A Characterization of Binary Bent Functions

Claude Carlet

INRIA Project CODES, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France; and GREYC, Université de Caen, France

and

Philippe Guillot

View metadata, citation and similar papers at core.ac.uk

Communicated by V. Pless

Received April 20, 1995

A recent paper by Carlet introduces a general class of binary bent functions on $(GF(2))^n$ (*n* even) whose elements are expressed by means of characteristic functions (indicators) of (n/2)-dimensional vector-subspaces of $(GF(2))^n$. An extended version of this class is introduced in the same paper; it is conjectured that this version is equal to the whole class of bent functions. In the present paper, we prove that this conjecture is true. (1996) Academic Press, Inc.

1. INTRODUCTION

Let n = 2p be a positive even integer. Let V_n be the set of all binary words of length *n*. V_n is a *n*-dimensional vector-space over the field GF(2). In this paper, we are interested in bent functions over V_n . These functions refer to both algebraic and combinatorial problems. They can be defined as the functions that reach the maximum Hamming distance to the set of affine functions defined on V_n .

Some algebraic properties of bent functions are well known. For instance, the degree of such a function cannot exceed p (see [9]). Another definition of bent functions is based on combinatorial properties of their support: a function is bent if and only if its support is a Hadamard *difference set*, i.e., a set E with the property that for any nonzero element a in V_n , the equation x - y = a (that is, x + y = a, since the characteristic

of the field is 2) with unknown x and y ranging in E has always the same number $|E| - 2^{n-2}$ of solutions (see [3, 4]).

In this paper, we give a proof of a conjecture stated in [2] which leads to a characterization in terms of linear combinations modulo 2^p of characteristic functions of *p*-dimensional vector-subspaces of V_n . This refers to both combinatorial and algebraic properties of V_n .

In next sections we introduce the necessary background on *Möbius function* over V_n that will be needed for the proofs and which is not classical in this context.

2. PRELIMINARIES

We will denote by **0** and **1** the vectors (0, ..., 0) and (1, ..., 1). There exists on the vector-space V_n a natural dot product, denoted by " \cdot " and defined by

$$\forall u = (u_1, ..., u_n), \ \forall v = (v_1, ..., v_n), \ u \cdot v = u_1 v_1 + \cdots + u_n v_n$$

the addition being computed in GF(2).

For any vector-subspace E of V_n , we shall denote by ϕ_E the characteristic function (i.e., the indicator) of E in V_n , and by E^{\perp} the orthogonal of $E: E^{\perp} = \{ y \in V_n \mid \forall x \in E, x \cdot y = 0 \}.$

 V_n is a lattice. The partial order relation is the direct product *n* times of the order relation defined over $\{0, 1\}$ by $1 \ge 0$:

$$u = (u_1, ..., u_n) \ge v = (v_1, ..., v_n) \Leftrightarrow \forall i \in \{1, ..., n\}, u_i \ge v_i$$

A Möbius function (cf. [8, 10]) relative to this lattice structure can be defined as follows:

For any elements u and v of V_n , let $\mu^+(u, v)$ denote the number of paths of even length from u to v in this lattice and $\mu^-(u, v)$ the number of odd length paths (recall that a k-length path from u to v is a sequence $u_0, u_1, ..., u_k$ such that $u_0 = u, u_k = v$ and for any $i, u_i > u_{i+1}$).

The Möbius function μ is equal to

$$\mu(u, v) = \mu^{+}(u, v) - \mu^{-}(u, v), \qquad u, v \in V_{n}.$$

This definition is a general one. In the particular framework which is ours, we have

$$\mu(u, v) = (-1)^{w(u+v)}$$
 if $u \ge v$ and 0 otherwise,

where w(u+v) denotes the Hamming weight of the word u+v.

It is well known that μ satisfies the following orthogonality relation:

$$\sum_{u \ge t \ge v} \mu(t, v) = \begin{cases} 1, & \text{if } u = v \\ 0, & \text{otherwise.} \end{cases}$$

This relation leads to an inversion formula: for any function g from V_n to Z, let g° be the function expressed on V_n as

$$g^{\circ}(u) = \sum_{x \in V_n} \mu(x, u) g(x); \tag{1}$$

then g can be recovered from g° by the relation

$$g(x) = \sum_{u \ge x} g^{\circ}(u).$$
⁽²⁾

This means that function g can be expressed as a sum in \mathbb{Z} of characteristic functions of subspaces of V_n . Indeed, according to equality (2), we have

$$g(x) = \sum_{u \in V_n} g^{\circ}(u) \phi_{F_u}(x), \qquad (3)$$

where F_u denotes the subspace of V_n that is equal to the set $\{x \in V_n \mid x \leq u\}$. Moreover, this decomposition is unique according to relation (1) (that gives its coefficients).

