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a b s t r a c t

The phenomenon of rapid turnover of 30 proximal nucleotides (nt) lost by the action of nuclease in RNA
viruses is integral to replication. Here, a set of six deletions encompassing the 30 23 nt region of a satellite
RNA (satRNA) of Cucumber mosaic virus (CMV) strain Q (Q-sat), were engineered. Repair of the 30 end was
not observed in the absence of CMV. However, co-expression with CMV in planta revealed that Q-sat
mutants lacking the 30 18 nt but not the 30 23 nt are repaired and the progeny accumulation was inversely
proportional to the extent of the deletion. Progeny of the 30Δ3 mutant were repaired to wild type (wt)
while those from the remaining four mutants were heterogeneous, exhibiting a wt secondary structure.
Analysis of additional 30 internal deletions mutants revealed that progeny with a repaired sequence
reminiscent of wt secondary structure were competent for replication and systemic spread.

& 2013 Elsevier Inc. All rights reserved.

Introduction

In RNA viruses, replication of genomic RNA is one of the
fundamental steps in the infection cycle. Since the 30 ends of viral
genomic RNAs encompass sequences that are intimately involved
in proper translation and recognition by RNA-dependent RNA
polymerase (RdRp) to initiate minus-strand synthesis, their integ-
rity must be maintained. To meet this requirement and to prevent
the loss of the critical 30 end nucleotides due to the action of
cellular nucleases, viral RNAs have evolved to undergo a repair
process by a variety of mechanisms that involve either viral RdRp,
tRNA nucleotidyltransferase, RNA recombination or abortive initia-
tion products (Hema et al., 2005; Nagy et al., 1997; Rao et al., 1989;
Rao and Hall, 1993). Whatever the mechanism, the 30 ends of viral
genomes are functionally analogous to telomeres of chromosomal
DNA (Burgyan and Garcia-Arenal, 1998; Hema et al., 2005; Rao
et al., 1989; Weiner and Maizels, 1987).

Genomic RNAs of plant infecting RNA viruses terminate at their 30

ends in a variety of structures such as stem-loop (e.g. Alfalfa mosaic
virus) (Bol, 2005), poly A tracts (e.g. potyviruses) or tRNA-like
structures (e.g. Brome mosaic virus, BMV) (Dreher, 2009). The

mechanism regulating the 30-end repair was extensively studied in
BMV and Turnip crinkle virus (TCV). In BMV, the repair of the 30-CCAOH

terminal trinucleotide sequence is mediated through either polymer-
ase error, RNA recombination or by the action of cellular (ATP, CTP):
tRNA nucleotidyltransferase (Hema et al., 2005; Rao et al., 1989; Rao
and Hall, 1993). Whereas in TCV, abortive products generated by viral
RdRp mediate the repair of the 30 end (Nagy et al., 1997).

Cucumber mosaic virus (CMV) is a tripartite icosahedral virus
and represents the type member of the cucumovirus genus
(Palukaitis and Garcia-Arenal, 2003). Its genome is divided among
three single-stranded positive sense RNAs (ssRNA), collectively
encoding four non-structural proteins and one structural protein.
CMV RNAs 1 and 2 encode replicase subunits 1a and 2a, respec-
tively (Palukaitis and Garcia-Arenal, 2003). In addition, genomic
RNA2 also encodes another gene product, 2b, the designated
suppressor of RNA silencing (Ding et al., 1994). The two gene
products encoded by dicistronic RNA3 are dispensable for viral
replication but are required for infectivity in plants (Boccard and
Baulcombe, 1993). A nonstructural protein of 30 kDa, encoded by
the 50 half of RNA3 is the designated movement protein (MP)
required for cell-to-cell movement (Palukaitis and Garcia-Arenal,
2003). The 20-kDa CP, encoded by the 30 half of CMV RNA3, is
translated from subgenomic RNA4 transcribed from progeny
minus-sense RNA3 (Boccard and Baulcombe, 1993).

In addition to the genomic and subgenomic RNAs, some strains
of CMV contain another small, non-coding RNA referred to as a
satellite. Inherently satellite RNA (satRNA) is unable to replicate by
itself and is therefore completely dependent on the replication
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machinery of CMV, the helper virus. A hallmark feature of satRNAs
is the lack of detectable nucleotide sequence homology with their
helper virus (Hu et al., 2009). The 50 capped satRNAs are 330 to
405 nucleotides long (Garcia-Arenal and Palukaitis, 1999; Simon
et al., 2004) and often interfere with helper virus replication and
modulate the course of disease development in plants incited by
their helper virus(Hu et al., 2009; Shimura et al., 2011; Smith et al.,
2011). Because of this biological significance, satRNAs have been
used as model systems for understanding how macromolecules
interact with their plant host and cause disease (Hu et al., 2009;
Shimura et al., 2011; Smith et al., 2011; Wang et al., 2004). An
earlier study performed in determining the mechanism involved
in maintaining the integrity of the satRNA genome revealed that
mutants lacking the 30-most-7 but not 12 nucleotides, are repaired
in a template independent manner exclusively by CMV, but not
Tomato aspermy virus (TAV, another member of the genus cucu-
movirus) replicase (Burgyan and Garcia-Arenal, 1998).

Infectivity in mammalian cells with a cloned DNA from the RNA
genome was shown for poliovirus (Racaniello and Baltimore, 1981).
Later, mechanical inoculation of CaMV 35S promoter driven cDNA
copies of RNA genome components of CMV (Ding et al.,1995), BMV
(Mori et al., 1991) and Tomato mosaic virus (Weber et al., 1992) also
resulted in efficient infections that are indistinguishable from infec-
tions with in vitro transcripts. In all these cases, RNA synthesis is
initiated in the nucleus. In the context of plant viruses, one of the
major drawbacks of the mechanical inoculation, specifically for a
multicomponent virus such as CMV, is that only a limited number of
cells receive the required constellation of viral components to initiate
viral replication. Thus, Agrobacterium-mediated transient expression
(agroinfiltration) is a powerful approach that combines the advantages
of T-DNA-based RNA transcription and synchronized delivery of
multiple plasmids to the same cell. Using this agroinfiltration, we
and others have consistently showed that replication (Annamalai
and Rao, 2005; Annamalai et al., 2008; Gopinath and Kao, 2007;
Kwon and Rao, 2012; Yi et al., 2009) and cytopathological phenotypes
exhibited by BMV genome components delivered by agroinfiltration
(Bamunusinghe et al., 2013, 2011) are identical to those resulting from
mechanical inoculations. Furthermore, agroinfiltration has been
successfully used for studying RNA recombination (Marillonnet et al.,
2004) and RNAsilencing studies (Li et al., 2002). Thus, results obtained
by agroinfiltration are not artifacts. It should be considered as a
technical advancement in achieving the synchronized delivery of
multiple plasmids to a majority of plant cells. Therefore, the rationale
of this study is to evaluate whether the 30 end repair could be
extended beyond the 30-most-7 nucleotides if the helper virus repli-
case and each 30 terminal deletion mutant sequences are co-expressed
in a majority of the cells delivered via agroinfiltrationwhich is unlikely
to happen with mechanical inoculation. Consequently, in this work,
we compared the relative 30 end repair of satRNA by its helper virus
replicase in plants receiving the inoculum by agroinfiltration. Further-
more, unlike a previous study (Burgyan and Garcia-Arenal, 1998),
progeny recovered from inoculated and un-inoculated systemically
infected Nicotiana benthamiana leaves were sequenced. Collectively
the results show that a requirement to restore the 30 structural
integrity allows helper virus replicase to extend the repair of 30

proximal deletions of satRNA up to 18 nt as well as internal deletions.

