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SUMMARY
Skeletal muscle stem cells, or ‘‘satellite cells’’ (SCs), are required for the regeneration of damaged muscle tissue. Although SCs self-renew

during regeneration, the mechanisms that govern SC re-entry into quiescence remain elusive. We show that FOXO3, a member of the

forkhead family of transcription factors, is expressed in quiescent SCs (QSCs). Conditional deletion of Foxo3 in QSCs impairs self-renewal

and increases the propensity of SCs to adopt a differentiated fate. Transcriptional analysis of SCs lacking FOXO3 revealed a downregu-

lation of Notch signaling, a key regulator of SC quiescence. Conversely, overexpression of Notch intracellular domain (NICD) rescued

the self-renewal deficit of FOXO3-deficient SCs. We show that FOXO3 regulates NOTCH1 and NOTCH3 receptor expression and that

decreasing expression of NOTCH1 and NOTCH3 receptors phenocopies the effect of FOXO3 deficiency in SCs. We demonstrate that

FOXO3, perhaps by activating Notch signaling, promotes the quiescent state during SC self-renewal in adult muscle regeneration.
INTRODUCTION

A fundamental characteristic of adult stem cells is the abil-

ity to serve as source of cells both to give rise to differenti-

ated cells and to replenish the stem cell pool. In skeletal

muscle, myogenic stem cells, or ‘‘satellite cells’’ (SCs), exist

in a quiescent state, a state of reversible mitotic arrest and

reduced metabolic activity that is characteristic of many

stem cell populations (Cheung and Rando, 2013). In

response to muscle fiber injury, SCs activate, proliferate,

and either differentiate into multinucleated myofibers or

self-renew (Yoshida et al., 1998; Schmalbruch and Lewis,

2000; Heslop et al., 2001). The process of self-renewal re-

quires that a subset of activated SCs (ASCs) returns to quies-

cence and involves a complex orchestration of cell-cycle

and metabolic transitions (Groszer et al., 2001; He et al.,

2009). In adult skeletal muscle, the molecular mechanisms

that regulate the self-renewal of SCs have only just begun

to be explored (Abou-Khalil et al., 2009; Shea et al., 2010;

Le Grand et al., 2012).

The FOXO family of forkhead transcription factors func-

tions downstreamof the PI3K/AKT pathway and regulates a

wide variety of physiological processes including cell pro-

liferation, differentiation, survival, and metabolism (Greer

and Brunet, 2005). Mammals have four members of the

FOXO gene family: FOXO1, FOXO3, FOXO4, and FOXO6

(Jacobs et al., 2003; van der Heide et al., 2005; Lam et al.,

2006). FOXO family members bind similar DNA sequences

(Furuyama et al., 2000) and may therefore display some
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redundancies in function (Paik et al., 2007; Tothova et al.,

2007). However, the presence of specific phenotypes that

result from null mutations in Foxo1, Foxo3, and Foxo4 in

mice indicates that each Foxo gene has unique physiolog-

ical roles and is functionally divergent (Castrillon et al.,

2003; Hosaka et al., 2004; Lin et al., 2004; Jonsson et al.,

2005).

Members of the FOXO family of transcription factors

regulate stem cell and progenitor pools in many adult tis-

sues. For example, ablation of Foxo3 alone or in combina-

tion with Foxo1 and Foxo4 results in increased cell cycling

and reduction of the hematopoietic stem cell pool (Miya-

moto et al., 2007; Tothova et al., 2007). Hematopoietic

stem cells from FOXO3-deficient mice also have increased

levels of reactive oxygen species resulting in apoptosis

and a limitation in repopulating ability in vivo (Tothova

et al., 2007). In neural tissue, a loss of Foxo3 alone or in

combination with Foxo1 and Foxo4 results in a depletion

of adult neural stem cells, which is due, at least in part, to

the premature proliferative amplification and differentia-

tion of these cells (Renault et al., 2009; Paik et al., 2007).

Furthermore, FOXO3 loss decreases the ability of neural

stem cells to self-renew in vitro (Renault et al., 2009; Paik

et al., 2007). Although the FOXO factors were shown to

be expressed in different cell types in muscle and FOXO3

germline knockout mice were reported to display a delay

in muscle regeneration (Bosnakovski et al., 2008; Hu

et al., 2008), none of the members of the FOXO family

have been shown to regulate SC function.
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In the present study, we investigated the function of

FOXO3 in adult SCs using an inducible genetic system to

ablate the Foxo3 gene specifically in SCs. We found that

FOXO3 is required for the self-renewal of SCs during mus-

cle regeneration. FOXO3-deficient SCs proliferate more

rapidly than control SCs and differentiate more readily,

thereby resulting in reduced self-renewal of the SC pool.