Note that the dimension of F_u is w(u). The function g° is the so-called *Möbius transform of g*.

Note. In this paper, operations take place in the ring of integers. It is also possible to operate in the field GF(2). In this context, relation (3) means that functions $\phi_{F_u}, u \in V_n$, form a basis of the vector-space of all boolean functions over V_n . The Möbius transform of g gives the decomposition of g in this basis.

Note that the restriction of this basis to those elements whose Hamming weight is greater or equal to an integer r leads to the so-called *Jennings basis* of the Reed–Muller code of order n-r, relative to the canonical basis of V_n (see [1]). Note, also, that modulo 2, the Möbius transform relative to the *dual* order relation \leq leads to the *algebraic normal form* of function g.

3. A NEW CHARACTERIZATION OF BENT FUNCTIONS

We are now able to prove the conjecture on bent functions stated in [2]. Let us first recall what is this conjecture.

A Boolean function f on V_n is *bent* if its distance to the Reed-Muller code of order 1 is maximum. Translated in terms of Walsh transform, this condition is equivalent to the fact that the values of the Walsh transform of the real-valued function $f_{\chi} = (-1)^f$ are all equal to $\pm 2^p$. So, a function f is called bent if, for any element s of V_n , we have (cf. [3, 6, 9]):

$$\widehat{f_{\chi}}(s) = \sum_{x \in V_n} (-1)^{f(x) + s \cdot x} = \pm 2^p.$$

If f is a bent function, then there exists a Boolean function, that we shall denote by \tilde{f} , such that, for any s in V_n :

$$\widehat{f_{\chi}}(s) = 2^p (-1)^{\widetilde{f}(s)},$$

or equivalently,

$$=2^{p}\tilde{f}_{\chi}.$$

This function \tilde{f} is bent too. We will call it the *dual* of f (Dillon calls it the "Fourier" transform of f in [3]). Its dual is f itself (cf. [3, 9]).

In next theorem, δ_0 denotes the Dirac symbol on $V_n(\delta_0(x))$ equals 1 if x = 0, and 0 otherwise).

Note that δ_0 is also equal to the function $\phi_{\{0\}} = \phi_{F_0}$.

We shall also use the following well-known property: let *E* be any *d*-dimensional vector-subspace of V_n . Then the characteristic function ϕ_E of *E* in V_n , satisfies the following relation:

$$\widehat{\phi_E} = 2^d \phi_{E^\perp}.\tag{4}$$

What is conjectured in [2] is stated in the following theorem, whose proof is the purpose of the present paper.

THEOREM 1. Let f be a Boolean function on V_n . Then f is bent if and only if there exist p-dimensional subspaces $E_1, ..., E_k$ of V_n and integers $m_1, ..., m_k$ (positive or negative) such that for any element x of V_n :

$$\sum_{i=1}^{k} m_i \phi_{E_i}(x) = 2^{p-1} \delta_0(x) + f(x) \qquad [\mod 2^p].$$
(5)

The fact that condition (5) implies that f is bent has been already proved in [2]. To prove that any bent function f satisfies condition (5), we need a few lemmas.

LEMMA 1. If f is a bent function and f° is its Möbius transform, then for every non-zero word u of weight smaller than p, $f^{\circ}(u)$ is divisible by $2^{p-w(u)}$.

Proof. Let g be the dual of f and g° the Möbius transform of g. According to equalities (3) and (4), we have

$$\hat{g}(x) = \sum_{u \in V_n} g^{\circ}(u) 2^{w(u)} \phi_{(F_u)^{\perp}}(x).$$

It is a simple matter to check that $(F_u)^{\perp}$ is equal to $F_{\bar{u}}$ (where $\bar{u} = 1 + u$ is the componentwise complement of vector u). We deduce

$$\hat{g}(x) = \sum_{u \in V_n} g^{\circ}(u) \, 2^{w(u)} \phi_{F_{\bar{u}}}(x) = \sum_{u \in V_n} g^{\circ}(\bar{u}) \, 2^{n-w(u)} \phi_{F_u}(x). \tag{6}$$

Since f is the dual of g, we have $\widehat{g_{\chi}} = 2^{p} f_{\chi}$. Equality $g_{\chi} = 1 - 2g$ implies $\widehat{g_{\chi}} = \widehat{1} - 2\widehat{g} = 2^{n} \delta_{0} - 2\widehat{g}$, and since $f_{\chi} = 1 - 2f$, we deduce

$$2^{p}(1-2f) = 2^{n} \delta_{0} - 2\hat{g}.$$

Therefore, we have for all x in V_n :

$$f(x) = 2^{-p} \hat{g}(x) - 2^{p-1} \delta_0(x) + \frac{1}{2}.$$
 (7)

