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I _ INTRODUCTIOK 

The successful application of Operations Research to military problems 
during World War II (e.g., see Moder and Elmaghraby [38, p. I]) has led 
over the past forty years to the development of a variety of sophisticated 
mathematical programming techniques to treat management and industrial 
problems (e.g., see Moder and Elmaghraby [38, 393, Ralston and Reilley 
[41]). In particular, while no universal approach exists to nonlinear 
mathematical programming problems involving arbitrary objective 
functions of multiple variables, convex, quadratic, and geometric program- 
ming methods are now well developed for use with convex (or concave) 
functions (e.g., see Beveridge and Schechter [ 141, Duflin et al. [ 191, Luen- 
berger [35), Rockafellar [43]). These developments have been accelerated 
by the evolution of computer technology and advances in numerical 
analysis and approximation. 

One of the most useful nonlinear mathematical programming methods 
appears to be dynamic programming (abbreviated DP). In the last thirty 
years, DP has developed many useful structures and has broadened its 
scope to include finite and infinite models and discrete and continuous 
models, as well as deterministic and stochastic models (e.g., see Bellman 
[8], and Bellman and Lee [ 131). In fact, the DP concept has been used to 
solve a variety of optimization problems analytically and numerically: For 
the general problems see Aris 123, Bellman [6-83, Bellman and Dreyfus 
[ 111, and Beveridge and Schechter [ 143; for the particular problems, see 
Angel and Bellman [I], Bellman [9, IO], Bellman and Kalaba [12], 
Bertsekas [ 151, Dano [ 161, Dreyfus [ 171, Dreyfus and Law [IS], Jacob- 
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son and Mayne [31], Kaufmann and Cruon [32], Larson [33], Lee [34], 
Mitten [37], Nemhauser [40], Tou [44], and White [58]. 

The DP approach has been long regarded as most suitable to 
optimization problems which are sequential and recursive in scheme (cg., 
see Denardo [38], Wald [45]). A major objective of this paper is to 
demonstrate, by examples, that DP can also be used to treat optimization 
problems with nonsequential and/or nonrecursive schemes. 

DP is conceptionally simple: Its foundation is the principle of optimality, 
which is spelled out by Bellman [8, p.831 (see also Aris [2], Dreyfus [ 171, 
Denardo [38], Nemhauser [40]) as follows. 

Principle of‘ Optimality. An optimal policy has the property that 
whatever the initial state and initial decision are, the remaining decisions 
must constitute an optimal policy with regard to the state resulting from 
the first decision. 

As observed by Bellman [8, p. 831, a proof of the principle of optimality 
by contradiction is immediate. (See also Aris [2, pp. 27, 1331, Dreyfus [ 14, 
pp. 8, 141, Nemhauser [40, p. 331.) The key phrase of the principle is 
“state resulting from the first decision.” In other words, the first decision is, 
for instance, to choose a constraint (or constraints) (e.g., see Wang [48]) 
or a transformation, to adapt Lagrange multipliers (e.g., see Dreyfus and 
Law [ 181, Nemhauser [40]), to modify the objective function, or whatever 
else; the state resulting from the first decision must vary to ensure the 
remaining decisions constitute an optimal policy. (For certain particular 
situations, see, e.g., Aris [2], Beveridge and Schechter [4], White [SS].) 

The principle of optimality yields all kinds of workable functional 
equations as models for problems arising in many fields. As stated in 
Bellman and Lee [ 13, p. I], the basic form of the functional equation of 
DP is 

f‘(p)=opt CwP9%S(7IP,y)))l 

where p and q represent the state and decision vectors, respectively, T 
represents the transformation of the process, and f(p) represents the 
optimal return function with initial state p. (Here opt denotes max or min.) 

Furthermore, DP problems just as the other mathematical programming 
problems may or may not possess constraints. However, in some cases, we 
may introduce one or more transition constraints in order to facilitate 
solving the problems (e.g., see Wang [Sl, 553). 

DEFINITION. A transition constraint of a mathematical programming 
problem is an additional constraint consistent with the original constraint 
(or constraints), designed to facilitate solving the problem. 
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In this paper, we only consider the problem of finite and infinite discrete 
models. In subsequent sections, we reestablish most of the known problems 
cited from [2, 3, 14,401 using only two simple inequalities: the arithmetic 
and geometric (abbreviated AG) inequality 

A2G (1) 

and the Jensen inequality 

f(A) G C~f(x) + M~)ll(~ + h) (2) 

with equalities holding if and only if x= y; where (a + h) A = ax+ hy, 
G ‘+ b = x”y”, f is a convex function, a, h, x, y > 0. (Note: for the “only if 
equality case of (2), f is also required to be strictly convex [42].) By so 
doing, we shall be pursuing a second objective of the paper: to study the 
use of simple inequalities to streamline the DP approach in solving 
optimization problems. 

