Measurable Linear Transformations on Abstract Wiener Spaces

Robert Fernholz
Department of Mathematics, Hunter College
Communicated by M. M. Rao

Abstract

Measurable linear transformations from an abstract Wiener space to a Hilbert space are characterized. It is shown that the measure on any infinite dimensional abstract Wiener space can be transformed to that on any other by a measurable linear transformation.

1. Introduction

All topological vector spaces (TVS) which occur in this paper will be assumed to be real, Hausdorff, and locally convex, unless otherwise noted.

Let H be a separable Hilbert space and let γ be a cylinder measure on H. There is a natural mapping from H to $L^{0}(\Omega, \mathscr{F}, P)$ where (Ω, \mathscr{F}, P) is a probability space and $L^{0}(\Omega, \mathscr{F}, P)$ denotes the vector space of measurable functions on (Ω, \mathscr{F}, P) (see [1, Exposé no. 1]). The mapping is defined by $x \rightarrow\langle\cdot, x\rangle^{\sim}$, $x \in H$, where \langle,$\rangle is the inner product on H$ and $\langle\cdot, x\rangle^{\sim}$ is the random variable corresponding to $\langle\cdot, x\rangle$ on H. If this mapping is continuous when $L^{0}(\Omega, \mathscr{Y}, P)$ is given the topology of convergence in measure (usually not locally convex), then γ satisfies the scalar concentration condition. Henceforth we shall assume that all cylinder measures discussed satisfy this condition.

A Lusin space is a topological space for which there exists a stronger topology under which the space is a complete separable metric space (see [16] for facts about Lusin spaces). A Borel probability measure on a Lusin space is regular, i.e., it is a Radon measure. A finite product of Lusin spaces is Lusin. A subset of a Lusin space is a Borel subset if and only if it is a Lusin space in the relative topology. A continuous injection from a Lusin space to a Hausdorff space carries Borel subsets to Borel subsets. For a TVS which is Lusin, the weak and strong Borel algebras are the same.

All Borel, or Radon, measures discussed here will be probability measures, i.e., positive with total measure 1. The Borel algebra of a TVS, E, will be that generated by the $\sigma\left(E, E^{\prime}\right)$ open sets, unless otherwise noted. A Borel mapping

Received October 28, 1976; revised March 1977.
AMS 1970 subject classifications: Primary 28A40, 60B05; Secondary 60G15.
Key words and phrases: Measurable linear transformations, abstract Wiener space.
between topological spaces is a mapping defined on a Borel subset of a topological space and for which the inverse image of any Borel subset is a Borel subset.

Let E, F be TVS and let μ be a Borel measure on E.

Definition 1.1. A linear transformation T defined on a Borel subspace $D_{T} \subset E$ with values in F is μ-measurable if it is a Borel mapping and $\mu\left(D_{T}\right)=1$.

Definition 1.1 is equivalent to that of weakly measurable essentially linear transformations given in $[6,10,17]$. We shall use the notation $T: E \rightarrow F$ even if $D_{T} \neq E$. Such a mapping induces a Borel measure $T(\mu)$ on F.

A linear transformation $T: E \rightarrow F$ is closed if its graph is closed in the product topology.

Lemma 1.2. Let E, F be TVS which are Lusin spaces. Let $T: E \rightarrow F$ be a closed linear transformation defined on a subspace $D_{T} \subset E$. Then T is a Borel mapping and D_{T} is a Borel subset of E. If E is a Fréchet space, then $T(E)$ is Borel in F.

Proof. $E \times F$ is Lusin, and since the graph is closed, it is also Lusin. It follows by [16, Lemma 13, p. 106], that T is Borel and D_{T} is a Borel subset of E.

Ker T is closed in $E\left[15\right.$, p. 156] and the induced injection $T_{1}: E_{1} \rightarrow F$, where $E_{1}=E /$ ker T, is closed. If E is Fréchet, then so is E_{1}, and therefore E_{1} is a Lusin space. Since T_{1} is injective with closed graph, $T_{1}\left(D_{T_{1}}\right)=T(E)$ is Borel by [16, Lemma 14, p. 107].

2. Measurable Linear Transformations

Let H be a separable Hilbert space and let γ be the standard Gaussian cylinder measure on H. That is, γ is the cylinder measure for which $\langle\cdot, x\rangle^{\sim}, x \in H$, is Gaussian with mean 0 and $\operatorname{Cov}\left(\langle\cdot, x\rangle^{\sim},\langle\cdot, y\rangle^{\sim}\right)=\langle x, y\rangle$. Let B be a separable Banach space and let $S: H \rightarrow B$ be a 1-1 continuous linear transformation with dense image. If $S(\gamma)$ can be completed to a Radon measure $\overline{S(\gamma)}$ on B, then the triple (H, B, S) is called an abstract Wiener space (AWS) (see [8]). If B is a Hilbert space then in order that (H, B, S) be an AWS it is necessary and sufficient that S be a Hilbert-Schmidt transformation [16, Theorem 2, p. 215 and Theorem 1, p. 341].