In addition, we observed that FOXO3 regulates the Notch

signaling pathway, an essential regulator of quiescence in

adult SCs, such that a deletion of Foxo3 results in reduced

levels of Notch signaling in SCs. We propose that the

FOXO3-Notch axis is important for SC self-renewal by pro-

moting the reacquisition of quiescence during the self-

renewal process.
RESULTS

Foxo3 mRNA and FOXO3 Protein Are Expressed in

Quiescent SCs

By immunohistochemical analysis using a FOXO3-specific

antibody (Figures S1A and S1B available online), we found

that FOXO3 is expressed in quiescent SCs (QSCs), identi-

fied as PAX7+ve cells, in adult mouse muscle (Figure 1A).

To compare Foxo3 mRNA and FOXO3 protein levels

between QSCs and ASCs, we isolated SCs by fluorescence

activated cell sorting (FACS) from uninjured hindlimb

muscles and frommuscles 2.5 days after injury, respectively

(Cheung et al., 2012; Bjornson et al., 2012). Quantitative

RT-PCR (qRT-PCR) analysis revealed that Foxo3 mRNA

was expressed at higher levels in QSCs compared to ASCs

(Figure 1B). Western blot analysis also showed a clear

reduction in FOXO3 protein in ASCs compared to QSCs

(Figures 1C and 1D).

To assess FOXO3 subcellular localization in QSCs and

ASCs, we isolated single muscle fibers and fixed them

immediately after isolation or cultured them for 1 day prior

to fixation and staining with a FOXO3 antibody. In QSCs,

FOXO3 localization was restricted to the nucleus where it

colocalized with PAX7 expression (Figure 1E), whereas

the intensity of nuclear staining of FOXO3 was markedly

reduced in ASCs (Figure 1F). Thus, FOXO3 is likely to be

more active in QSCs than in ASCs.
FOXO3 Is Required for the Self-Renewal of SCs

To investigate the functional consequences of disrupting

FOXO3 expression on SC function, we generated mice in

which Foxo3 was specifically deleted in SCs. To do this,

we generated Pax7CreER/+; Foxo3fl/fl mice (which we refer to

as Foxo3cKO mice) in which a tamoxifen-inducible Cre re-

combinase (CreER) is expressed from the 30 untranslated re-

gion of the Pax7 locus (Nishijo et al., 2009), and the second

exon of the Foxo3 allele is flanked by loxP sites (Castrillon
Stem
et al., 2003). The activation of CreER by administration of

tamoxifen to Foxo3cKO mice results in the deletion of the

Foxo3 gene specifically in QSCs. Quantitative RT-PCR anal-

ysis confirmed that, upon tamoxifen injection in adult

mice, Foxo3 transcript levels in QSCs were reduced to levels

that correlatedwith the efficiency of recombination (�65%

as estimated by the population of SCs expressing eYFP in

FACS analyses) (Figure S2A). One month after tamoxifen

administration to Foxo3cKO mice, the gross histology of

muscles appeared normal, and there were no statistically

significant differences in SC numbers between Foxo3cKO

and control muscles (Figures S2B and S2C). To test directly

for a functional requirement of FOXO3 in SCs in the

context of regeneration, tibialis anterior (TA) muscles of

tamoxifen-treated Foxo3cKO and control mice were injured

by BaCl2 injection (Caldwell et al., 1990). One week after

injury, histological analysis of Foxo3cKO muscles revealed

no gross differences in fiber morphology or fiber sizes

compared to control muscles (Figures S2D and S2E). How-

ever, an analysis of the regenerating muscle, which is

characterized by the presence of centrally nucleated fibers

(CNFs), revealed a 60% decline in the number of SCs asso-

ciated with CNFs in Foxo3cKO muscles compared to control

muscles (Figure 2A). This suggests that FOXO3 is required

for efficient SC self-renewal.

To investigate if quiescent SC numbers are restored in the

Foxo3cKO mice over a longer period, we used Foxo3cKO mice

in which eYFP is conditionally expressed from the ROSA

locus (Foxo3cKO-YFPmice) tomark FOXO3-deficient SCs af-

ter tamoxifen administration. FOXO3 protein could not be

detected in YFP+ve SCs in thesemice (Figure S2F).Mice were

injured 1 month after tamoxifen treatment, and muscles

were harvested 1month later. Foxo3cKO-YFPmice displayed

a significant decrease in the number of self-renewed SCs

compared to control mice, as determined by the number

of YFP+ve SCs associated with CNFs (Figure 2B). We

confirmed that these YFP+ve SCs indeed represented a

self-renewing population by the presence of PAX7 and

absence of MYOD expression (Figure S2G). The functional

consequence of the self-renewal deficit was demonstrated

by the markedly impaired regeneration of muscle in Fox-

o3cKO mice following sequential rounds of muscle injury

(Figure 2C). These experiments confirm the importance

of FOXO3 in SC return to quiescence during self-renewal.