Results

Characteristics of 30 proximal deletion mutants of Q-satRNA

All mutants constructed in this study (Fig. 1) are engineered
into the genetic background of a T-DNA based wild type (wt)
agroconstruct of Q-satRNA (Qs-wt; Fig. 1). To determine the
minimal repairable 30-proximal nucleotides of Q-satRNA in planta

by its helper virus, a set of six deletion mutants characterized by
lacking the 30 terminal 3 nucleotides (nt) (Qs-Δ3), 7 nt (Qs-Δ7),
9 nt (Qs-Δ9), 13 nt (Qs-Δ13), 18 nt (Qs-Δ18) or 23 nt (Qs-Δ23)
was assembled. Cloning of wt and each deletion mutant cDNAs
was designed such that the de novo synthesized RNA transcripts
would terminate with the expected 30 terminus and will not have
any non-viral nucleotides due to the presence of a self-cleaving
ribozyme sequence of Hepatitis delta virus (HDV) (Fig. 1).

Ectopically expressed Q-sat 30 deletions are not repaired by cellular
polymerase

It has been conclusively demonstrated that ectopic expression via
agroinfiltration would result in the accumulation of viral and satRNAs
to detectable levels in the absence of sustained replication (Annamalai
and Rao, 2005; Choi et al., 2012; Gopinath and Kao, 2007; Seo et al.,
2013). In principle, 35S driven T-DNA based transient expression is
initiated in the nucleus by cellular polymerase. Therefore prior to
testing helper virus-mediated repair of satRNA, it is imperative to
verify whether transiently expressed satRNA mutants are repaired by
the cellular polymerase before exiting into the cytoplasm. To test this
possibility, we performed the following experiments. In the first
experiment, plants were infiltrated with agrotransformants of wt
and each 30 terminal deletion mutant of Q-satRNA without helper
virus and total RNA was isolated at 4 dpi and subjected to Northern
blot hybridization. Results shown in Fig. 2A revealed that the stability
of a given mutation reflected by its detection in Northern blots is
inversely proportional to the extent of the engineered deletion. Among
six deletion mutants, ectopically expressed RNA transcripts corre-
sponding to three mutants (Qs-Δ3, Qs-Δ7, and Qs-Δ9) were accu-
mulated to detectable levels, although the relative levels, compared to
wt, varied between 78% and 19% (Fig. 2A). Prolonged exposure of the
Northern blot failed to detect RNA bands corresponding to mutants
Qs-Δ13, Qs-Δ18, and Qs-Δ23 (data not shown).

To verify the preservation of the engineered deletions, we
performed two RT-PCR assays. In the first assay total RNA isolated
from N. benthamiana leaves infiltrated with above-mentioned mutant
inocula was subjected to poly-A tailing followed by RT-PCR and
sequenced as described under Materials and methods section. Results
shown in Fig. 2B revealed that compared to the wt control, RT-PCR

Fig. 1. Characteristic features of T-DNA based constructs of Q-sat variants used in
this study and their stability in vivo. Schematic representation of aT-DNA based wt
Q-sat (Qs) agrotransformant is shown. The position of the double 35S promoters
(arrows) at the 50end and positions of the hepatitis delta virus (HδV) ribozyme (Rz)
and the 35S terminator (T) at the 30 end are shown. At the 50 junction, the
nucleotide sequence of the 35S promoter (lowercase letters) and the 50sequence of
Q-sat (uppercase letters) are shown. A bent arrow indicates the expected tran-
scription start site. At the 30end, viral sequence (uppercase letters) left after self-
cleavage by the HδV Rz are shown. An arrow shows the predicted self-cleavage site.
The 30 26 nt sequence in Qs-wt and each variant is shown. The deleted nt in 30Δ3,
30Δ7, 30Δ9, 30Δ13, 30Δ18 and 30Δ23 variants are indicated by Δ.

S.-J. Kwon et al. / Virology 450-451 (2014) 222–232 223



product of each 30 terminal deletion mutant migrated faster than the
300 nt size marker (Fig. 2B). Sequencing results showed that in each
case the 30 end deletion was extended between 116 to 148 nt (Qs-Δ3,
116 nt deleted; Qs-Δ7, 115 nt deleted; Qs-Δ9, 112 nt deleted; Qs-Δ13,
145 nt deleted; Qs-Δ18, 137 nt deleted and Qs-Δ23, 148 nt deleted).
These results suggested that, in the absence of helper virus, ectopically
expressed 30 deletion mutants are unstable and were subjected to
extended 30truncations by cellular RNase. However, a possibility exists
that the original engineered mutant population could exist at a low
percentage that is hard to recover by the above used procedure. To
verify this we used a second RT-PCR assay that was performed with a
set of 50 and 30 primers that was used to engineer each deletion (see
Materials and methods section). Migration profiles of RT-PCR products
shown in Fig. 2C suggest that ectopically expressed RNA transcripts of
each mutant were present in infiltrated N. benthamiana leaves. Direct
sequencing of these RT-PCR products confirmed the preservation of
each engineered deletion. Taken together the results suggested cellular
polymerase did not modify the engineered deletions during transient
expression originated in the nucleus.