So, from relations (6) and (7), we obtain

$$f(x) = \sum_{u \in V_n} g^{\circ}(\bar{u}) \ 2^{p-w(u)} \phi_{F_u}(x) - 2^{p-1} \ \delta_0(x) + \frac{1}{2}$$
$$= \sum_{u \in V_n} g^{\circ}(\bar{u}) \ 2^{p-w(u)} \phi_{F_u}(x) - 2^{p-1} \phi_{F_0}(x) + \frac{1}{2} \phi_{F_1}(x).$$

This last equality expresses f as a linear combination of characteristic functions of spaces F_u . So, according to the unicity of the function f° , we deduce that for any nonzero word u of weight smaller than p, $f^\circ(u)$ is divisible by $2^{p-w(u)}$. If the word u has weight greater than p, then we know only that $f^\circ(u)$ is an integer.

LEMMA 2. Let F be any d-dimensional subspace of V_n , d > p. There exist p-dimensional subspaces E_1 , ..., E_k of V_n and integers m_1 , ..., m_k such that for any element x of V_n :

$$\phi_F(x) = \sum_{i=1}^k m_i \phi_{E_i}(x) \quad [\mod 2^p].$$

Proof. We prove by induction on *j* that for all integer *j* in $\{1 \cdots d - p\}$, there exist (d-j)-dimensional subspaces E_1, \dots, E_k of V_n and integers m_1, \dots, m_k such that $\phi_F = \sum_{i=1}^k m_i \phi_{E_i} [\mod 2^p]$. The proof of the lemma is obtained by applying this property with j = d - p.

We first prove initial step of the induction (j=1). Let \mathscr{H} be the set of all linear hyperplanes of F. Then, for all $x, \sum_{H \in \mathscr{H}} \phi_H(x)$ is equal to $2^d - 1$ if x = 0; to $2^{d-1} - 1$ if $x \in F - \{0\}$; and to 0 otherwise. Indeed, we may without loss of generality assume that F is equal to V_d . The indicators in V_d of the linear hyperplanes of V_d are functions of the form $x \to a \cdot x + 1$, where " \cdot " is the usual dot product in V_d and where a ranges over $V_d - \{0\}$. The zero vector belongs to any of these $2^d - 1$ hyperplanes and any nonzero vector u of V_d belongs to those hyperplanes whose indicators are the functions $x \to a \cdot x + 1$, where $a \cdot u = 0$ and $a \neq 0$, whose number is $2^{d-1} - 1$.

So, we have the following equality for all x in V_n :

$$\sum_{H \in \mathscr{H}} \phi_H(x) = 2^{d-1} \delta_0(x) + (2^{d-1} - 1) \phi_F(x).$$
(8)

Thus, modulo 2^p ,

$$\sum_{H \in \mathscr{H}} \phi_H(x) = -\phi_F(x) \qquad [\mod 2^p],$$

since d > p. Since elements of \mathcal{H} all have dimension d-1, this proves the initial step of the induction.

To prove the inductive step, suppose we have, modulo 2^p , a decomposition of ϕ_F into a linear combination (with integral coefficients) of characteristic functions of (d-j)-dimensional subspaces (j < d-p), then apply the result of initial step to all terms of this combination to obtain the result at rank j + 1.

LEMMA 3. Let F be any d-dimensional subspace of V_n , d < p. There exist p-dimensional subspaces E_1 , ..., E_k of V_n and integers $m, m_1, ..., m_k$ such that for any element x of V_n ,

$$2^{p-d}\phi_F(x) = m + \sum_{i=1}^k m_i \phi_{E_i}(x) \qquad [\mod 2^p].$$

Proof. The result is obtained by applying for j = p - d the following property: for all integer j in $\{1 \cdots p - d\}$, there exist (d + j)-dimensional subspaces E_1, \dots, E_k of V_n and integers m, m_1, \dots, m_k such that $2^j \phi_F = m + \sum_{i=1}^k m_i \phi_{E_i} \pmod{2^p}$. We prove this property by induction on j.

Let \mathscr{H} be the set of all linear hyperplanes of F^{\perp} . Equality (8) becomes

$$\sum_{H \in \mathscr{H}} \phi_H(x) = 2^{n-d-1} \,\delta_0(x) + (2^{n-d-1}-1) \,\phi_{F^{\perp}}(x).$$

Taking the Walsh transform of both terms of this equality and using property (4), we deduce

$$2^{n-d-1} \sum_{H \in \mathcal{H}} \phi_{H^{\perp}}(x) = 2^{n-d-1} + (2^{2n-2d-1} - 2^{n-d}) \phi_F(x)$$

and, therefore,

$$\sum_{H \in \mathscr{H}} \phi_{H^{\perp}}(x) = 1 + (2^{n-d} - 2) \phi_F(x).$$

We deduce

$$2\phi_F(x) = 1 - \sum_{H \in \mathscr{H}} \phi_{H^{\perp}}(x) \qquad [\mod 2^p].$$

As, for any element H of \mathcal{H} , H^{\perp} has dimension d + 1, this proves the initial step of the induction.