The induction of quiescence in proliferating SC progeny

is essential for the self-renewal process and can be studied

in vitro using the ‘‘reserve cell’’ model in which prolifer-

ating cells are switched tomitogen-poormedium, resulting

in the terminal differentiation ofmost cells and a reversible

cell-cycle withdrawal into a quiescent state of a subpopula-

tion of cells (Yoshida et al., 1998). Because FOXO3 ap-

peared to be critical for SC self-renewal in vivo, we sought

to determine whether increasing or decreasing FOXO3
Cell Reports j Vol. 2 j 414–426 j April 8, 2014 j ª2014 The Authors 415
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Figure 1. FOXO3 Is Expressed in QSCs and Is Downregulated upon Activation
(A) Cryosections of uninjured tibialis anterior (TA) muscle contain PAX7+ve SCs that stain positive for FOXO3 (arrow).
(B) FACS-purified QSCs and ASCs from injured muscle isolated 2.5 days after injury were assessed for levels of Foxo3 transcript by qRT-PCR.
Foxo3 transcript levels in ASCs are normalized to those in quiescence. QSC and ASC samples represent triplicate experiments of pooled RNA
from two mice for each experiment (**p < 0.01).
(C) A representative western blot analysis of lysates from FACS-purified QSCs and ASCs plated for 1 day in culture. Blots were probed with an
antibody to FOXO3. FOXO3 protein levels are higher in QSCs compared to ASCs.
(D) The graph shows quantitative analyses of replicate blots of relative intensities of FOXO3 bands normalized to intensities of GAPDH for
the corresponding sample. QSC and ASC samples represent triplicate experiments of pooled lysates from SCs sorted from two mice for each
experiment (n = 3).

(legend continued on next page)
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activity would alter the entry of proliferating SCs into a

quiescent state in vitro using this reserve cell model. On

the basis of immunocytochemistry, we characterized

myogenic cells in low serum cultures as quiescent reserve

cells (PAX7+ve) or differentiated cells (Myogenin+ve or

MyHC+ve). In order to test further the hypothesis that

FOXO3 promotes SC quiescence, we overexpressed a

constitutively active form of FOXO3 (GFP-FOXO3-TM)

(Brunet et al., 1999) in proliferating SC progeny isolated

frommice lacking Foxo3 (Foxo3�/�). Strikingly, we observed

that all FOXO3-TM-expressing (i.e., GFP+ve) cells were

PAX7+ve and Myogenin�ve/MyHC�ve after 3 days in low

serum medium (Figure S3A). In the absence of FOXO3,

the ability of proliferating SC progeny to return to quies-

cence was almost completely abolished (Figure S3B).

Furthermore, when grown in high serum medium,

FOXO3-TM-expressing cells failed to proliferate compared

to control transfected cells, consistent with the ability of

FOXO3 activity to promote cellular quiescence

(Figure S3C).

Conversely, we wanted to investigate the effects of the

absence of FOXO3 on the ability of quiescent SCs to break

quiescence and enter the cell cycle. Therefore, we isolated

FOXO3-deficient SCs associated with single fibers from

Foxo3�/� and control mice, and we pulse-labeled fiber cul-

tures with 5-ethynyl-20-deoxyuridine (EdU). Although the

absence of FOXO3 was, itself, insufficient to induce SCs

to break quiescence in vivo, the additional stimulus

imposed by ex vivo explantation led to amuch greater acti-

vation of FOXO3-deficient SCs compared to controls. By

36 hr, there were twice as many EdU-incorporating SC

progeny in cultures from Foxo3�/� mice as in cultures

from control mice (Figure 3A). Additionally, proliferating

SC progeny isolated from Foxo3�/� muscles displayed a

significantly greater percentage of cells in S phase

compared to wild-type SC progeny (Figure 3B). These

data support the role of FOXO3 in maintaining SC quies-

cence and suppressing cell-cycle entry.

FOXO3-Deficient SCs Display Increased

Differentiation

To test for the possibility that the apparent inhibition of

self-renewal in FOXO3-deficient SCs was due to an alter-
(E) Single myofibers with associated SCs were fixed either immediat
nostained for PAX7 and FOXO3. FOXO3 expression is reduced in SCs afte
of the PAX7 and FOXO3 panels show high-magnification images of the
show merged images of PAX7 and FOXO3 staining, which show colocal
FOXO3 staining is much reduced.
(F) The graph shows the mean relative pixel intensities for nuclear FOX
ratio after normalization with the pixel intensities for the correspondi
after 24 hr in culture (n = 10 myofibers per sample).
Scale bars represent 25 mm in (A) and 100 mm in (E).

