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A recent paper by Carlet introduces a general class of binary bent functions on
(GF(2))n (n even) whose elements are expressed by means of characteristic func-
tions (indicators) of (n�2)-dimensional vector-subspaces of (GF(2))n. An extended
version of this class is introduced in the same paper; it is conjectured that this
version is equal to the whole class of bent functions. In the present paper, we prove
that this conjecture is true. � 1996 Academic Press, Inc.

1. INTRODUCTION

Let n=2p be a positive even integer. Let Vn be the set of all binary
words of length n. Vn is a n-dimensional vector-space over the field GF(2).
In this paper, we are interested in bent functions over Vn . These functions
refer to both algebraic and combinatorial problems. They can be defined as
the functions that reach the maximum Hamming distance to the set of
affine functions defined on Vn .

Some algebraic properties of bent functions are well known. For
instance, the degree of such a function cannot exceed p (see [9]). Another
definition of bent functions is based on combinatorial properties of their
support: a function is bent if and only if its support is a Hadamard
difference set, i.e., a set E with the property that for any nonzero element
a in Vn , the equation x& y=a (that is, x+ y=a, since the characteristic

article no. 0110

328
0097-3165�96 �18.00
Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82495677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


File: 582A 272602 . By:CV . Date:14:15:37 . Time:12:53 LOP8M. V8.0. Page 01:01
Codes: 2569 Signs: 1746 . Length: 45 pic 0 pts, 190 mm

of the field is 2) with unknown x and y ranging in E has always the same
number |E |&2n&2 of solutions (see [3, 4]).

In this paper, we give a proof of a conjecture stated in [2] which leads
to a characterization in terms of linear combinations modulo 2 p of charac-
teristic functions of p-dimensional vector-subspaces of Vn . This refers to
both combinatorial and algebraic properties of Vn .

In next sections we introduce the necessary background on Mo� bius func-
tion over Vn that will be needed for the proofs and which is not classical
in this context.

2. PRELIMINARIES

We will denote by 0 and 1 the vectors (0, ..., 0) and (1, ..., 1). There exists
on the vector-space Vn a natural dot product, denoted by `` } '' and defined
by

\u=(u1 , ..., un), \v=(v1 , ..., vn), u } v=u1v1+ } } } +unvn ,

the addition being computed in GF(2).
For any vector-subspace E of Vn , we shall denote by ,E the characteristic

function (i.e., the indicator) of E in Vn , and by E= the orthogonal of
E : E==[ y # Vn | \x # E, x } y=0].

Vn is a lattice. The partial order relation is the direct product n times of
the order relation defined over [0, 1] by 1�0:

u=(u1 , ..., un)�v=(v1 , ..., vn) � \i # [1, ..., n], ui�vi .

A Mo� bius function (cf. [8, 10]) relative to this lattice structure can be
defined as follows:

For any elements u and v of Vn , let ++(u, v) denote the number of paths
of even length from u to v in this lattice and +&(u, v) the number of odd
length paths (recall that a k-length path from u to v is a sequence
u0 , u1 , ..., uk such that u0=u, uk=v and for any i, ui>ui+1).

The Mo� bius function + is equal to

+(u, v)=++(u, v)&+&(u, v), u, v # Vn .

This definition is a general one. In the particular framework which is ours,
we have

+(u, v)=(&1)w(u+v) if u�v and 0 otherwise,

where w(u+v) denotes the Hamming weight of the word u+v.
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It is well known that + satisfies the following orthogonality relation:

:
u�t�v

+(t, v)={1,
0,

if u=v
otherwise.

This relation leads to an inversion formula: for any function g from Vn

to Z, let gb be the function expressed on Vn as

gb(u)= :
x # Vn

+(x, u) g(x); (1)

then g can be recovered from gb by the relation

g(x)= :
u�x

gb(u). (2)

This means that function g can be expressed as a sum in Z of charac-
teristic functions of subspaces of Vn . Indeed, according to equality (2), we
have

g(x)= :
u # Vn

gb(u) ,Fu(x), (3)

where Fu denotes the subspace of Vn that is equal to the set [x # Vn | x�u].
Moreover, this decomposition is unique according to relation (1) (that
gives its coefficients).

Note that the dimension of Fu is w(u). The function gb is the so-called
Mo� bius transform of g.

Note. In this paper, operations take place in the ring of integers. It is
also possible to operate in the field GF(2). In this context, relation (3)
means that functions ,Fu , u # Vn , form a basis of the vector-space of all
boolean functions over Vn . The Mo� bius transform of g gives the decom-
position of g in this basis.