Repair of 30 end mutants of Q-satRNA by helper virus in mechanically
inoculated leaves

Total RNA recovered from infiltrated N. benthamiana leaves
autonomously expressing Qs-Δ3, Qs-Δ7, Qs-Δ9, Qs-Δ13, Qs-Δ18,

and Qs-Δ23 (Fig. 2A) were mixed with helper virus and mechani-
cally inoculated to N. benthamiana and total RNA recovered at
4 dpi was subjected to Northern blot hybridization. Replication
profiles of each Q-sat 30 terminal deletion mutant in mechanically
inoculated plants shown in Fig. 2D are identical to those reported
by Burgyan and Garcia-Arenal (1998). For example, among six
deletion mutants tested, only the progeny of Qs-Δ3 was accumu-
lated to near wt level (82%) while that of Qs-Δ7 remained low
(11%) (Fig. 2D). No progeny RNA was detected for the remaining
four mutants, even when the blots were exposed for a prolonged
period. Progeny sequence of Qs-Δ3, and Qs-Δ7 recovered from
these mechanically inoculated plants revealed that for Qs-Δ3,100%
of Q-sat progeny (10/10 clones sequenced) had regained the
deleted wt 30 CCC sequence. Whereas, for Qs-Δ7, among 10 clones,
unlike wt (7AGGACCC1), 50% displayed the presence of a uracil at
position 7 and absence of the 30 C residue (7UGGACCΔ1) while the
remaining 50% displayed 7UGGAΔΔΔ1 sequence. Lack of near
perfect 30 terminal sequences explain why the progeny of Qs-Δ7
accumulated poorly. However, total and virion RNA of Qs-Δ3 and
Qs-Δ7 recovered at 10 dpi from systemically infected N. benthami-
ana leaves had perfect wt sequence (data not shown). Collectively,
the results shown in Fig. 2(A–D) suggested that sequence restora-
tion seen for 30 deletion mutants is exclusively mediated by helper
virus replicase, as suggested previously (Burgyan and Garcia-
Arenal, 1998).

Fig. 2. Stability of Q-sat variants. (A) Agrotransformants of Qsat wt and each 30 deletion variant was autonomously agroinfiltrated in Nicotiana benthamiana leaves and total
RNA extracted at 4 dpi was subjected to Northern blot hybridization with a 32P-labelled riboprobe designed to detected Qsat (þ). Phosphoimaging was used to quantitate the
accumulation levels of each 30 deletion variant transcript. Loading controls are represented by ribosomal RNA (rRNA). (B) Agarose gel electrophoretic analysis of products of
RT-PCR #1 assay. Total RNA isolated from agroinfiltrated leaves was treated with RNase-free DNAse to digest T-DNA templates and the resulting products were
electrophoresed on PAGE-Urea gels, RNA bands of desired size were excised, eluted, poly A tailed and subjected to RT-PCR using a set of 30 primer complementary to poly
A tail and a forward primer complementary to 50 Qsat RNA as described under Materials and methods section. A 5 ml sample of each RT-PCR product was subjected to agarose
gel electrophoresis. (C) Agarose gel electrophoretic analysis of products of RT-PCR #2 assay. Following PAGE-Urea analysis of total RNA as described above, excised RNA bands
were subjected to RT-PCR using 30 primers specific for each deletion mutant and a forward primer complementary to 50 Qsat RNA. (D) Replication of Qsat variants in
mechanically inoculated plants. Total RNA recovered from leaves autonomously expressing indicated Qsat mutants were mixed with helper virus (HV) RNA and mechanically
inoculated to N. benthamiana. At 5 dpi, duplicate blots containing the total. RNA isolated from inoculated leaves were subjected to Northern blot hybridization with 32P-
labelled riboprobes specific for either Qsat or CMV RNAs using 30 conserved region (CMV TLS) as shown on the right of each panel. The positions of Qsat RNA or RNA1 to
RNA5 of helper virus are indicated on the left of each panel. rRNA represent a loading control. Accumulation levels of Qsat RNA below the upper panel were normalized
against wt Qsat as 100%.

S.-J. Kwon et al. / Virology 450-451 (2014) 222–232224



Agroinfiltration extends the 30 end repair of Q-satRNA by helper virus
to 18 nt

Unlike mechanical inoculation, agroinfiltration offers the
advantage of synchronized delivery of multiple components of
the inoculum to the same cell (Annamalai and Rao, 2005).
Furthermore, agroinfiltration results in transient expression of T-
DNA genes up to 7 days (Kapila et al., 1997), a feature critical for
analyzing the biological activity of mutants that are less-stable
(Fig. 2A). Therefore, to verify whether repair of the 30 deletions in
Q-satRNA could be extended if mutant transcripts are continu-
ously available as substrates for the helper virus replicase in the
same cell, liquid agrocultures of each Q-sat 30 terminal deletion
mutant was mixed with agrocultures of three helper virus genome
components and infiltrated into N. benthamiana leaves. At 4 dpi
total RNAs were extracted from these infiltrated leaves and
subjected to Northern blot analysis.

In contrast to previous results obtained from mechanical
inoculation (Fig. 2D) (Burgyan and Garcia-Arenal, 1998), an inter-
esting RNA profile was observed when Q-sat mutant progeny
recovered from agroinfiltrated N. benthamiana leaves were ana-
lyzed by Northern blot hybridization (Fig. 3A and B). Detectable
level of progeny RNA, indicative of 30 end repair, was evident for
five of the six mutants. Compared to a high-level accumulation of
the control infiltration performed with the Qs-wt (100%; Fig. 3A,
lane 3), the accumulation of monomeric (1� ) and dimeric (2� )
forms of Q-satRNA progenies decreased gradually as the length of
the 30 terminal deletions increased from 3 to 18 (69% to 3%; Fig. 3A
lanes 4–8). No progeny accumulation was detected for the mutant
lacking the 30 terminal 23 nt (Qs-Δ23; Fig. 3A lane 9). This
replication profile for each deletion mutant was consistently
observed in three additional repeated experiments.

In addition to infiltrated leaves of N. benthamiana, the upper
systemically infected leaves were also analyzed two weeks after
agroinfiltration. For example, by contrast to infiltrated leaves
(Fig. 2A), in systemically infected leaves, similar levels of mono-
meric and dimeric forms of Q-satRNA progenies were accumulated
for Qs-wt and Qs-Δ3 (100% vs 91%; Fig. 3B, lane 3 and 4). The
relative accumulation levels of Qs-Δ7, Qs-Δ9 and Qs-Δ13 did not
significantly differ from mutants in infiltrated leaves (compare
Fig. 3A and B). Although Qs-Δ18 accumulated to almost similar
levels to that of Qs-Δ13 (3% vs 4%) in infiltrated leaves, it failed to
accumulate in systemically infected leaves (compare lanes 8 in
Fig. 3A and B). Since mutant Qs-Δ23 did not accumulate in
infiltrated leaves, it was not detected in systemically infected
leaves either (compare lanes 9 in Fig. 3A and B).