Stem
ation in potential cell-fate choices, we used single myofiber

preparations isolated from extensor digitorum longus

(EDL) muscles of control and Foxo3cKO mice 1 month after

tamoxifen administration. Immediately after isolation and

prior to activation, >95% of SCs associated with myofibers

exhibited features of QSCs (i.e., PAX7+ve and MYOD�ve) in

both control and Foxo3cKO fibers. The remaining cells ex-

hibited features of ASCs (i.e., PAX7+ve and MYOD+ve). Dur-

ing the subsequent 48 and 72 hr of culturing, SC progeny

were characterized as activated (PAX7+ve, MYOD+ve),

self-renewing (PAX7+ve, MYOD�ve), or differentiating

(PAX7�ve, MYOD+ve) (Zammit et al., 2004). After 48 and

72 hr in culture, no self-renewing SCs could be detected

in the FOXO3-deficient cultures, whereas a small but clear

subset of control SCs was undergoing self-renewal at these

times (Figures 4A–4C). Strikingly, the population of SC

progeny undergoing differentiation was far greater in the

Foxo3cKO population compared to control cells (Figures

4A, 4B, and 4D). Therefore, we conclude that FOXO3 in-

creases the propensity of SCs to self-renew and decreases

their propensity to differentiate.

To confirm that a reduction in the self-renewal potential

of FOXO3-deficient SCs was associated with an increased

propensity of the progeny to undergo differentiation, the

muscles of Foxo3cKO or control mice were injured 1 month

after tamoxifen treatment, harvested 3 days later, and

stained for YFP and Myogenin. We observed that a signifi-

cantly greater fraction of SC progeny from Foxo3cKO mus-

cles expressed Myogenin compared to those from control

mice (Figure 4E). Likewise, when YFP+ve cells were obtained

from suchmuscles and plated in differentiation-promoting

conditions, a much greater percentage of FOXO3-deficient

cells underwent myogenic differentiations (Figure S4).

These results suggest that FOXO3 does in fact suppress

the propensity of SC progeny to undergo terminal differen-

tiation, thus allowing a greater percentage of cells to self-

renew and re-enter the quiescent state.

FOXO3 Promotes the Notch Signaling Pathway

Because a major characteristic of the stem cell self-renewal

process is the reacquisition of the quiescent state, we tested

the hypothesis that FOXO3 might control SC self-

renewal by modulating signaling pathways that promote
ely after isolation (0 hr) or after 24 hr in culture and then immu-
r 24 hr in culture compared to SCs at 0 hr. The insets in the lower left
SCs (indicated by the arrows) in the images. The FOXO3/PAX7 panels
ization of the two proteins in the nucleus at 0 hr but that, at 24 hr,

O3 staining at 0 hr and 24 hr that was quantified and expressed as a
ng PAX7 staining. There is a significant reduction in FOXO3 staining
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A B Figure 3. FOXO3 Suppresses Cell-Cycle
Entry of SCs
(A) SCs from Foxo3�/� and wild-type mice
were tested for entry into the cell cycle by
the incorporation of EdU at different times.
The graph shows the percentage of SCs from
Foxo3�/� and wild-type (WT) mice that
incorporated EdU in the first 36 hr in
culture. A greater number of Foxo3�/� SCs
incorporated EdU than wild-type SCs
(***p < 0.005).
(B) FACS analysis was performed on prolif-
erating SC progeny isolated from Foxo3�/�

and wild-type mice. The distribution of SC progeny in G0/G1, S, and G2/M phases of the cell cycle are plotted as a percentage of the total
number of cells. The percentage of Foxo3�/� myogenic progenitors in S phase was twice that of wild-type cells (n = 3 mice per genotype).
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quiescence. To this end, we isolated QSCs from hindlimb

muscles from control and Foxo3�/� mice and assessed the

expression of genes in the Notch pathway, which has

been clearly associated with the promotion or mainte-

nance of SC quiescence (Bjornson et al., 2012; Mourikis

et al., 2012; Wen et al., 2012). Intriguingly, we observed

that Foxo3�/� SCs displayed a significant downregulation

of several Notch target genes (Hes1, Hes2, Hes6, HeyL)

compared to wild-type SCs (Figure 5A). Of the Notch recep-

tors that have been reported to be highly expressed in adult

SCs (Notch1, Notch2, and Notch3) (Mourikis et al., 2012),

both Notch1 and Notch3 were downregulated in Foxo3�/�

QSCs, as was Notch4 (Figure 5B). To determine the status

of Notch signaling in Foxo3cKO SCs, we assessed the levels

of active Notch intracellular domain (NICD) in sorted SCs

from control and Foxo3cKO mice. Western blot analysis

revealed a reduction of NICD levels in Foxo3cKO SCs

compared to control SCs (Figure 5C), consistent with a

decrease in the quiescence-promoting activity of Notch

signaling in Foxo3cKO SCs.