The following generalizes [3, Lemma 2].
Proposition 2.1. Let (H, B, S) be an AWS and let $\mu=\overline{S(\gamma)}$ be the induced Radon measure on B. Let H_{1} be a separable Hilbert space and let $T: B \rightarrow H_{1}$ be a μ-measurable linear transformation. Then $T \cdot S$ is Hilbert-Schmidt.

Proof. $\mu\left(D_{T}\right)=1$ so $S(H) \subset D_{T}$ (see [13]), and therefore $T \cdot S$ is defined everywhere on $H . T \cdot S$ is a Borel mapping, so by a theorem of Douady [16, Theorem 1, p. 157] it is continuous. $T \cdot S(\gamma)$ can be completed to the Radon measure $T(\mu)$ on H_{1}, so $\left(H, H_{1}, T \cdot S\right)$ is an AWS and $T \cdot S$ is HilbertSchmidt.

Lemma 2.2. Let γ be the standard Gaussian cylinder measure on H. Let $S: H \rightarrow B$ he a continuous linear transformation into a separable Ranach space B such that $S(\gamma)$ can be completed to a Radon measure. Then for any sequence $\left\{P_{n}\right\}$ of finite dimensional orthogonal projections on H such that $P_{n} \rightarrow I$, the identity operator, and $\epsilon>0$ there exists N such that if $m, n>N$ then

$$
\gamma\left\{\left\|S P_{n} x-S P_{m} x\right\|_{B}>\epsilon\right\}<\epsilon
$$

Proof. See [2; 7, Corollary 5.2].

A cylinder measure γ for which Lemma 2.2 remains valid will be said to satisfy condition 1 .

Proposition 2.3. Let H be a separable Hilbert space and let γ be a cylinder measure on H which satisfies condition 1. Let B be a separable Banach space and let $S: H \rightarrow B$ be a continuous linear transformation such that $S(\gamma)$ can be completed to a Radon measure μ. Let B_{1} be a separable Banach space and let $T: B \rightarrow B_{1}$ be a closed linear transformation with domain $D_{T} \supset S(H)$. Then $T \cdot S(\gamma)$ can be completed to a Radon measure on B_{1} if and only if T is μ-measurable.

Proof. Since T is closed, it is a Borel mapping by Lemma 1.2. Since $T \cdot S$ is a Borel mapping defined everywhere on H, it is continuous by Douady's theorem. If T is μ-measurable then $T \cdot S(\gamma)$ can be completed to $T(\mu)$. To prove the converse it suffices to show that $\mu\left(D_{T}\right)=1$.

It was proved in [4] that the transformation $S: H \rightarrow B$ can be factored $S=A \cdot W$ where $W: H \rightarrow H$ is a positive-definite Hilbert-Schmidt transformation and $A: H \rightarrow B$ is a closed, $1-1, \overline{W(\gamma)}$-measurable linear transformation. ($\overline{W(\gamma)}$ is a Radon measure since W is Hilbert-Schmidt.) Moreover $A^{-1}: B \rightarrow H$ is bounded and $D_{A-1}=B$. Let us now suppose that S has been so factored and that $\nu=\overline{W(\gamma)}=A^{-1}(\mu)$.

Let $\left\{e_{k}\right\}_{k \in \mathbf{N}}$ be an orthonormal basis of H consisting of eigenvectors of W. Let P_{n} be the orthogonal projection onto the subspace generated by $\left\{e_{1}, \ldots, e_{n}\right\}$. Then $P_{n}(H) \subset W(H)$ so $P_{n}(H) \subset D_{A}$. Let $Q_{n}=A \cdot P_{n} \cdot A^{-1} \cdot Q_{n}$ is a Borel mapping defined everywhere on B, so by Douady's theorem it is continuous. Moreover for $m \leqslant n, Q_{m} \cdot Q_{n}=Q_{n} \cdot Q_{m}=Q_{m} \cdot Q_{n}(B) \subset A(W(H))=S(H)$ so $Q_{n}(B) \subset D_{T}$.