To verify the extent of repair that occurred in each case, mutant
progeny corresponding to monomeric size in infiltrated (at 4 dpi)
and systemically infected (at 15 dpi) N. benthamiana leaves was
gel-purified, cloned and sequenced. Results are summarized in
Table 1. Qs-Δ3 progeny recovered from both local as well as
systemically infected leaves terminated with CCCOH (Table 1)
indicating that the 3 deleted 30 nucleotides had been completely
restored to wt sequence. It is likely that the 30 end repair could
have occurred during the early phases of replication since 100% of
the clones analyzed had wt sequence (Table 1). By contrast,
sequencing of the progeny recovered from infiltrated and systemi-
cally infected leaves for mutants Qs-Δ7, Qs-Δ9 and Qs-Δ13
revealed that, despite a majority of the sequences that terminated
in CCCOH, the 30 end repair had generated imperfect progeny
exhibiting heterogeneity within the 30 13 nt region (Table 1). For
example, in 50% (5 of 10 clones) of the Qs-Δ7 progeny recovered
from infiltrated N. benthamiana leaves, the deleted sequence was
repaired with 7GGGUCCC1

OH. This sequence is different from that
of wt (7AGGACCC1OH) by having a guanine residue for adenine
at position 7 and a uracil for adenine at position 4. Whereas 80%

(8 of 10 clones) of the Qs-Δ7 progeny recovered from systemically
infected leaves contained 7CGGACCC1, differing from wt by having
a cytosine at position 7 (Table 1). This pattern of sequence heter-
ogeneity resulting from 30 end repair of the deleted sequences was
evident in the progeny of the other two mutants (Qs-Δ9 and Qs-
Δ13) as well (Table 1). The most sequence variation during 30 end
repair was observed for mutant Qs-Δ18 (Table 1). Of 18 nt deleted,
the nt added during the repair process ranged between 5 to 13 nt.
It is interesting to note that despite a low level of replication for
mutants Qs-Δ9, Qs-Δ13 and Qs-Δ18 in infiltrated leaves (7%, 4%
and 3% respectively; Fig. 3A), only the progeny of Qs-Δ9 and

Fig. 3. Replication of Qsat variants in agroinfiltrated plants. Northern blot analysis
of replication competence of Qsat deletion mutants in the presence of helper virus
(HV) in (A) local and (B) systemically infected leaves of N. benthamiana plants.
Following agroinfiltration with a mixture of indicated agrotransformants, dupli-
cated blots containing total RNA isolated at 4 dpi (local) and 15 dpi (systemic) were
subjected to hybridization as described under Fig. 2 legend. The positions of Qsat
RNA monomeric (1� ) and dimeric (2� ) and RNA1 to RNA5 of helper virus are
indicated on the left of each panel. Riboprobes used for hybridization are shown on
the right of each panel. rRNA represent a loading control. Accumulation levels (%) of
Qsat RNA below the upper panel were normalized against wt Qsat (100%).
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Qs-Δ13 was competent to move systemically (Fig. 3B). Although
satRNAs have been shown to spread in non-encapsidated form
(Moriones et al., 1992), the reason why the progeny of Qs-Δ18
failed to move systemically is currently unknown. Mutant Qs-Δ23
remained inactive throughout this study and no evidence for
repair of the deleted nts was obtained (Table 1).

Effect of structural mutations introduced into the 30 end of Q-satRNA
on sequence repair

The observation that the repaired 30-end sequences were
heterogeneous led us to find answers to the following two
questions: (i) does sequence restoration occur randomly? (ii) What
factors would influence the sequence heterogeneity found in the
repaired 30-ends? Since the 30 end of Q-satRNA was predicted to
exhibit a high secondary structure (Gordon and Symons, 1983),
we first sought to compare the 30 end secondary structural
features of the progenies of the 30 terminal deletion mutants with
that of Qs-wt (Fig. 4A) and mutant inocula (Fig. 4B). To this end, we
employed an RNA folding program as described in Materials and
methods section to predict the 30 end secondary structures of the
representative progenies that were detected most frequently in
the systemically infected leaves (marked as asterisks on Table 1).

Interestingly, despite sequence variation (Table 1), the in silico 30

end secondary structures of the analyzed progenies were pre-
dicted to fold into similar structures to that of wt (a stem-loop
structure with a big bulge). All mutant progeny displayed a
characteristic folding maintaining an upper loop (UL) and an
internal loop (IL) (Fig. 4C).

Next, we sought to examine whether the repair of the deletion
mutations would not occur if the structural integrity of the
Q-satRNA 30 end were not disrupted by the engineered mutations.
To verify this, we assembled a series of agroconstructs of Q-satRNA
variants harboring deletions internally within the 30 19 nt region
(Fig. 5A). Each of these internal deletions was designed specifically
to either maintain or disrupt the in vitro 30 end secondary
structure of wt Q-satRNA (Fig. 4A). Among the six internal deletion
mutants assembled, three mutants, Qs-Δ8–9, Qs-Δ10–12 and Qs-
Δ16–18, were designed to maintain the secondary structure
identical to that of wt (having the UL and IL; Fig. 5B) while the
remaining three mutants, Qs-Δ4–7, Qs-Δ13–15 and Qs-Δ10–18,
were designed to disrupt or destroy the internal loop structure
(Fig. 5B). Each mutant was co-expressed with helper virus in
N. benthamiana leaves via agroinfiltration. At 4 dpi, total RNAs
were extracted from the local leaves and subjected to Northern
blot analysis. It is interesting to note that three of the six mutants,

Table 1
3′ end sequences of Qsat-RNA progeny generated in local and systemic leaves from wt and 3’ end deletion mutants in the presence of helper virus.

Agro-
clone

Local leavesa Systemic leavesb

3’ end sequencec No. of bases added or
deletedd

No. of
clonese

3’ end sequencec No. of bases added or
deletedd

No. of
clonese

Qs-wt [AUGUUUAUCAUUCCCUACCAGGACCC] [AUGUUUAUCAUUCCCUACCAGGACCC]
AUGUUUAUCAUUCCCUACCAGGACCC 0 5/5 AUGUUUAUCAUUCCCUACCAGGACCC 0

Qs-Δ3 [AUGUUUAUCAUUCCCUACCAGGA] [�3] [AUGUUUAUCAUUCCCUACCAGGA] [−3]
AUGUUUAUCAUUCCCUACCAGGACCC +3 10/10 AUGUUUAUCAUUCCCUACCAGGACCC* +3 10/10

Qs-Δ7 [AUGUUUAUCAUUCCCUACC] [�7] [AUGUUUAUCAUUCCCUACC] [�7]
AUGUUUAUCAUUCCCUACCGGGUCCC +7 5/10 AUGUUUAUCAUUCCCUACCCGGACCC* +7 8/10
AUGUUUAUCAUUCCCUACCGGGUCC +6 3/10 AUGUUUAUCAUUCCCUACCCGGACC +6 2/10
AUGUUUAUCAUUCCCUACCCGGACC +6 1/10
AUGUUUAUCAUUCCCUACCCG +2 1/10