To test if, conversely, FOXO3 can induce Notch

signaling, we overexpressed wild-type FOXO3 in prolifer-

ating SC progeny. qRT-PCR experiments revealed that

FOXO3 overexpression resulted in an upregulation of a

subset of Notch targets (Hes1, Hes2, and HeyL) and recep-

tors (Notch1, Notch2, and Notch3) in SC progeny (Figures
Figure 2. FOXO3 Is Required for SCs to Self-Renew during Muscle
(A) Four weeks after the initiation of tamoxifen treatment, Foxo3cKO

later. In the panels, the arrows point to PAX7+ve SCs associated with
number of PAX7+ve SCs per 100 CNFs from multiple sections in contro
(B) One month after tamoxifen treatment, Foxo3cKO-YFP and control-
Cryosections were stained for Laminin and YFP. In the panels, the arro
muscles. The insets show high-magnification images of the areas in do
per 100 CNFs from multiple sections in control and Foxo3cKO muscles
(C) Muscles of tamoxifen-treated Foxo3cKO and control mice were inju
Cryosections stained with hematoxylin and eosin reveal impaired rege
sectional area of CNFs from multiple sections in control and Foxo3cKO

Stem
S5A and S5B). To confirm further that increasing FOXO3

activity can enhance Notch activity, SC progeny were

transfected with GFP-FOXO3-TM and a Notch reporter

construct (pHes1-Luc). We observed an increase in lucif-

erase activity in cells expressing FOXO-TM compared to

cells expressing a control vector (Figure S5C). To determine

whether increasing Notch activity would enhance self-

renewal in FOXO3-deficient SCs, we used a retroviral vector

to express NICD in single fiber-associated SCs isolated from

Foxo3cKO mice (Figures 5D, 5E, and S5D). After 72 hr in cul-

ture, we observed an increase in self-renewing SCs upon

NICD expression in FOXO3-deficient cultures compared

to control-infected cultures, demonstrating that an in-

crease in Notch activity can rescue the self-renewal deficit

of FOXO3-deficient SCs (Figures 5D and 5E).

We next addressed whether FOXO3 could directly regu-

late Notch receptor expression as a mechanism by which

FOXO3mightmodulate Notch signaling. By bioinformatic

analysis, we identified putative FOXO-responsive-elements

(FREs) in the promoters of the Notch1 and Notch3 genes

(Figure S5E). To determine if Notch1and Notch3 are direct

targets of FOXO3, we performed chromatin immunopre-

cipitation (ChIP) of endogenous FOXO3 in proliferating

SC progeny. To induce translocation of endogenous

FOXO3 to the nucleus, we treated the cells with

LY294002 (LY), a specific PI3kinase inhibitor, which has
Regeneration
and control mice were injured, and muscles were harvested 7 days
CNFs in control and Foxo3cKO muscles. The graph shows the average
l and Foxo3cKO muscles (n = 4 mice per genotype) (**p < 0.01).
YFP mice were injured, and muscles were harvested 1 month later.
ws point to YFP+ve SCs associated with CNFs in control and Foxo3cKO

tted rectangles. The graph shows the average number of YFP+ve SCs
(n = 4 mice per genotype) (**p < 0.05).
red twice, with a spacing of 2 weeks between successive injuries.
neration in the Foxo3cKO muscles. The graph shows the mean cross-
muscles (n = 3 mice per genotype) (**p < 0.05).
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Figure 4. FOXO3-Deficient SCs Exhibit Enhanced Propensity to Differentiate
(A) One week after tamoxifen treatment, single myofibers were isolated from control (Con) and Foxo3cKO (cKO) EDL muscles and cultured for
72 hr. YFP+ve SCs associated with individual myofibers were coimmunostained for PAX7 and MYOD to distinguish self-renewing (PAX7+ve,
MYOD�ve; open arrowheads), activated (PAX7+ve, MYOD+ve; closed arrowheads), and differentiation-committed (PAX7�ve, MYOD+ve; arrows)
SCs. Nuclei were counterstained with DAPI.

(legend continued on next page)
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been used successfully for FOXO3ChIP (Brunet et al., 1999;

Renault et al., 2009; Webb et al., 2013). The induction of

FOXO3 translocation and binding was confirmed by the

demonstration of FOXO3 binding to the FRE of a well-

known FOXO target, p27KIP1 (Renault et al., 2009) (Fig-

ure 6A). Under these conditions, we observed binding of

FOXO3 to each of the FREs in the Notch1 and Notch3 pro-

moters, suggesting that FOXO3 may regulate the expres-

sion of Notch receptors in SC progeny (Figure 6A).

Next, we tested whether knocking down Notch1 and

Notch3 receptor expression using specific small interfering

RNAs (siRNAs) would phenocopy the effect of absence of

Foxo3 in SCs. We observed an increase in differentiating

cells upon treatment of SCs with siRNAs to Notch1 and

Notch3 (Figures 6B and S5F), similar to the effect of Foxo3

deficiency in SCs (Figures 4A, 4B, and 4D). To examine

the effect of knocking down Notch1 and Notch3, we sorted

SCs and plated them in the presence of siRNAs against

Notch1 andNotch3 and observed an increase in the propen-

sity of these cells, like FOXO3-deficient SC progeny, to un-

dergo differentiation compared to control cells (Figure 6C).