We adopt the notations and symbols from the cited sources with little 
or no modification for the purpose of comparing our results with theirs 
directly. 

2. SEVERAL SIMPLE EXAMPLES 

In this section, we choose several simple examples to demonstrate not 
only the versatility and novelty of DP but also the much broader scope of 
the DP approach in handling optimization problems. We show also how to 
introduce a suitable transition constraint to an optimization problem. 

2.1. Consider the problem 

&(a) = min(4xi + 4x:) 

subject to 

2x, + 3x, = a, x,,x,~O,a>0. 

Routinely, with d,(u)=.*, we have 

d*(u) = min [(a - 3x2)’ + 5x:]. 
‘2 

Setting 

x*=u-- 5, 

(3) 

(4) 

(5) 
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a manipulation yields 

(u- 4.u,)2 + 5s; =/‘(u)+ g(a). 

where 

and 

Substituting (6) into (5), we have 

d2(a) = min .I’(u) + ~(0 u ). 

Rewriting (7), an application of the AG inequality (1) yields 

and 

minf‘(u)= --&(9+100)~~. 
I, 

The minimum is attained at 

or 

u = $9 + 100)‘~‘. 

From (9), (lo), follows 

&(a) = g(a) -& (9 + 10u)3:2. 

The minimum &(a) is attained at 

(6) 

(7) 

(8) 

(9) 

(10) 
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2.2. Consider the problem 

&=min [ax, +b(x,x,)-‘+cx,+d], a, h, c, d>O. (11) r;,..q 

We introduce a transition constraint for the problem (I I ) in two ways. 

2.2.1. Consider the problem (11) subject to 

x1x2= I, t > 0. (12) 

Combining 

&(f) = min [#,(I, x2) + cx2 + d] 
\‘-’ 

with 

#,(1, x2) = min [ax, + h(x,x,) ‘1 =af + h(tx,)-‘, 
r, = I 

the minimum 

&(f)=2(a~1)"~+hr ‘+d 

is attained at 

atx, ’ = c.x2 with (12) 

or 

x2 = (a/c) ‘!2, x, = (ct/a)l~*. 

Furthermore, the minimum 

min q&(t) = 3(ahc)li3 + d 

(13) 

(14) 

is attained at 

or 

(act)‘:2 = /Jr -- ’ 

f = (b*/c?c)‘!3. 

In turn, by (13) and (15), the minimum q5* is attained at 

x1 = ( bc/a2 ) ‘j3, x2 = (ub/c2)‘,‘3. 

(15) 

(16) 
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2.2.2. Consider the problem (11) subject to 

(1.Y , + (‘I 2 = .Y, s > 0. 

Combining 

&(s) = min [#,(.s, x1) + L’,v~ + d] 
\. 

(17) 

with 

d,(s, x2) = min [ax, + h(x,.rz) ‘1 = s + ah(sx,) ‘, 
<I 1 , = .\ 

the minimum 

c$~(.s) = s + 4ahcs ’ + d 

is attained at 

s - (‘I, = (‘x2 with (16) 

or 

x, = S/2& x2 = s/2c. (18) 

Furthermore, the minimum I++* given in (14) is attained at 

s/2 = ahc( s/2 ) 2 

or 

s/2 = (abc ) “3. (19) 

In turn, by (18) and (19) the minimum q5* is attained again at x, and x2 
given in (16). 

3. A GENERALIZED AC INEQUALITY 

Consider the problem 

d”(u) = min C a,xf’ (20) 

subject to 

nx,c/=a, a > 0, ai, h,, Cj > 0, Xj 2 0, 1 G j < n. (21) 
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Here and in what follows x and n are used to designate x,“=, and fly=, 
whenever confusion is unlikely to occur. We introduce also 

Since 

s, = i ci/bj, r, = i (a,b,/c,)“‘*‘, l<k<n. 
j= I /=I 

($,(a)= ~lfluLIIxI;‘=sl(flu)“.~‘, (22) 
Xl 

&(a) = min (ax;‘2)‘lsl + a,~?] 
x2 (23) 

The minimum 

is attained at 

&(a) =s,(r,a)““’ 

which is equivalent to 

alb, ab -x+- 
Cl 

f,‘x+ ([,a)““. 