Qs-Δ9 [AUGUUUAUCAUUCCCUA] [�9] [AUGUUUAUCAUUCCCUA] [�9]
AUGUUUAUCAUUCCCUAGGGACCC +7 5/10 AUGUUUAUCAUUCCCUAAAGGACCC* +8 4/10
AUGUUUAUCAUUCCCCUUGGGACCC +8 1/10 AUGUUUAUCAUUCCCUAGCUGGACCC +9 3/10
AUGUUUAUCAUUCCCUUCAGGCCC +7 1/10 AUGUUUAUCAUUCCCUAUAGGACCC +8 2/10
AUGUUUAUCAUUCCCAACGGACCC +7 1/10 AUGUUUAUCAUUCCCUACGGGACCC +8 1/10
AUGUUUAUCAUUACCC �10 1/10

Qs-Δ13 [AUGUUUAUCAUUC] [�13] [AUGUUUAUCAUUC] [�13]
AUGUUUAUCAUUUCCC +3 5/13 AUGUUUAUCAUUCGCUUGCCGACCC* +12 8/15
AUGUUUAUCAUUACCC +3 3/13 AUGUUUAUCAUUCGCUUGCCC +8 2/15
AUGUUUAUCAUUGACCC +4 1/13 AUGUUUAUCAUUCGCUUGCC +7 1/15
AUGUUUAUCAUUCGCUUGCCGACCC +12 1/13 AUGUUUAUCAUUCGCUUGCCGAC +10 1/15
AUGUUUAUCAUUCUCACCCCAGAGACCC +15 1/13 AUGUUUAUCAUUCGCUUGCCGACC +11 1/15
AUGUUUAUCAUUCUUCUAAGGAGACCC +14 1/13 AUGUUUAUCAUUCGCUUGC +6 1/15
AUGUUUAUCAUUCUUCCUCGGACCC +12 1/13 AUGUUUAUCAUUCCCCGCCAGGACCC +13 1/15

Qs-Δ18 [AUGUUUAU] [�18] [AUGUUUAU] [�18]
AUGUUUAUUGGUACU +7 4/16 None detected
AUGUUUAUUGGUACUGC +9 4/16
AUGUUUAUUGGUACCC +8 3/16
AUGUUUAUAUUGCUCCC +9 2/16
AUGUUUAUUGGUACUGCUUUC +13 1/16
AUGUUUAUUGGUACUUC +9 1/16
AUGUUUAUUUCCC +5 1/16

Qs-Δ23 [AUG] [�23] [AUG] [�23]
None detected None detected

a Plants were infiltrated with each indicated Q-sat agrotransformant in the presence of helper virus.
b Two weeks post infiltration, un-infiltrated systemically infected upper leaves were processed to recover Q-sat progeny as described under Materials and methods

section.
c Qsat progeny RNA recovered from either local (at 4 dpi) or systemic leaves (at 15 dpi) were subjected RT-PCR followed by cloning and sequencing as described under

Materials and methods section. 3′ end sequences harboring the engineered terminal deletions in each agroconstruct used to infiltrate are shown in brackets.
d Number of added or deleted bases in Q-sat progeny during in vivo repair process is shown respectively as (+) and (−). Number of terminal bases deleted in each mutant

is shown in bracket.
e Total number of clones sequenced (denominator) and the number of clones with repaired sequence (numerator) is shown.

S.-J. Kwon et al. / Virology 450-451 (2014) 222–232226



Qs-Δ8–9, Qs-Δ10–12 and Qs-Δ16–18 (Fig. 5B) that maintained
the wt secondary structure (specifically the UL and IL shown in
Fig. 5B) were able to replicate and accumulate to detectable levels
although they never reached wt levels (31–48% of wt; Fig. 6A).
These results suggest the high level of structural flexibility
tolerated by the satRNA. The other three mutants that failed to
maintain the secondary structure (i.e. Qs-Δ4–7, Qs-13–15 and Qs-
Δ10–18; Fig. 5B), did not replicate efficiently and accumulated
o5% of wt (Fig. 6A).

To verify whether these internal deletions are preserved or
repaired during subsequent replication leading to systemic spread,
two weeks after agroinfiltration, we analyzed the systemically
infected leaves with respect to accumulation levels of each mutant

by Northern blot hybridization. Results are shown in Fig. 6B. The
most striking observation is the significant increase in the replica-
tion of mutant Qs-Δ4–7. In contrast to a low level of replication
(o4%) in the local leaves (Fig. 6A), mutant Qs-Δ4–7 replicated
efficiently and accumulated to 67% (compare lanes 2 in Fig. 6A and
B) in systemically infected leaves. No significant change in accu-
mulation was observed for other mutants that replicated o1%
(i.e. Qs-Δ13–15 and Qs-Δ10–18; lanes 5 and 7 respectively in
Fig. 6B).

The unexpected altered replication profile observed for mutant
Qs-Δ4–7 in systemically infected leaves suggested that deletion of
4–7 nt could have been restored. To verify this possibility, we
sequenced the progenies of all six mutants accumulated in local

Fig. 4. Predicted secondary structures of Qsat RNA. Schematic representation of predicted in silico secondary structure of 30 49 nt region in (A) Qsat wt, (B) indicated 30

deletion mutants inocula and (C) progeny of indicated mutants recovered from systemically infected leaves. In panel C, shaded regions indicate restoration of upper loop (UL)
and internal loop (IL) at identical location.
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and systemically infected leaves. The results are summarized in
Table 2. In local leaves, for mutant Qs-Δ4–7, nearly 75% of the
progeny (9 of 12 clones) contained 30 truncations ranging between
6 to 11 nt. The remaining 25% (3 of 12 clones) albeit heteroge-
neous, exhibited restoration of intact 30 terminal sequence having
one extra nt than wt. (see Table 2 for details). Although restoration
of the deleted four nt was apparent in the progeny recovered from
systemically infected leaves, 80% (8 of 10 clones) contained one
extra nt than wt while the remaining 20% (2 of 10 clones) were
identical to that of wt (Table 1). Among the remaining five mutants
(i.e. Qs-Δ8–9, Qs-10–12, Qs-Δ13–15, Qs-Δ16–18 and Qs-Δ10–18),
of specific interest are those mutants that maintained the second-
ary structure i.e. Qs-Δ8–9, Qs-Δ10–12, and Qs-Δ16–18. Despite
maintenance of the secondary structure and competence to
replicate, in each of these mutants the engineered deletions
were preserved during replication in infiltrated and systemically
infected leaves (Table 2). No restoration of engineered deletions

was observed for mutants that failed to maintain the secondary
structure i.e. Qs-Δ13–15 and Qs-Δ10–18. The significance of these
observations is considered under the Discussion section.