Now, for $\epsilon>0$,

$$
\begin{aligned}
\mu\left\{\left\|Q_{n} x-Q_{m} x\right\|_{B}>\epsilon\right\} & =\nu\left\{\left\|A P_{n} x-A P_{m} x\right\|_{B}>\epsilon\right\} \\
& =\gamma\left\{\left\|S P_{n} x-S P_{m} x\right\|_{B}>\epsilon\right\} \\
& <\epsilon
\end{aligned}
$$

for m and n sufficiently large by condition 1 .
Therefore Q_{n} converges in μ-measure so some subsequence, also denoted by Q_{n}, converges μ-almost everywhere. Let $x \in B$ and suppose that $Q_{n} x$ converges. Since $Q_{n} x=A P_{n} A^{-1} x$ and $P_{n} A^{-1} x \rightarrow A^{-1} x$ and since A is closed, if $A P_{n} A^{-1} x$ converges, it must converge to $A A^{-1} x=x$. Therefore $Q_{n} \rightarrow I_{B}$, the identity operator on B, μ-almost everywhere.

Again let $\epsilon>0$. Then

$$
\begin{aligned}
& \mu\left\{\left\|T Q_{n} x-T Q_{m} x\right\|_{B_{1}}>\epsilon\right\} \\
&=\nu\left\{\left\|T A P_{n} x-T A P_{m} x\right\|_{B_{1}}>\epsilon\right\} \\
&=\gamma\left\{\left\|T S P_{n} x-T S P_{m} x\right\|_{B_{1}}>\epsilon\right\} \\
&<\epsilon
\end{aligned}
$$

for m and n large enough by condition 1 .
Therefore $T \cdot Q_{n}$ converges in μ-measure so a subsequence, also denoted by $T \cdot Q_{n}$, converges μ-almost everywhere. Thus there exists a set of μ-measure 1 where $T \cdot Q_{n}$ and Q_{n} both converge and $Q_{n} \rightarrow I_{B}$. Since T is closed, if $T Q_{n} x$ converges and $Q_{n} x \rightarrow x$, then $T Q_{n} x \rightarrow T x$. It follows that $\mu\left(D_{T}\right)=1$.

Remark. The fact that $T Q_{n} x$ converges to $T x$ in the above proof essentially gives a representation for measurable linear transformations. On an AWS, since convergence in measure is equivalent to almost everywhere convergence, this representation is the same as [6, Satz 2.12] (see also [10, Sect. VII]). This approach is developed in [5], but representation theorems of this form can be proved more efficiently using results of [11;9, Theorem 4.1].

Suppose that B_{1} in Proposition 2.3 is a Hilbert space and that $T \cdot S$ is HilbertSchmidt. Then $T \cdot S(\gamma)$ can be completed to a Radon measure so we have

Corollary 2.4. Let (H, B, S) be an AWS and let $T: B \rightarrow H_{1}$ be a closed linear transformation into a separable Hilbert space H_{1}. Then T is $\overline{S(\gamma)}$-measurable if and only if $T \cdot S$ is Hilbert-Schmidt.

3. Transformation of Gaussian Measures

In this section we show that all Gaussian Radon measures with support on an infinite-dimensional Banach space are, in a sense, equivalent.

Theorem 3.1. Let B_{1} and B_{2} be infinite-dimensional separable Banach spaces with Gaussian Radon measures μ_{1} and μ_{2} such that $\operatorname{supp} \mu_{1}=B_{1}$ and supp $\mu_{2}=B_{2}$. Then there exists a 1-1, μ_{1}-measurable linear transformation $T: B_{1} \rightarrow B_{2}$ such that T^{-1} is μ_{2}-measurable, $\mu_{2}=T\left(\mu_{1}\right)$, and $T^{-1}\left(\mu_{2}\right)=\mu_{1}$.

Proof. It can be shown that there exist AWS (H_{i}, B_{i}, S_{i}), $i=1,2$, such that $\mu_{i}=\overline{S_{i}(\gamma)}$ (see $[2,14]$). As in the proof of Proposition 2.3 we can factor $S_{i}=A_{i} \cdot W_{i}$ where W_{i} is a positive-definite Hilbert-Schmidt transformation, $\nu_{i}=\overline{W_{i}(\gamma)}$ is the induced Radon measure on H_{i}, and $A_{i}: H_{i} \rightarrow B_{i}$ is a closed, 1-1, ν_{i}-measurable transformation with continuous inverse. Since H_{i} is separable and W_{i} is positive-definite, we can choose a countable orthonormal basis for H_{i} consisting of eigenvectors of W_{i}. Thus there is no loss of generality in assuming that $H_{i}=l^{2}$ and that W_{i} is a diagonal transformation. In this case we have $W_{1}\left(e_{k}\right)=\lambda_{k} e_{k}, W_{2}\left(e_{k}\right)=\eta_{k} e_{k}, \lambda_{k}, \eta_{k}>0$, where $e_{k} \in l^{2}$ is the sequence with 1 in the k th position and 0 elsewhere.