Suppose now that we have, modulo 2^p , a decomposition of $2^j \phi_F$ (j into a linear combination (with integral coefficients) of characteristic functions of <math>(d + j)-dimensional subspaces of V_n , plus an integral constant. Multiplying this equality by 2 and applying the result of initial step to all nonconstant terms of this decomposition (that is possible since j) gives the result at rank <math>j + 1. This completes the proof.

Proof of Theorem 1. Consider the decomposition of f given by relation (3) applied to f:

$$f(x) = \sum_{u \in V_n} f^{\circ}(u) \phi_{F_u}(x).$$

According to lemma 1, the terms of this sum where 0 < w(u) < p have coefficients all divisible by $2^{p-w(u)}$. So, we can apply Lemma 3 to all these terms. We deduce

$$f(x) = f^{\circ}(\mathbf{0}) \,\delta_0(x) + m + \sum_{i=1}^k m_i \phi_{E_i}(x) + \sum_{w(u) \ge p} f^{\circ}(u) \,\phi_{F_u}(x) \pmod{2^p}.$$

Constant *m* is equal to $m\phi_{F_1}$. We apply now Lemma 2 to those terms of the sum where w(u) > p (including $m\phi_{F_1}$). We deduce

$$f(x) = f^{\circ}(\mathbf{0}) \ \delta_0(x) + \sum_{i=1}^{k'} m'_i \phi_{E_i}(x) \qquad [\mod 2^p].$$

The last thing that we must check is that the coefficient of δ_0 is congruent to 2^{p-1} modulo 2^p . Note that

$$f^{\circ}(\mathbf{0}) = \sum_{x \ge \mathbf{0}} f(x)(-1)^{w(x)} = \hat{f}(\mathbf{1}),$$

since, modulo 2, $w(x) = \mathbf{1} \cdot x$. $\hat{f}(\mathbf{1})$ is equal to $\frac{1}{2}(\mathbf{1}) - \frac{1}{2}\widehat{f_{\chi}}(\mathbf{1}) = 2^{n-1}\delta_0(\mathbf{1}) - \frac{1}{2}\widehat{f_{\chi}}(\mathbf{1}) = \pm 2^{p-1}$ (*f* being bent). This completes the proof.

Note. According to the proof of the theorem, we have also a converse of Lemma 1: let f be a Boolean function and f° its Möbius transform. If $f^{\circ}(\mathbf{0}) = 2^{p-1} \mod 2^p$ and if, for every nonzero word u of weight smaller than p, $f^{\circ}(u)$ is divisible by $2^{p-w(u)}$, then f is bent.

CONCLUSION

We have proved that the extended version of generalized partial spreads class \mathcal{GPS} (cf. [2]) is equal to the whole set of binary bent functions (in even dimensions).

The question is now: Does this new way to look at bent functions lead to a classification?

In any case, it would be interesting to characterize the elements of class \mathscr{GPS} itself.

REFERENCES

- E. F. Assmus and J. D. Key, "Codes and Finite Geometries," Rapport de Recherche INRIA n° 2027 (1993); also in "Handbook of Coding Theory" (Brualdy, Huffman, and Pless, Eds.), Elsevier, Amsterdam, to appear.
- 2. C. Carlet, Generalized partial spreads, IEEE Trans. Inform. Theory 41 (1995), 1482-1487.
- J. F. Dillon, "Elementary Hadamard Difference Sets," Ph.D. thesis, University of Maryland, 1974.
- J. F. Dillon, Elementary Hadamard difference sets, *in* "Proceedings, Sixth S-E. Conf. Combin. Graph Theory and Comp." (F. Hoffman *et al.*, Eds.), pp. 237–249, Utilitas Math., Winnipeg, 1975.
- 5. J. P. S. Kung, "Source Book in Matroïd Theory," Birkhäuser, Basel, 1986.
- 6. F. J. MacWilliams and N. J. Sloane, "The Theory of Error-Correcting Codes," North Holland, Amsterdam, 1977.
- W. Meier and O. Staffelbach, Nonlinearity criteria for cryptographic functions, *in* "Advances in Cryptology, EUROCRYPT' 89," Lecture Notes in Computer Science, Vol. 434, pp. 549–562, Springer-Verlag, New York/Berlin, 1990.
- Gian-Carlo Rota, "On the Foundations of Combinatorial Theory," Springer-Verlag, New York/Berlin, 1964; reprint in [5].
- 9. O. S. Rothaus, On bent functions, J. Combin. Theory Ser. A 20 (1976), 300-305.
- 10. J. H. Van Lint, "Coding Theory," Springer-Verlag, New York/Berlin, 1988.