Fig. 5. Engineering the 30-most internal deletions in Qsat RNA. (A) Schematic
representation of internal deletions engineered into the Qsat agrotransformant. The
genetic make up of the agrotransformant is described under Fig. 1 legend. Wild
type sequence of the 30 26 nt region in Qsat (Qs-wt) is shown. In each Qsat variant,
deleted. nucleotides are indicated by Δ. For example, in Qs-Δ4–7, 4AGGA7 are
deleted. (B) Predicted in silico secondary structures of Qsat variants shown in A.
Shaded regions indicate preservation of stem-loop structures with internal bulge
region. The location of upper loop (UL) and internal loop (IL) structures are
indicated.

Fig. 6. Replication of Qsat internal deletion mutants. Northern blot analysis of
replication competence of Qsat internal deletion mutants in the presence of helper
virus in (A) local and (B) systemically infected leaves of N. benthamiana plants.
Following agroinfiltration with a mixture of indicated agrotransformants, dupli-
cated blots containing total RNA isolated at 4 dpi (local) and 15 dpi (systemic) were
subjected to hybridization as described under Fig. 2 legend. The positions of Qsat
RNA monomeric (1� ) and dimeric (2� ) and RNA1 to RNA5 of helper virus are
indicated on the left of each panel. Riboprobes used for hybridization are shown on
the right of each panel. rRNA represent a loading control. Accumulation levels (%) of
each Qsat variant progeny RNA were normalized against wt Qsat (100%) and are
shown at the bottom of each upper panel.
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Discussion

The major focus of this study is to understand the 30 end repair
in Q-satRNA mediated by its helper virus replicase. Our results are
in agreement with a previous study (Burgyan and Garcia-Arenal,
1998) that Q-30end repair in Q-satRNA is mediated exclusively by
helper virus replicase. However, in contrast to the previous study
(Burgyan and Garcia-Arenal, 1998) that showed deletions up to
7 nt from the 30 proximal regions of satRNA are repaired during
helper virus-dependent replication in planta, we found that
deletions up to 18 nt are repaired. Most importantly, our study
shows that deletions internal to the 30 proximal region could also
be repaired and such repair mechanism selects for progeny having
an optimal 30 structural integrity. The significance of these obser-
vations in relation to 30 end repair in viral RNA is discussed below.

Agroinfiltration vs mechanical inoculation

Our study revealed that the extent of the 30 end repair of Q-satRNA
by its helper virus replicase is influenced by the method used to
deliver the inoculum. For example, as discussed under introduction,
agroinfiltration offers synchronized delivery and co-expression of
multiple plasmids to the same cell and transgene expression was
observed in up to 90% of the cells encompassing the infiltrated leaf
surface (Annamalai and Rao, 2005; Kapila et al., 1997). This trait is
particularly attractive for studying multiple component viruses such as
CMV and its satRNA. Furthermore, the fact that plasmids delivered via
agroinfiltration are competent to generate mRNAs for up to 7 days
(Kapila et al., 1997) results in a sustained availability of mutant tran-
scripts for repair by viral replicase. By contrast, mechanical inocula-
tion with optimal inoculum concentration limits the number of cells
receiving the required constellation of viral components to initiate
replication. Furthermore, the relative stability of 30 deletion mutants of

Q-satRNA varied depending on the length of the engineered deletion
(Fig. 2A). This necessitates co-localization of Q-satRNA and helper
virus to the same cell to initiate immediate 30 repair. Consequently,
in mechanically inoculated leaves, cells that receive only Q-satRNA
deletion mutants are rapidly degraded by nucleases beyond repair
even if helper virus is transported to the same cell at a later time point.
This perhaps explains why Q-satRNA deletion mutants extending
beyond the 30-most-7 nucleotides are repaired by helper virus repli-
case in agroinfiltrated (Fig. 3) but not in mechanically inoculated
plants (Fig. 2D) (Burgyan and Garcia-Arenal, 1998) (see below).

Significance of Q-satRNA structural integrity to replication

Our results accentuate the significance of the structural integ-
rity required for the replication of Q-satRNA. For example, it is
apparent from our sequence analysis and compilation of in silico
secondary structures of Q-sat progeny corresponding to either 30

terminal mutants (Fig. 3C Qs-Δ3 ps, Qs-Δ7 ps, Qs-Δ9p and,
Qs-Δ13 ps) or internal deletion mutants (Fig. 4B; Qs-Δ8–9;
Qs-Δ10–12 and Qs-Δ16–18) that only the progeny that retained
intact secondary structure resulting from addition of heterologous
nucleotides replicated and accumulated to detectable levels in
local (Figs. 3 and 6A) and systemically infected leaves (Figs. 3 and
6B). Mutants that failed to maintain the required secondary
structure (e.g. Fig. 5B, Qs-Δ13–15 and Qs-Δ10–18) failed to
support the helper virus-dependent replication (Fig. 6A). To
further shed light on the biological relevance of the 30secondary
structure feature seen in Q-sat, the in vitro 30 secondary structures
of five additional satRNAs (B2, B3, G, WL1, Ix5 and D4) (Bernal and
Garcia-Arenal, 1997; Garcia-Arenal et al., 1987; Moriones et al.,
1992; Rodriguez-Alvarado and Roossinck, 1997) associated with
other CMV strains, have been compared. These six satRNAs varied
in their pathogenicity and differentially interacted with CMV and

Table 2
3′ end sequences of Qsat-RNA progeny generated in local and systemic leaves from 3’ end internal deletion mutants in the presence of helper virus.

Agro-clone Local leavesa Systemic leavesb

3′end sequencec No. of bases
added or deletedd

No. of clonese 3′end sequencec No. of bases
added or deletedd

No. of clonese

Qs-wt [AUGUUUAUCAUUCCCUACCAGGACCC] [AUGUUUAUCAUUCCCUACCAGGACCC]
Qs-Δ4-7 [AUGUUUAUCAUUCCCUACCΔΔΔΔCCC] [�4] [AUGUUUAUCAUUCCCUACCΔΔΔΔCCC] [�4]

AUGUUUAUCAUUCCCUA �9 3/12 AUGUUUAUCAUUCCCUACCGAGGACCC +1 6/10
AUGUUUAUCAUUCCCUACC �7 2/12 AUGUUUAUCAUUCCCUACCCAGGACCC +1 2/10
AUGUUUAUCAUUCCCUACCC �6 2/12 AUGUUUAUCAUUCCCUACCAGGACCC 0 2/10
AUGUUUAUCAUUCCCUACCUCGGACCC +1 2/12
AUGUUUAUCAUUCCC �11 1/12
AUGUUUAUCAUUCCCUACCCGGCCC -6 1/12
AUGUUUAUCAUUCCCUACCCGAGGACC +1 1/12

