation sets.

Timed prioritized standard equation sets are defined as a variant of prioritized
standard equation sets (presented in Sect. 5.2) where (non-free) variables are clas-
sified in two types depending if they are “reached” from the initial variable by just
executing timed actions or not (i.e. if they are involved in the root condition of
equivalence applied to the terms represented by the equation sets or not).

More precisely, for discrete real-time we have in addition a constraint related
to time determinism: in every equation there can be at most one σ action. For
Markovian stochastic time we have in addition that sums of actions in equations are
enclosed into a delay hiding operator H(P) and that timed actions in the equations
are observable σo actions.

A (not involved) adaptation of the standard machinery allows us to establish one
and only one solution and representability for (guarded) timed prioritized standard
equation sets. Concerning the proof of mergeability, the standard machinery must
be significantly modified. We need to resort to:

• Preliminary “saturation” of τ actions after σ prefixes in basic terms: given two
equivalent terms we have to add τ prefixes after σ prefixes not involved in the
root condition (by using the (Tau4) axiom) before representing them with timed
prioritized equation sets.

• Development of a simpler reformulation weak bisimulation over terms with guarded
recursive definitions to be used when merging guarded timed prioritized standard
equation sets:
· We start by considering a simplified form of weak bisimulation definition where

σ=⇒ transitions of a term Q to be matched to σ−→ transitions of a term P are
replaced by σ−→ τ−→∗ transitions and the check is performed only if Q cannot
execute τ transitions: this can be done due to maximal progress (i.e. priority of
τ over σ) and to guardedness. Such a simplified form comes from the machinery
related to the BCCSrec calculus with maximal progress presented in Sect. 5.

· We then show that we can further turn σ−→ τ−→∗ transitions into strong σ−→
moves, due to discrete time determinism (for the discrete real-time calculus) or
stochastic delay summation (for the stochastic Markovian time calculus). This
justifies the absence of a correspondent of axiom (Tau3) for timed actions (case
α = σ in (Tau3) axiom).

6.5 Completeness Technique

Completeness over finite-state terms belonging to the syntactical characterization
presented in Sect. 3 (where, in the case of the “P +t Q” operator, free occurrences
of X in P and Q are required to occur guarded by a standard action, i.e. in the
scope of an “αt.P” prefix with α ∈ A∪{τ}) is obtained as usual (see Section 2.1.3)

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106104

in two steps.

• Completeness over the classes defined in Sect. 6.3 of timed basic terms with
guarded recursive definitions, as presented in Sect. 6.4

• Normal form derivability: timed basic terms with guarded recursive definitions
can always be derived from terms belonging to the syntactical characterization
above as “normal” forms by using the axiomatization.

Concerning normal form derivability, terms belonging to the syntactical charac-
terization above are shown to be transformable into normal form by adopting the
same procedure as that of the previous Sect. 3.2 that combines unguarded recur-
sion elimination of basic terms with static operator elimination by performing an
inductive bottom-up transformation of terms. More precisely, here unguarded re-
cursion elimination in basic terms is performed as for the calculus BCCSrec with
maximal progress (see Sect. 5.3) with some modifications due, e.g., to non general
idempotence of “P + Q” operator.

Note that, in the case of real-time, the axiomatization, being it sound with re-
spect to real-time observational congruence, preserves the time determinism prop-
erty, hence we are guaranteed that the basic terms that we get at the end of the
transformation above are actually time deterministic. In the case of Markovian
stochastic time, normal forms in the two-level syntactical form of Sect. 6.3 are
obtained by an unfolding and folding procedure like that performed in the transfor-
mation of Sect. 3.2 when eliminating static operators.

7 Conclusion

The most direct consequence of the work presented in this paper is the development
of the extension of the standard machinery for weak bisimulation to deal with calculi
for continuous real-time and general Stochastic time: this can be done by combin-
ing the calculus with refinable ST actions with the calculus with (maximal-progress
and) time, by considering unprioritized σ actions as ST actions, similarly to what
we did in [10,5]. Note that, as shown by the machinery in [5], usage of ST actions
in the context of general Stochastic time allows, not only to correctly represent
systems with generally distributed delays, but also to support their refinement with
terms made up of exponentially distributed delays (approximation via phase-type
distributions). Finally, future work could be done in extending the completeness
results to all finite-states term (not only terms of the considered syntactical char-
acterization, i.e. static operators are not replicable by recursion): this would lead
to a corresponding enlargement of the completeness result for any of the considered
calculi.