Note that the restriction of this basis to those elements whose Hamming
weight is greater or equal to an integer r leads to the so-called Jennings
basis of the Reed�Muller code of order n&r, relative to the canonical basis
of Vn (see [1]). Note, also, that modulo 2, the Mo� bius transform relative to
the dual order relation � leads to the algebraic normal form of function g.

3. A NEW CHARACTERIZATION OF BENT FUNCTIONS

We are now able to prove the conjecture on bent functions stated in [2].
Let us first recall what is this conjecture.
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A Boolean function f on Vn is bent if its distance to the Reed�Muller
code of order 1 is maximum. Translated in terms of Walsh transform, this
condition is equivalent to the fact that the values of the Walsh transform
of the real-valued function f/=(&1) f are all equal to \2 p. So, a function
f is called bent if, for any element s of Vn , we have (cf. [3, 6, 9]):

@f/(s)= :
x # Vn

(&1) f (x)+s } x=\2 p.

If f is a bent function, then there exists a Boolean function, that we shall
denote by f� , such that, for any s in Vn :

@f/(s)=2 p(&1) f� (s),

or equivalently,

=2 p f� / .

This function f� is bent too. We will call it the dual of f (Dillon calls it the
``Fourier'' transform of f in [3]). Its dual is f itself (cf. [3, 9]).

In next theorem, $0 denotes the Dirac symbol on Vn ($0(x) equals 1 if
x=0, and 0 otherwise).

Note that $0 is also equal to the function ,[0]=,F0
.

We shall also use the following well-known property: let E be any
d-dimensional vector-subspace of Vn . Then the characteristic function ,E of
E in Vn , satisfies the following relation:

@,E=2d,E= . (4)

What is conjectured in [2] is stated in the following theorem, whose
proof is the purpose of the present paper.

Theorem 1. Let f be a Boolean function on Vn . Then f is bent if and
only if there exist p-dimensional subspaces E1 , ..., Ek of Vn and integers
m1 , ..., mk ( positive or negative) such that for any element x of Vn :

:
k

i=1

mi ,Ei (x)=2 p&1 $0(x)+ f (x) [mod 2 p]. (5)

The fact that condition (5) implies that f is bent has been already proved
in [2]. To prove that any bent function f satisfies condition (5), we need
a few lemmas.

Lemma 1. If f is a bent function and f b is its Mo� bius transform, then for
every non-zero word u of weight smaller than p, f b(u) is divisible by 2 p&w(u).
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Proof. Let g be the dual of f and gb the Mo� bius transform of g.
According to equalities (3) and (4), we have

ĝ(x)= :
u # Vn

gb(u) 2w(u),(Fu)=(x).

It is a simple matter to check that (Fu)= is equal to Fu� (where u� =1+u is
the componentwise complement of vector u). We deduce

ĝ(x)= :
u # Vn

gb(u) 2w(u),Fu� (x)= :
u # Vn

gb(u� ) 2n&w(u),Fu(x). (6)

Since f is the dual of g, we have @g/=2 p f/ . Equality g/=1&2g implies
@g/=1� &2ĝ=2n$0&2ĝ, and since f/=1&2 f, we deduce

2 p(1&2f )=2n $0&2ĝ.

Therefore, we have for all x in Vn :

f (x)=2&pĝ(x)&2 p&1$0(x)+ 1
2 . (7)

So, from relations (6) and (7), we obtain

f (x)= :
u # Vn

gb(u� ) 2 p&w(u),Fu(x)&2 p&1 $0(x)+ 1
2

= :
u # Vn

gb(u� ) 2 p&w(u),Fu(x)&2 p&1,F0
(x)+ 1

2,F1
(x).

This last equality expresses f as a linear combination of characteristic func-
tions of spaces Fu . So, according to the unicity of the function f b, we
deduce that for any nonzero word u of weight smaller than p, f b(u) is
divisible by 2 p&w(u). If the word u has weight greater than p, then we know
only that f b(u) is an integer. K

Lemma 2. Let F be any d-dimensional subspace of Vn , d>p. There exist
p-dimensional subspaces E1 , ..., Ek of Vn and integers m1 , ..., mk such that for
any element x of Vn :

,F (x)= :
k

i=1

mi,Ei (x) [mod 2 p].