Qs-Δ8-9 [AUGUUUAUCAUUCCCUAΔΔAGGACCC] [�2] [AUGUUUAUCAUUCCCUAΔΔAGGACCC] [�2]
AUGUUUAUCAUUCCCUAAGGACCC �2 10/10 AUGUUUAUCAUUCCCUAAGGACCC �2 10/10

Qs-Δ10-12 [AUGUUUAUCAUUCCΔΔΔCCAGGACCC] [�3] [AUGUUUAUCAUUCCΔΔΔCCAGGACCC] [�3]
AUGUUUAUCAUUCCCCAGGACCC �3 10/10 AUGUUUAUCAUUCCΔΔΔCCAGGACCC �3 10/10

Qs-Δ13-15 [AUGUUUAUCAUΔΔΔCUACCAGGACCC] [�3] [AUGUUUAUCAUΔΔΔCUACCAGGACCC] [�3]
AUGUUUAUCAUCUACCAGGACCC �3 5/10 None detected
AUGUUUAUCAUCUACCAGGACC �4 3/10
AUGUUUAUCAUCU �13 2/10

Qs-Δ16-18 [AUGUUUAUΔΔΔUCCCUACCAGGACCC] [�3] [AUGUUUAUΔΔΔUCCCUACCAGGACCC] [�3]
AUGUUUAUUCCCUACCAGGACCC �3 10/10 AUGUUUAUUCCCUACCAGGACCC �3 10/10

Qs-Δ10-18 [AUGUUUAUΔΔΔΔΔΔΔΔΔCCAGGACCC] [�9] [AUGUUUAUΔΔΔΔΔΔΔΔΔCCAGGACCC] [�9]
None detected None detected

a Plants were infiltrated with each indicated agrotransformant Q-sat in the presence of helper virus.
b Two weeks post infiltration, un-infiltrated systemically infected upper leaves were processed to recover Q-sat progeny as described under Materials and methods

section.
c Qsat progeny RNA recovered from either local (at 4 dpi) or systemic leaves (at 15 dpi) were subjected RT-PCR followed by cloning and sequencing as described under

Materials and methods section. 3′ end sequences harboring the engineered internal deletions in each agroconstruct used to infiltrate are shown in brackets.
d Number of added or deleted bases in Q-sat progeny during in vivo repair process is shown respectively as (+) and (−). Number of internal bases deleted in each mutant

is shown in bracket.
e Total number of clones sequenced (denominator) and the number of clones with repaired sequence (numerator) is shown.
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TAV (Moriones et al., 1992). The primary sequence encompassing
the 30 49 nt region of Q-sat shows extensive similarity to those of
B3 and G-sat (98%), close similarity to those of B2 and WL1 (83%),
and moderate similarity to those of Ix5 (78%) and D4-satRNA (74%)
(Fig. 7A). A comparison of 30 secondary structures of four satRNAs
(i.e. B2, B3, G, WL1-satRNA) are identical to that of Q-sat, while
that of Ix5 and D4-sat RNA are quite different (Fig. 7B). Never-
theless, all these seven satRNAs display highly conserved UP and IL
structures (Fig. 7B). Collectively the data suggest that maintenance
of the 30 secondary structure is vital for helper virus-dependent
satRNA replication.

Mechanism regulating the 30 end repair in Q-satRNA

Previous in vivo studies revealed that several mechanisms are
involved in repairing the 30 terminal sequences of a wide range of
satRNAs associated with plant viruses. Some of the mechanisms
include recombination and abortive synthesis and priming as in
satRNA of TCV (Carpenter and Simon, 1996a, b), telomerase-like
activity as in the satRNA of Cymbidium rinspot virus (Dalmay et al.,
1993) and template independent repair as in a satRNA of CMV
(Burgyan and Garcia-Arenal, 1998). In this study, the rapidity of repair
and efficient synthesis of progeny for Qs-Δ3, Qs-Δ7, Qs-Δ9 Qs-Δ13
and Qs-Δ18 demonstrates that active 30 end turnover exists in plant
cells. Results from a series of experiments shown in Fig. 2 clearly
demonstrated that addition of nucleotides to generate biologically
active mutant sequences is mediated by helper virus replicase but not
due to the action of cellular polymerase.

Data from inoculations containing 30 terminal deletions other
than Qs-Δ3 (e.g. Qs-D7, Qs-Δ9, Qs-Δ13, Qs-Δ18 and Qs-Δ23;
Fig. 1) or internal deletions (Qs-Δ8–9, Qs-Δ10–12, Qs-Δ13–15;
Fig. 6A) provided insight to the mechanisms by which a most
favorable sequence is restored to maintain the structural integrity.
Absence of any sequences resembling that of helper virus genomic
30 ends suggested that recombination was not involved
(Tables 1 and 2). However, given the common secondary structure
in the 30 terminal structures between HV RNA3 and Q-satRNA
(Gordon and Symons, 1983), we do not rule out a possible
recombination between these two RNA species followed by a
rapid selection of mutants that more closely resemble the Q-

satRNA 30 terminal sequences. Another likely source of sequence
for regeneration of the functional Q-satRNA 30 terminus is at or 30

of the ribozyme. For example, if ribozyme cleavage occurred after
exit from the nucleus, then the RNA sequences at the 30 terminus
could be used as possible source of RNA upon which the HV
replicase initiated copying, albeit at low efficiency before selection
of mutations occurred, closely resembling the Q-satRNA sequence.
However, we rule out this possibility since sequencing data of the
transiently expressed Q-satRNA mutants expressed in the absence
of HV failed to reveal the presence of any non-viral sequences.

As discussed above, mechanical co-inoculation of transiently
expressed mutant sequences and helper virus negated that mis-
incorporation of nucleotides did not occur by cellular polymerase
during transcription of T-DNA inserts. However, the lack of proof
reading ability of viral RdRp leads to fluidity in RNA genomes and
results in accumulation of quasispecies in viral progeny (Domingo
et al., 1985). Thus, generation of replication-competent Q-satRNA
progeny repair involving the addition of heterologous nucleotides
could be attributed to polymerase error mediated by the helper
virus replicase. This followed by the strong selection pressure
effectively opts for a consensus sequence that could outcompete
less favorable sequences. Since, minor nucleotide changes could
significantly alter the pathogenicity and host specificity of satRNA
(Sleat and Palukaitis, 1992), it will be of interest to verify whether
Q-sat mutant progeny harboring heterologous nucleotides would
persist or would be reverted to wild type or new pathogens during
subsequent multiple passages.