In general we can readily derive #K + , from dK for any K 2 1 by exactly 
the same procedure as above ((22) and (23)) to derive #2 from 4,. So, we 
obtain inductively that the minimum 

q5Jc.z) = .~,(l”Q)“S~ (24) 

is attained at 

a,b, - Xbi = . . . ab 

Cl 
I =n x? = (fnQ)‘!Jfl. 

C” 

It is now clear that a generalized AG inequality 

(25) 

(26) 

409/l l&2-2 



294 CHUNG-IJE WANG 

follows from (20). (21) and (24). Equality holds in (26) if and only if the .v, 
satisfy (25). 

Remark. Compare the AG inequality (26) with the results given in 
Beckenbach and Bellman [4, p. 63, lwamoto [27,28], and Wang [47.48]. 

4. INEQUALITY OF WEIGHTED MEANS 

The monotonicity of weighted means M(r) provides a very useful 
inequality for any real numbers s < I, 

M(s) < M(r) (27) 

where 

A proof of (27) can be found in [4,23,35]. 
Here we generalize the inequality (27) through the DP approach (see 

also Wang [SO]). In doing so, we consider the problem 

Opt c a,.$ (28) 

subject to 

1 h,x; = a, u>O,a,,h,>O,.r,>O. (29) 

There are two cases for the problem (28).-(29) to be considered: 
Opt=min for s<O<t or O<s<r; Opt=max for s<r<O. 

First, consider the problem 

tin(a) = min C a,,~; (30) 

subject to (29 ). 
In this case, the convexity of the function x”’ for 0 <s < t or s < 0 < I is 

used. We also introduce 
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Since 

#,(a)= min 0,x; =i,(a/i,,)‘:“, 
h&r; 7 ” 

&(a) = min [#!(a -h,x;) + uzs;] 
v 

=*[;r, (qyv+p2(~)‘:‘] 

>, min E., 
‘2 

[Z (UqA) +E (ks)]“‘. 

The minimum 

is attained at 

d2(u) = i.z(u/i.2)“” 

a - h,x; h,X; 
-=- 

PI P2 

Using the same argument as mentioned in the previous section, we 
obtain inductively that the minimum 

+h,,(u) = ;.,(u/i,,,)“’ (31) 

is attained at 

h,X”, - . . . =h&=fi. 
(32) 

PI Pn A, 

For the case s < t < 0, the above result can be duplicated by using the 
concavity of the function x’~’ and opt = max. 

It is now clear that the inequality (27) follows from (30), (29), and (31) 
with uj = h, (1 < j d u). Equality holds in (27) if and only if x, = . . . = s,, 
(by (32)). 

Remark. Equations (30) (29), and (31) produce an inequality which 
generalizes not only the inequality (27) of weighted means but also the 
Holder inequality (e.g., see Wang [56, 571 or below). 
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5. PROBLEMS CONCERNING CROSS-CURREKT EXIXACTIOY 

Regarding the n-stage cross-current extraction process, we refer to 
Beveridge and Schechter [ 14, pp. 222, 254, 664, 6821 for details. For our 

purpose, we consider only the problem 

max C -)‘, (33) 

where 

and 

P, + I = P,( 1 + m’9, h I <j<n. (34) 

Here B and m’ are constants while p, and 9, are variables as indicated in 
[ 14, p. 2541. 

Using the principle of optimality, we obtain the recurrence relation for 
k>l 

M,dpk+,)=max i :,=max CM, l(~k)+~kl 
/-I 

In particular, 

M,(p,)=max [p2-p2(l +m’q,) ‘- Bq,] 
YI 

=max p2--p2(l +m’y,) I 
[ 

--$(I +m’y,)+-$ . 
41 1 

The maximum 

M,(P,)=P,-2 ; ( > 
I:2 

py + -$ 

is attained at 

or 

P2(1 +m’q,)-I=$(1 +m’q,) 

9,=--$[(%)“2- 11 with pf=-$p,. 
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For k = 2, we have 

M,(p,) =max CW(p3(1 + m’q2Y) + hb32)l YZ 

The maximum 

M2(p3) = P3 - 3 

is attained at 

or 

q2=--$[(q)“‘- 1] with P:=-$p:. 

Using the same argument as above, we obtain inductively that the 
maximum 

is attained at 

6. PROBLEMS CONCERNING CHEMICAL REACTION 

Problems of chemical reaction in a sequence of stirred tanks have been 
intensively studied by Aris [2]. For our purpose, we cite only the following 
problem from Aris [2, p. 20 3 : 

subject to 

min C Oj (35) 

ej 2 O, Cl =Y (36) 
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“I= 1 +tl,(k, +kJ’ 
1 <j<trz. 