References

[1] J.C.M. Baeten, M. Bravetti “A generic process algebra”, in Proc. of the meeting Algebraic Process
Calculi: The First Twenty Five Years and Beyond (PA’05), ENTCS 162:65-71, Bertinoro (Italy),
August 2005

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106 105

[2] J.C.M. Baeten, M. Bravetti “A Ground-Complete Axiomatization of Finite State Processes in Process
Algebra”, in Proc. of the 16th Int. Conf. on Concurrency Theory (CONCUR’05), LNCS 3653:248-262,
San Francisco (CA, USA), August 2005

[3] J.C.M. Baeten and M. Bravetti “A ground-complete axiomatization of finite state processes in process
algebra”, Technical Report CS Report 05-18, Technische Universiteit Eindhoven, Department of
Mathematics and Computer Science, 2005.

[4] M. Bravetti, “Revisiting Interactive Markov Chains”, in Proc. of the 3rd Int. Workshop on Models
for Time-Critical Systems (MTCS 2002), ENTCS 68(5), Brno (Czech Republic), August 2002

[5] M. Bravetti, “Specification and Analysis of Stochastic Real-Time Systems”, PhD Thesis, University
of Bologna (Italy), February 2002

[6] M. Bravetti and M. Bernardo. “Compositional asymmetric cooperations for process algebras with
probabilities, priorities, and time”, in Proc. of the 1st Workshop on Models for Time-Critical Systems
(MTCS 2000) , ENTCS 39(3), 2000

[7] M. Bravetti, R. Gorrieri, “Deciding and Axiomatizing Weak ST Bisimulation for a Process Algebra
with Recursion and Action Refinement”, in ACM Transactions on Computational Logic 3(4):465-520,
2002

[8] M. Bravetti, R. Gorrieri, “A Complete Axiomatization for Observational Congruence of Prioritized
Finite-State Behaviors”, in Proc. of the 27th Int. Colloquium on Automata, Languages and
Programming (ICALP 2000), U. Montanari, J.D.P. Rolim and E. Welzl editors, LNCS 1853:744-
755, Geneva (Switzerland), July 2000

[9] M. Bravetti, R. Gorrieri, “A Uniform Approach for Expressing Time in Process Algebra”, submitted
to Theoretical Computer Science.

[10] M. Bravetti, R. Gorrieri, “The Theory of Interactive Generalized Semi-Markov Processes”, in
Theoretical Computer Science 282(1):5-32, 2002

[11] R.J. van Glabbeek, F.W. Vaandrager, “Petri Net Models for Algebraic Theories of Concurrency”, in
Proc. of the Conf. on Parallel Architectures and Languages Europe (PARLE ’87), LNCS 259:224-242,
Eindhoven (The Netherlands), 1987

[12] M. Hennessy, T. Regan, “A Process Algebra for Timed Systems”, in Information and Computation,
117(2):221-239, 1995

[13] H. Hermanns, “Interactive Markov Chains”, Ph.D. Thesis, Universität Erlangen-Nürnberg
(Germany), 1998

[14] J. Hillston, “A Compositional Approach to Performance Modelling”, Cambridge University Press,
1996

[15] R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.

[16] R. Milner, “A complete axiomatization for observational congruence of finite-state behaviours”, in
Information and Computation 81:227-247, 1989

M. Bravetti / Electronic Notes in Theoretical Computer Science 209 (2008) 83–106106

	Introduction
	Standard Machinery
	Completeness for BCCS with Recursive Definitions
	Completeness for Full CCS without Recursive Definitions

	Finite State General Processes
	The Axioms
	Completeness Technique

	Refinable Actions
	The Axioms
	Completeness Technique

	Maximal Progress
	The Axioms
	Completeness for BCCS with Guarded Recursive Definitions
	Completeness Technique

	Time
	Discrete Real-time
	Markovian Stochastic Time
	The Axioms
	Completeness for Timed Basic Terms with Guarded Recursive Definitions
	Completeness Technique

	Conclusion
	References