Biological relevance of 30 end repair

Replication of Q-sat is cytoplasmic since the replication of its
helper virus is confined to the same cellular compartment. How-
ever, using cell biology based approaches we recently demon-
strated Q-sat has a propensity to localize in the nucleus for a
template independent addition of a hepta nucleotide motif at
the monomer junctions to form multimers that subsequently serve
as efficient templates for helper virus-dependent replication
(Chaturvedi et al., 2013; Choi et al., 2012; Seo et al., 2013).

Since none of the six 30 end deletion mutants are repaired by
the cellular polymerase Fig. 2A–C), we hypothesize that 30 end

Fig. 7. Primary sequences and in vitro secondary structures of satRNAs associated with different CMV strains. (A) Primary sequences of the 30 49 nt regions of Q-sat and six
other satRNA strains are shown. Percentage (%) of sequence similarity of other strains with respect to Q-sat (100%) is indicated. Asterisks indicate the conserved nucleotides
among seven satRNAs. (B) In vitro secondary structures of satRNAs associated with different CMV strains (Bernal and Garcia-Arenal, 1997; Garcia-Arenal et al., 1987;
Rodriguez-Alvarado and Roossinck, 1997). Shaded regions indicate highly conserved upper loop (UL) and internal loop (IL) structures.
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repair, specifically addition of –CCCOH, can only be mediated by the
helper virus-encoded replicase and whereas nuclear encoded
polymerases would add hepta nucleotide motif only to those
Q-sat transcripts that terminated with-CCCOH. Consequently,
following transient expression in the nucleus, all 30 terminal
Q-sat mutant transcripts exit the cytoplasm to get repaired by
the helper virus-replicase, generating RNA transcripts terminating
in –CCCOH and re-enter the nucleus for the addition of hepta
nucleotide motif and multimer formation as described above.
Therefore it would be significant not only to identify the host
factors involved in nuclear import of Q-sat (Chaturvedi et al., 2013)
but also the Q-sat sequences that play an important role in this
active process. Studies are in progress in our laboratory to resolve
these issues.

Materials and methods

Virus, satRNA strain and construction of 30 terminal mutant clones
for agroinfiltration

Throughout this study, we used Q-CMV and its satRNA (Q-sat)
(Gordon and Symons, 1983). The full-length cDNA clones for Q-Sat
RNA 30 terminal deletion mutants were amplified by PCR using a 50

forward primer (50-GTTTTGTTTGTTAGAGAATTG-30) and each dif-
ferent 30 reverse primer for each mutant as follows: 50-TCC-
TGGTAGGGAATGATAA-30 for Qs-Δ3; 50-GGTAGGGAATGATAAA-
CATC-30 for Qs-Δ7; 50-TAGGGAATGATAAACATCCAC-30 for Qs-Δ9;
50-GAATGATAAACATCCACGG-30 for Qs-Δ13; 50-ATAAACATCCACG-
GAGATCAG-30 for Qs-Δ18; and 50-CATCCACGGAGATCAGCATGAC-30

for Qs-Δ23. To obtain the 30 terminal internal deletion mutants,
Qsat RNA were amplified by PCR using the same 50 forward primer
and the following 30 reverse primers: 50-GGGGGTAGGGAATGA-
TAAACATC-30 for Qs-Δ4–7; 50-GGGTCCTTAGGGAATGATAAACATC-
CAC-30 for Qs-Δ8–9; 50-GGGTCCTGGGGAATGATAAACATCCACG-30

for Qs-Δ10–12; 50 GGGTCCTGGTAGATGATAAACATCCACGGAG-30

for Qs-Δ13–15; 50-GGGTCCTGGTAGGGAATAAACATCCACGGAGAT-
CAGC-30 for Qs-Δ16–18; and 50-GGGTCCTGGATAAACATCCACGGA-
GATCAG-30 for Qs-Δ10–18. PCR was carried out with VentRs DNA
polymerase (New England Biolabs) to create a blunt end and its
product was ligated into a binary vector (pCassHDV) digested with
StuI and NcoI, and treated with mung bean nuclease (New England
Biolabs) to create blunt ends. The resulting clones were verified by
sequencing. The agro-constructs and characteristic features for
the three genomic RNAs of Q-CMV are as described previously
(de Wispelaere and Rao, 2009).

Plant inoculations and RNA gel blots

For agroinfiltration, following transformation of binary vectors into
Agrobacterium tumefaciens strain GV3101, agrotransformants were
infiltrated into N. benthamiana plants as previously described
(Annamalai and Rao, 2005). For mechanical inoculations, inocula were
prepared by mixing approximately 50 mg/ml total RNA obtained from
leaves agroinfiltrated with eachmutant with 200 mg/ml of helper virus
virion RNA. The total RNAs from either agroinfiltrated or mechanically
inoculated plants were extracted using Trizol reagent (Invitrogen).
Plus-strand progeny of wt and mutant Q-sat and QCMV was analyzed
by Northern blot hybridization with 32P-labeled strand specific ribop-
robes and quantitated as described previously (Seo et al., 2013). In
each assay, 4–6 plants were inoculated and each experiment was
repeated at least three times.

Analysis of 30-terminal sequence of QsatRNA mutants

Five micrograms of total RNA, extracted from either mechani-
cally inoculated or agroinfiltrated leaves at 4 dpi and systemically
infected leaves at 15 dpi or virion RNA, were subjected to electro-
phoresis on 5% acrylamide-8 M urea gels. After being stained with
ethidium bromide, the gel corresponding to the size of QsatRNA
was excised and the RNA was eluted in buffer containing 0.5 M
ammonium acetate, 1 mM EDTA, 0.1% SDS and then purified and
precipitated (Kwon et al., 2005). The RNA was subjected to
polyadenylation with Escherichia coli poly(A) polymerase (New
England Biolabs). The poly(A)-tailed RNA was used as the template
for reverse transcription with the following primer [50-GGGAGGA-
CACAGCCAACATACGTA(T)17-30]. The resulting cDNA was amplified
by PCR using Crimson Taq DNA polymerase (New England Biolabs),
a QsatRNA-specific primer (50 forward primer as described above)
and a reverse primer identical to that used for cDNA synthesis
without the terminal poly(T). The resultant PCR products were
cloned into pGEM-T Easy cloning vector (Promega) and sequenced.

Prediction of secondary structures of the 30 terminal region
for Qsat RNA mutants and progeny RNAs

The representative progenies that were detected most frequently
in systemically infected leaves for 30terminal deletion mutants and for
30 terminal internal deletion mutants were analyzed for predicted RNA
secondary structures using the mfold web server (http://mfold.rna.
albany.edu/?q=mfold/RNA-Folding-Form)
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