Let $V: l^{2} \rightarrow l^{2}$ be defined by $V e_{k}=\eta_{k} \lambda_{k}^{-1} e_{k}$. Then V is densely defined on l^{2} but not necessarily bounded. V is self-adjoint and therefore closed. It is clear that $V \cdot W_{1}=W_{2}$ which is Hilbert-Schmidt so, by Corollary $2.4, V$ is ν_{1}-measurable and $V\left(\nu_{1}\right)=\nu_{2}$.

Let $T=A_{2} \cdot V \cdot A_{1}^{-1}$. Since T is the composition of Borel mappings it is a Borel mapping so to prove that T is μ_{1}-measurable it suffices to show that $\mu_{1}\left(D_{T}\right)=1$. But $\nu_{2}\left(D_{A_{2}}\right)=1$ so $\nu_{1}\left(V^{-1}\left(D_{A_{2}}\right)\right)=1$ and $\mu_{1}\left(D_{T}\right)=$ $\mu_{1}\left(A_{1}\left(V^{-1}\left(D_{A_{2}}\right)\right)\right)=1$. It is clear that $T\left(\mu_{1}\right)=\mu_{2}$.

Similar properties of $T^{-1}=A_{1} V^{-1} A_{2}^{-1}$ follow similarly.
Kuelbs [12] proved that any tight Borel probability measure on a strict inductive limit of Fréchet spaces (not necessarily separable) has its support on a separable Banach subspace. Combining Kuelbs' result with Theorem 3.1, we have

Corollary 3.2. Let E_{1} and E_{2} be strict inductive limits of Fréchet spaces with μ_{1} and μ_{2} tight Gaussian Borel measures on E_{1} and E_{2}, respectively. Assume that supp μ_{i} is infinite-dimensional, $i=1,2$. Then there exists a $1-1, \mu_{1}$-measurable linear transformation $T: E_{1} \rightarrow E_{2}$ such that $T\left(\mu_{1}\right)=\mu_{2}$.

Proof. We need only note that in Kuelbs' theorem, the Borel subsets of the Banach space supporting μ_{i} in E_{i} are also Borel subsets of E_{i}.

References

[1] Badrikian, A. (1970). Séminaire sur les Fonctions Aléatoires Linéaires et les Mesures Cylindriques. Lecture Notes in Mathematics No. 139. Springer-Verlag, Berlin.
[2] Dudley, R. M., Feldman, J., and LeCam, L. (1971). On seminorms and probabilities, and abstract Wiener spaces. Ann. of Math. 93 390-408.
[3] Duncan, T. E. (1974). Absolute continuity for abstract Wiener spaces. Pacific J. Math. 52 359-367.
[4] Fernholz, R. (1977). Factorization of Radonifying transformations. To appear in Pacific J. Math.
[5] Fernholz, R. Representation of measurable linear transformations on abstract Wiener spaces. Unpublished manuscript.
[6] Gattinger, M. (1974). Darstellungssätze für messbare lineare Abbildungen auf abstrakten Wienerraümen. Thesis, Universität Erlangen-Nürnberg.
[7] Gross, L. (1962). Measurable functions on Hilbert space. Trans. Amer. Math. Soc. 105 372-390.
[8] Gross, L. (1965). Abstract Wiener spaces. In Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability. Univ. of California Press, Berkeley.
[9] Ito, K., and Nisio, M. (1968). On the convergence of sums of independent Banach space valued random variables. Osaka J. Math. 5 35-48.
[10] Kölzow, D. (1975). A survey of abstract Wiener spaces. In Stochastic Processes and Related Topics, (M. L. Puri, Ed.). Academic Press, New York.
[11] Kuelbs, J. (1969). Abstract Wiener spaces and applications to analysis. Pacific J. Math. 31 433-450.
[12] Kuelbs, J. (1973). Some results for probability measures on linear topological vector spaces with an application to Strassen's $\log \log$ law. J. Functional Analysis 14 28-43.
[13] LePage, R. (1973). Subgroups of paths and reproducing kernels. Ann. of Probability 1 345-347.
[14] Sato, H. (1969). Gaussian measure on a Banach space and abstract Wiener measure. Nagoya Math. J. 36 65-81.
[15] Schaeffer, H. H. (1971). Topological Vector Spaces. Springer-Verlag, New York.
[16] Schwartz, L. (1973). Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford Univ. Press, London.
[17] Shilov, G. E. and Dyk Tin, Fan. (1967). Integral, Measure and Derivative on Linear Spaces. Izdat. "Nauka," Moscow.