Taken together, our results show that a FOXO3-Notch axis

suppresses the ability of SC progeny to differentiate and

promotes their propensity to undergo self-renewal, thus

playing a critical role in the retention of the quiescent SC

pool during the process of muscle regeneration.
DISCUSSION

Our results demonstrate a functional requirement for

FOXO3 in the induction of SC quiescence and the process

of SC self-renewal during adult muscle regeneration, such

that a loss of FOXO3 results in a reduction of the SC pool

after injury. We show that FOXO3 promotes self-renewal

by amechanism that involves the prevention of premature

terminal differentiation in SCs. Importantly, our data

implicate the modulation of Notch signaling, a key regu-

lator of quiescence in SCs, as a target of FOXO3 activity

and as a potential mediator of the promotion of self-

renewal by FOXO3.
(B) The distribution of the three populations of SCs illustrated in (
myofibers (n = 50 fibers per sample) were pooled to give a populatio
(C) SCs from control and Foxo3cKO fibers undergoing self-renewal afte
number of YFP+ve SCs counted in each category. Compared to control
(D) SCs from control and Foxo3cKO fibers that were committed to differ
number of YFP+ve SCs counted in each category. Foxo3cKO SCs displa
compared to control SCs.
(E) One month after tamoxifen treatment, muscles of Foxo3cKO and con
immunostained for Myogenin and GFP. The arrows point to the YFP+ve

have a much greater propensity to differentiate compared to control
Scale bars represent 100 mm in (A) and 25 mm in (E).

Stem
Our experiments show that after a single round of injury,

Foxo3cKOmuscles regenerated as well as control muscles. An

earlier study reported impaired regeneration in Foxo3�/�

muscles upon cardiotoxin-induced injury (Hu et al., 2008).

This study used mice in which Foxo3 is deleted in every tis-

sue, whereas our study used mice in which Foxo3 is ablated

specifically in SCs. Because FOXO3 expression is not

restricted to SCs and is expressed in other cell types such as

endothelial cells and vascular smoothmuscle cells (Potente

et al., 2005; Leeet al., 2007), it ispossible that SCs inFoxo3�/�

mice are subject to influences from FOXO3-deficient cells in

the niche, leading to impaired muscle regeneration.

In the absence of growth factors or in the presence of

stress stimuli, FOXO members reside in the nucleus and

are active as transcription factors (Tothova et al., 2007).

In response to growth factor stimulation, AKT phosphory-

lates FOXOs at three conserved serine and threonine resi-

dues (Thr32, Ser253, and Ser315 in FOXO3), permitting

the binding of 14-3-3 chaperone proteins that facilitate

the translocation of FOXOs from the nucleus to the cyto-

plasm (Brunet et al., 1999). Cytoplasmic FOXOs are then

targeted for ubiquitination and proteosomal degradation

(Huang and Tindall, 2011). Using RT-PCR analysis and

western blot analysis, we detected higher levels of

FOXO3 expression in QSCs compared to ASCs, leading

us to hypothesize that FOXO3 activity is important in

the quiescent state in SCs (Figures 1B–1F). In regenerating

muscle, the milieu is rich with growth factors (Jennische

and Hansson, 1987), a condition that is likely to

contribute to the inhibition of FOXO3 function. After a

peak, growth factor levels decline during the regenerative

process (Allen and Boxhorn, 1989). This would lead to

an increase in FOXO3 activity during the phase of SC

self-renewal in which a subset of SC progeny return to

the quiescent state.

Our experiments demonstrate that the modulation of

Notch signaling by FOXO3 is a critical component in the

molecular mechanisms that FOXO3 utilizes to regulate

self-renewal of themuscle stem cell compartment. A recent

study reported the repression of p38 MAPK in one of the

daughter cells following SC division as a mechanism in
A) was quantified after 48 or 72 hr in culture. Data from multiple
n mean (±SEM) for cells in each category.
r 48 and 72 hr in culture are plotted as a percentage of the total
SCs, Foxo3cKO SCs failed to self-renew.
entiation after 48 and 72 hr are plotted as a percentage of the total
yed an increased propensity to differentiate over time in culture