Here k,, kz, 7 are parameters (or constants) while C, and 0, are variables as 
indicated in [2, p. 201. 

Using the principle of optimality, we obtain the recurrence relation for 
k>l 

= min [fk ,(ck) + 0,]. 
(I 

Rewriting (37) as 

1 < j < n, 

where (k,+k,)c,=k,, we have 

From (38) and (39), follows 

l;(cj) = min .fi(c2) + 
‘2 [ &(s- I)] 

I 

=k,y [ 

c -c, (’ -c 
a+d-2 
C‘. - ;’ C(, - (‘2 I 

The minimum 

jZk3)=k Zk +p)‘;‘-l] 
I 

is attained at 

L“. - (‘2 (’ --c 3 -=1) 
c, - ‘i (‘$, - c-2 

(38) 

(39) 

or 

0, = 82 = $f2(c2). 
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Finally, we conclude by the same argument as used above that the 
minimum 

is attained at 

0, = ... =(I”= &[(ce;f:;‘)‘-n- 11. 

Remark. Concerning various modifications of the problem, consult Aris 
[2] for complete details. It should also be noted that there are misprints on 
page 26 of [2]. 

7. OPTIMAL ALLOCATION ON SAMPLING 

Optimal allocation of sample sizes in multivariate stratified random sam- 
pling has been carefully studied in Arthanari and Dodge [3]. For our pur- 
pose, we cite only the following problem from [3, p. 301: 

#,(a) = min C CJx, (40) 

subject to 

1 a/x, = a, a>O,a,,x,>O, 1 <j<n. (41) 

Using the principle of optimality, we obtain the recurrence relation for 
k>l 

#&(a)=min d& Ck ak [(a-a&x&)+- . 
x(I akxk 1 (42) 

In particular, 

#,(a) = min Cl/x, = w,/a, 
a,x, = a (43) 

where 

w& = [w:‘! , + (c&a&)“‘]‘, k = 1, 2,...; H’() = 0. 
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From (42) and (43), follows 

[ 
C2a2 &(a)=min L+- 

.m a - azxz a2-v2 1 

3min w2 
[ 

, ,2 
w,’ 

a - a2x2 

r2 
7 + (C2a2)“” 

a2x2 

I I’ (C2az)“’ 

The minimum 

is attained at 

or 

Ii2 
WI ( Cza2)“’ -= 

a - azx2 a2x2 

alxl a2x2 
(C,a,)‘/2=(C2a2)l/2=~. 

Finally, we conclude by the same argument as used above that the 
minimum 

Ata) = w,la 

is attained at 

x,=a(C,a,)“’ 
I 

a,C (C,aj)“2, 1 dj<n. 

8. INEQUALITIES AND DP 

Inequalities such as the AG inequality, the Holder inequality, and the 
Minkowski inequality, etc., can be established by the functional equation 
approach of DP (e.g., see Beckenbach and Bellman [4, p. 63, Iwamoto 
[24-301, and Wang [47-533). In the above, we demonstrated that DP 
problems can be inductively established by simple inequalities (1) or (2). In 
fact, as studied in Wang [54-551, inequalities can be used to establish DP 
problems directly. 

8.1. For the problem (20)-(21), we apply the AG inequality (see 
Wang [54, p. 1573 for complete details). 
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8.2. For the problem (28t(29), we apply a generalized Holder 
inequality (e.g., see Wang [57, p. 5543): 

for 0 < s < t or s < 0 < t, where A, is given above. The sign of inequality is 
reversed in [44] for s < t < 0. In both cases equality holds if and only if the 
Xi satisfy (32). Using (44) we establish the problem (28)-(29) exactly as 
indicated by (31) and (32). 

8.3. For the problem (33)-(34), by using (34) recursively we have 

(45 1 

Regrouping the summation in (33) using (45), and applying the AG 
inequality, we obtain 

n”n+‘) QPn+l p~ll”,‘l’+nB=M,(p,+,). 
m’ 

The maximum 

max C Y, = WP, + I ) 

is attained at 

$(l tm’q,)= ..’ =-$(I tm’q,)=p,+, fl(l +m’q,) -1 

or 

4,= . . . =q~=~[(m’~+l)“l”t’)-,] 

with 

B 
,;+I =; Pi’, ,r 1 <j<n. 
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8.4. For the problem (35)-(36) we apply the AG inequality to the 
summation 

The minimum 

min C 0, = .t,(c~,, , , 1 

is attained at 0, = . = !I,, 

8.5. For the problem (40). (41), rewriting the summation in (40) as 
follows, 

(46 1 

where M’,, is given above, and applying the arithmetic and harmonic 
inequality to the right-hand side of (46L we have 