Proof. We prove by induction on j that for all integer j in [1 } } } d& p],
there exist (d& j)-dimensional subspaces E1 , ..., Ek of Vn and integers
m1 , ..., mk such that ,F=�k

i=1 mi ,Ei [mod 2 p]. The proof of the lemma is
obtained by applying this property with j=d& p.
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We first prove initial step of the induction ( j=1). Let H be the set of
all linear hyperplanes of F. Then, for all x, �H # H ,H(x) is equal to 2d&1
if x=0; to 2d&1&1 if x # F&[0]; and to 0 otherwise. Indeed, we may
without loss of generality assume that F is equal to Vd . The indicators in
Vd of the linear hyperplanes of Vd are functions of the form x � a } x+1,
where `` } '' is the usual dot product in Vd and where a ranges over
Vd&[0]. The zero vector belongs to any of these 2d&1 hyperplanes and
any nonzero vector u of Vd belongs to those hyperplanes whose indicators
are the functions x � a } x+1, where a } u=0 and a{0, whose number is
2d&1&1.

So, we have the following equality for all x in Vn :

:
H # H

,H(x)=2d&1$0(x)+(2d&1&1) ,F (x). (8)

Thus, modulo 2 p,

:
H # H

,H(x)=&,F (x) [mod 2 p],

since d>p. Since elements of H all have dimension d&1, this proves the
initial step of the induction.

To prove the inductive step, suppose we have, modulo 2 p, a decomposi-
tion of ,F into a linear combination (with integral coefficients) of charac-
teristic functions of (d& j)-dimensional subspaces ( j<d& p), then apply
the result of initial step to all terms of this combination to obtain the result
at rank j+1. K

Lemma 3. Let F be any d-dimensional subspace of Vn , d<p. There exist
p-dimensional subspaces E1 , ..., Ek of Vn and integers m, m1 , ..., mk such that
for any element x of Vn ,

2 p&d,F (x)=m+ :
k

i=1

mi ,Ei (x) [mod 2 p].

Proof. The result is obtained by applying for j= p&d the following
property: for all integer j in [1 } } } p&d ], there exist (d+ j)-dimensional
subspaces E1 , ..., Ek of Vn and integers m, m1 , ..., mk such that 2 j,F=m+
�k

i=1 mi ,Ei [mod 2 p]. We prove this property by induction on j.
Let H be the set of all linear hyperplanes of F =. Equality (8) becomes

:
H # H

,H(x)=2n&d&1 $0(x)+(2n&d&1&1) ,F=(x).
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Taking the Walsh transform of both terms of this equality and using
property (4), we deduce

2n&d&1 :
H # H

,H=(x)=2n&d&1+(22n&2d&1&2n&d) ,F (x)

and, therefore,

:
H # H

,H=(x)=1+(2n&d&2) ,F (x).

We deduce

2,F (x)=1& :
H # H

,H=(x) [mod 2 p].

As, for any element H of H, H= has dimension d+1, this proves the initial
step of the induction.

Suppose now that we have, modulo 2 p, a decomposition of 2 j ,F

( j<p&d ) into a linear combination (with integral coefficients) of charac-
teristic functions of (d+ j)-dimensional subspaces of Vn , plus an integral
constant. Multiplying this equality by 2 and applying the result of initial
step to all nonconstant terms of this decomposition (that is possible since
j< p&d ) gives the result at rank j+1. This completes the proof. K

Proof of Theorem 1. Consider the decomposition of f given by relation
(3) applied to f :

f (x)= :
u # Vn

f b(u) ,Fu(x).

According to lemma 1, the terms of this sum where 0<w(u)<p have coef-
ficients all divisible by 2 p&w(u). So, we can apply Lemma 3 to all these
terms. We deduce

f (x)= f b(0) $0(x)+m+ :
k

i=1

mi ,Ei (x)+ :
w(u)�p

f b(u) ,Fu(x) [mod 2 p].

Constant m is equal to m,F1
. We apply now Lemma 2 to those terms of

the sum where w(u)>p (including m,F1
). We deduce

f (x)= f b(0) $0(x)+ :
k$

i=1

m$i ,Ei (x) [mod 2 p].
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The last thing that we must check is that the coefficient of $0 is congruent
to 2 p&1 modulo 2 p. Note that

f b(0)= :
x�0

f (x)(&1)w(x)= f� (1),

since, modulo 2, w(x)=1 } x. f� (1) is equal to 1�
2 (1)& 1

2 @f/(1)=2n&1 $0(1)&
1
2 @f/(1)=\2 p&1 ( f being bent). This completes the proof. K

Note. According to the proof of the theorem, we have also a converse
of Lemma 1: let f be a Boolean function and f b its Mo� bius transform. If
f b(0)=2 p&1 [mod 2 p] and if, for every nonzero word u of weight smaller
than p, f b(u) is divisible by 2 p&w(u), then f is bent.

CONCLUSION

We have proved that the extended version of generalized partial spreads
class GPS (cf. [2]) is equal to the whole set of binary bent functions (in
even dimensions).

The question is now: Does this new way to look at bent functions lead
to a classification?

In any case, it would be interesting to characterize the elements of class
GPS itself.
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