trol mice were injured and harvested 3 days later. Cryosections were
,Myogenin+ve cells. The graph on the right shows that Foxo3cKO SCs
SCs (n = 3 mice per genotype) (**p < 0.01).
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Figure 5. FOXO3 Promotes Activation of Notch Signaling, an Essential Pathway for the Maintenance of SC Quiescence
(A and B) FACS-purified QSCs were isolated from Foxo3�/� and wild-type muscles and analyzed for levels of expression of Notch target
genes and Notch receptors by qRT-PCR. RNA expression levels in Foxo3�/� SCs are normalized to those in wild-type SCs. Samples represent
triplicate experiments of pooled RNA from two mice for each experiment (***p < 0.005; **p < 0.01).
(C) A western blot analysis with an anti-NICD antibody was performed with lysates from FACS-sorted SCs isolated from Foxo3cKO and control
mice. Control represents wild-type SCs isolated from littermate offspring that were not treated with tamoxifen. The graph below shows that
NICD levels are reduced in Foxo3cKO SCs. GAPDH serves as a loading control. Con and cKO samples represent triplicate experiments of pooled
lysates from SCs sorted from two mice for each experiment (***p < 0.005).
(D) Single myofibers isolated from EDL muscles from tamoxifen-treated Foxo3cKOmice were infected with retroviral vectors expressing NICD
or control virus for 72 hr. Myofibers from EDLmuscles from control mice were also isolated. YFP+ve SCs were coimmunostained with PAX7 and
MYOD to determine self-renewing (PAX7+ve, MYOD�ve; open arrowheads), proliferating (PAX7+ve, MYOD+ve; closed arrowheads), and
differentiating (PAX7�ve, MYOD+ve; arrows) populations. Nuclei were counterstained with DAPI (scale bar represents 100 mm).
(E) The distribution of the three populations of SCs illustrated in (D) was quantified after 72 hr in culture. NICD expression in cKO SCs
results in an increase in self-renewing SCs. Data from multiple myofibers were pooled to give a population mean (±SEM) for cells in each
category (n = 80 fibers per sample).
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daughter cells that undergo self-renewal (Troy et al., 2012).

In the hematopoietic system aswell,modulation of the p38

MAPK pathway has been proposed tomediate the function

of FOXO3 tomaintain the pool of hematopoietic stem cells

(HSCs) (Miyamoto et al., 2007). In a study aimed to deter-

mine the crosstalk between Notch signaling and the

MAPK pathways, it was found that active Notch signaling

suppresses p38 MAPK activity by the induction of a

MAPK phosphatase, MKP-1, in C2C12 cells (Kondoh

et al., 2007). It is possible that active Notch signaling sup-

presses p38 MAPK in SCs as well, thus representing a nodal
422 Stem Cell Reports j Vol. 2 j 414–426 j April 8, 2014 j ª2014 The Author
point of interaction between these pathways and enabling

self-renewal in these cells.

A previous report showed that Notch signaling is impor-

tant in the process of asymmetric SC divisions such that

pharmacological inhibition of Notch activity results in a

reduction of self-renewing cells (Kuang et al., 2007).

Indeed, inhibition of Notch signaling in SCs by the dele-

tion of the transcriptional coactivator of the Notch

pathway, RBP-Jk, results in a gradual depletion of the SC

pool due to the spontaneous activation and differentiation

of SCs and their failure to self-renew (Bjornson et al., 2012;
s
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Figure 6. FOXO3 Regulates NOTCH1 and NOTCH3 Receptor Expression, Thereby Promoting Notch Signaling
(A) SC progeny were incubated in medium containing 20 mm LY for 2 hr to activate endogenous FOXO3. Cells were lysed and processed for
ChIP using FOXO3 antibody and the isotype control antibody, followed by qRT-PCR. FOXO3 binding to p27KIP1, a known target gene of
FOXO3, was used to confirm activation of FOXO3. FOXO3 binding to the putative FREs located at 1.2 kb upstream of the transcriptional start
site of the of the Notch1 gene and 1.5 and 2.9 kb upstream of the transcriptional start site of the Notch3 gene were significantly higher
compared to immunoprecipitates with the control antibody. Data are normalized for background levels and input chromatin for each
sample and are calculated as a percentage of the input. The graph shows relative levels of enrichment of FOXO3 binding in input samples
precipitated with FOXO3 antibody and control antibody and represents the quantitation of two independent ChIP experiments.
(B) Single myofibers with associated SCs were treated with 50 nM of siRNA against Notch1 (N1) and 20 nM of siRNA against Notch3 (N3) or a
cyclophilin siRNA control for 24 hr. After 72 hr, fibers were fixed and immunostained for PAX7 and MYOD. Cultures treated with siRNAs
against Notch receptors displayed an increased percentage of differentiating cells. Data from multiple myofibers were pooled to give a
population mean (±SEM) for cells in each category (n = 50 fibers per sample).
(C) FACS-sorted SCswere plated in thepresence ofN1andN3 siRNAsor control siRNAs for 24hr. After 48hr, cellswere fixedand stained for GFP,
Myogenin, andDAPI. Representativefields are shownon the left andquantitative analysis on the right. Arrowspoint to YFP+ve SC progeny that
are Myogenin+ve. The graph represents values obtained from separate FACS sorts from three mice (n = 3). Scale bar represents 100 mm.
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Mourikis et al., 2012). Interestingly, reduced levels of Notch

signaling in FOXO3-deficient SCs did not deplete the SC

pool in resting muscle as seen in SCs deficient for RBP-Jk.

This suggests that there could be a functional redundancy

in the maintenance of the quiescent state in SCs by other

FOXO homologs, FOXO1 and FOXO4, as well as by regula-

tors unrelated to the FOXO family. Alternatively, reduced

levels of Notch signaling in FOXO3-deficient SCs may

not quantitatively equate to levels resulting from deleting

RBP-Jk. This could be indicative of dosage in Notch

signaling affecting different outcomes in regulating the
Stem
quiescent state. Along these lines, studies on the function

of NOTCH2 and DLL4 signaling in the vasculature have

shown that the functional deletion of one allele results in

phenotypic abnormalities that are less severe than those

that occur when both the alleles are deleted (McCright

et al., 2001; Duarte et al., 2004).