The minimum 

min 2 C,;.Y, = w,,(‘u 

is attained at 

CL c’,, \C’ 2 
(C,a,)“‘x,= ... =(C,,a,,)~~“.r,,=~ 

9. BELLMAN-NEMHAUSER MODEL PROBLEMS 

Although we have directly established in the the previous section the DP 
problems given in Sections 3-7 by using pertinent inequalities, there are 
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certain DP problems which cannot be solved by using inequalities alone. In 
this regard, we consider a Bellman-Nemhauser model problem of an 
infinite number of decisions as follows: 

min i [C,d,P+CJx,-d,P)], c,, c,>o, p> 1, (47 1 
II T  I 

subject to 

X” I = KG -d,), O<b< 1, O<d,,<x,,, n= I.2 ).... (48) 

Using the principle of optimally, we obtain the recurrence relation for 
k>l 

/,(x)=mjt [C,dg+C,(.r,-dk)P+,f~ ,(h(xk-dk))]. (49) 

In particular, 

/,(,~,)=m) ~C,~~+C2(x,-d,)Pl 

where 

k, = C’, C,/Cp ’ 

The minimum 

is attained at 

or 

with C = C’,‘” 1 1) + c;:‘” I I, 

.l‘,(x,)=k l,Vf 

C;:‘P c;qx, - d, ) 
CllP’P II = 

2 
Cl!PfP I) 

I 

d, = c:“p “X,/C. 

(51) 
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From (49) and (50), follows 

f2(x2) = min [Cpd, + CAx, - d,)P+j‘,(h(.~, -d,))] 
4 

=mF [C,dp+(C,+k,h”)(~~-d~)l’] 

a k,x$, (52) 

where 

k2= [C, 
C,(C2+k,h”) 

l!lp-Il+(C2+~,~P)~!(P ‘I]“-” 

Replacing C2 by C2 + k, hP in (50) and (52) and noting (52), it is easy to 
see that the minimum 

./-2(x2) = k,x$’ 

is attained at 

(C2+k,bP)“(P ‘) 
d,=CI,‘P-I)+(C2+k,bP)li(P-I)X2’ 

In general, using the same argument as given above, we conclude induc- 
tively that the minimum 

eL(x,) = k,,x%, (53) 

where 

kn = [qp 
C,(C,+k,, ,hP) 

l,+(C2+k, J,P)‘/fP-“]P-1’ 

n = 1, 2,... with k. = 0, is attained at 

Finally, passing to the limits, we obtain from (53) and (54) 

f(x) = kx”, 

where k can be found from 

(54) 

k=[C 

CI(C2 + kbP) 
;l(~-l)+(C~+kbp)ll(p ‘)]p ’ 
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by the Newton-Raphson method (e.g., see Beveridge and Schechter 
C4, P. 561). 

Remark. For p=2, our result coincides with that of Nemhauser [40, 
p. 2141 and includes that of Gue and Thomas [22, p. 1761 as a special 
case. Various numerical results of the case p = 2 can also be found in 
[22,40]. For 0 < p < 1, we can readily treat the problem (47t(48) as a 
maximum problem and obtain the same result. 

10. CONCLUDING REMARKS 

In the results given above we have demonstrated that the simple 
inequalities (1) and (2) can be used to establish a wide range of DP 
problems in a unified and concise manner. For our inequality approach, we 
have not required the functions adopted in the problems to be differen- 
tiable. On the other hand, those DP problems solved in [2, 3, 14, 22,401 
by using the direct calculus method or the lagrange multiplier method 
require the assumption of the differentiability of functions. 

The problem (47k(48) for 0 < p < 1 is indeed a special case of the 
famous model of the DP problem introduced by Bellman [8, pp. 11,443: 

Ax) =,yx MY) +4x - Y) +ftcY + m - r))l. (55) 
. ‘. 

The problem (55) has been intensively studied by Bellman [S] in many 
respects. Very recently, Iwamoto [28] has given two inverse versions of the 
Bellman allocation process (55). In this connection Bellman and Lee [ 133 
have shown more than one way to approach functional equations (such as 
(55)) in DP. 

In Section 8, we briefly mentioned an approximation technique. For 
many DP problems, approximation techniques produce many useful 
numerical solutions (e.g., see Bellman [7, 83, Dreyfus and Law [ 183, Lee 
[ 343, Nemhauser [40] ). 

Finally, it might be worthwhile to point out that by employing the con- 
cept of a transition constraint, a further development of the idea of solving 
DP problems by pertinent inequalities appears to be promising (e.g., see 
Wang [Sl, 54,551). 
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