In summary, our findings demonstrate a functional

requirement for FOXO3 as a regulator of Notch signaling

in the self-renewalof SCsduringmuscle regeneration. These

findings add to the growing list of cellularmechanisms that

have been studied in the context of the proliferation and
Cell Reports j Vol. 2 j 414–426 j April 8, 2014 j ª2014 The Authors 423
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differentiation of stem cells and their progeny but are also

important to the maintenance and attainment of quies-

cence (Cheung and Rando, 2013). The regulation of cellular

quiescence is clearly a central aspect of SC self-renewal, a

process that appears to be dysregulated in both aging and

disease and leads ultimately to an impairment of stem cell

function (Conboy et al., 2005; Brack et al., 2007).
EXPERIMENTAL PROCEDURES

Animals
Foxo�/� and Foxo3fl/fl mice were generated in the lab of Dr. Ronald

DePinho (Dana Farber Cancer Institute, Boston). Wild-type FVB/

N mice were purchased from Charles River Laboratories. Foxo3fl/fl

mice were crossed with Pax7CreERtm (referred in the text to as

Pax7CreER/+) mice (Nishijo et al., 2009) to generate Pax7CreER/+;

Foxofl/+ mice. F1 mice were crossed with Foxo3fl/+ to generate

Pax7CreER/+; Foxo3fl/fl (experimental) and Pax7CreER/+; Foxo3+/+ (con-

trol) mice. For lineage tracing, tamoxifen-regulated enhanced yel-

low fluorescence protein (YFP) was introduced into the control

and experimental genetic backgrounds using ROSA26tm1 (EYFP)/Cas

mice (Srinivas et al., 2001) (referred to as ROSAeYFP/+ in the text)

to generate Pax7CreER/+; Foxo3fl/fl; ROSAeYFP/+ (experimental) and

Pax7CreER/+; Foxo3+/+; ROSAeYFP/+ (control) mice. All mice used in

this studywerebetween4and6monthsof age.Animal strainmain-

tenance, surgical procedures, drug treatments, andhusbandrywere

carried out at the Veterinary Medical Unit at the Veterans Affairs

Health Care System in Palo Alto, and all procedures were approved

by the Institutional Animal Care and Use Committee.

Muscle Injury
Mice were anesthetized with isofluorane and TA muscles were

injured by the injection of 30 ml of 1.2% BaCl2 solution (w/v in

ddH2O, Sigma-Aldrich).

Single Fiber Preparations
To isolate single myofibers, EDL muscles were digested with 0.2%

type 11 Collagenase (Worthington Biochemical) in Ham’s F10 me-

dium for 75min at 37�Cwith shaking.Muscles were dissociated by

gentle triturating and were washed several times to eliminate

cellular debris and contaminating cells. EDL myofibers were then

fixed immediately or after various times using 2% paraformalde-

hyde (PFA, Sigma-Aldrich) in PBS. For suspension culture, myofib-

ers were incubated in Ham’s F10 medium containing 10% horse

serum (v/v) (Invitrogen) at 37�C in 5% CO2.

Immunofluorescence and Histology
Details regarding antibodies and antigen retrieval are given in Sup-

plemental Experimental Procedures. Fluorescence was visualized

and photographed using a Zeiss Axiovert Microscope (Carl Zeiss),

and images were processed using Volocity software (PerkinElmer).

Quantitative RT-PCR
Quantitative RT-PCR (RT-PCR) was performed using the

LightCycler 480 Real-Time PCR System with the LightCycler 480
424 Stem Cell Reports j Vol. 2 j 414–426 j April 8, 2014 j ª2014 The Author
SYBR Green 1 Mastermix (Roche). Each sample was amplified in

triplicate using primers specific to the Notch signaling pathway

(Bjornson et al., 2012). Primer sets used were Foxo3 (50-TCAC
CCATGCAGACTATCCA-30, 50-GTCTGGTTGCCGTAGTGTGA-30)
and glyceraldehade 3-phosphate dehydrogenase (Gapdh) (50-
TGCGACTTCAACAG CAACTC-30, 50-ATGTAGGCCATGAGGT

CCAC-30). Expression levels were normalized to Gapdh.

Statistical Analyses
A minimum of three replicates in terms of individual animals was

used per experiment, and data are represented as mean ± SEM. For

isolation of protein and RNA from SCs, a minimum of three ani-

mals was used and FACS-sorted cells were pooled for subsequent

analysis. Two-tailed Student’s t tests were used to test for statisti-

cally significant differences between groups using GraphPad Prism

software. Differences were considered significant at the p < 0.05

level.

SUPPLEMENTAL INFORMATION
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