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Post-translational modification of proteins is a widespread mechanism used by both prokaryotic
and eukaryotic cells to modify the activity of key factors that plays fundamental roles in cellular
physiology. This review focuses on how bacterial pathogens can interfere with host post-transla-
tional modifications to promote their own survival and replication.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Post-translational modifications (PTM) consist in the chemical
modification of proteins after their translation, a widespread strat-
egy used by both prokaryotic and eukaryotic cells to modify
quickly, locally and specifically the activity of key factors and en-
able cells to respond rapidly to environmental changes. These
modifications allow a diversification of the activities of proteins
encoded by all organisms and add a layer of complexity between
the genome and the proteome. PTMs are catalyzed by specific en-
zymes, which are tightly regulated and often are also substrates for
modifications. More than 300 PTMs are currently known. They in-
clude the addition of chemical groups (e.g. phosphate or acetate) or
more complex molecules (e.g. carbohydrates or lipids), the cova-
lent linkage of small proteins (like ubiquitin and ubiquitin-like
proteins (UBLs)) or the modification of side chain residues of spe-
cific amino acids (like deamidation or eliminylation) (Fig. 1). We
also consider proteolysis, i.e. the irreversible cleavage of the pep-
tide bond between two amino acids of a protein, as a PTM.

As PTMs play fundamental roles in cellular physiology, it is not
surprising that pathogens interfere in many different ways with
the PTMs of their host to promote their own survival and replica-
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tion. In this review, we will describe how bacterial pathogens
can interfere with (i.e. counteract or stimulate) host PTMs and
what are the roles of these modifications in bacterial infection.

The impact of bacteria on specific host PTMs is mediated by a
variety of bacterial effectors that are either located at the bacterial
surface or secreted. These effectors can interact with plasma mem-
brane or intracellular host proteins. This latter case is observed for
intracellular bacteria and also for toxins secreted by extracellular
bacteria and able to penetrate inside the host cell, or for effectors
directly injected by the bacteria in the host cell via type III or IV
secretion systems (T3SS, T4SS).

In this review, we will focus on the most frequent PTMs tar-
geted by bacterial pathogens (Fig. 2). For each PTM, different situ-
ations will be discussed: (i) the direct post-translational
modification of host proteins by bacterial factors displaying an
enzymatic activity (Table 1); (ii) the activation or inhibition by bac-
terial factors of host signalling cascades involving PTMs (Table 2);
(iii) the interference of bacterial effectors with host PTM machiner-
ies; (iv) the post-translational modification of bacterial factors
(Table 3).
2. Phosphorylation

Phosphorylation is one of the most common PTMs of pro-
teins and consists in the reversible attachment of a phosphate
group to a specific residue of a target protein. Several types of
lsevier B.V. All rights reserved.
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Fig. 1. Diversity of post-translational modifications. PTMs correspond to the
modification of target proteins after their translation. Different classes of modifi-
cations can be distinguished: the modification of the chemical structure of amino
acid side chains, the addition of chemical groups or complex molecules to specific
amino acids, the covalent linkage of polypeptides, or the cleavage of the peptide
bond between two amino acids, known as proteolysis. For each class, the
reversibility of the modification as well as examples of PTMs are indicated.
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phosphorylation have been reported, the most frequent being
phosphorylation of the hydroxyl group of serine, threonine or tyro-
sine residues. Phosphorylation is catalyzed by kinases that transfer
a phosphate group from ATP to the target protein via the establish-
ment of a phosphoester bond. Conversely, phosphatases hydrolyze
this phosphoester bond thereby releasing the phosphate group and
restoring the acceptor amino acid in its unphosphorylated form.
We cannot describe here all the various pathways triggered by
bacterial pathogens that involve one or several phosphorylation
events. We will only give examples of bacterial effectors that
display kinase or phosphatase activities, as well as effectors with
phosphothreonine lyase activity.

The three pathogenic Yersinia species (Yersinia enterocolitica,
Yersinia pseudotuberculosis and Yersinia pestis), involved in human
pathologies ranging from enteric diseases to plague, possess a vir-
ulence plasmid encoding a T3SS. This T3SS mediates the transloca-
tion of several bacterial effectors in the cytoplasm of host cells and
is required for the survival and replication of Yersinia within host
lymphoid tissues. Several of these injected factors participate into
the inhibition of phagocytosis by macrophages by impairing cyto-
skeleton rearrangements and the subsequent engulfment of invad-
ing bacteria. YopH is a Yersinia T3SS effector which has a potent
tyrosine phosphatase activity [1,2]. The dephosphorylation of sev-
eral host proteins by YopH contributes to the inhibition of phago-
cytosis of Yersinia by macrophages as well as the impairment of
Yersinia uptake by epithelial cells (reviewed in Ref. [3]). YopH
dephosphorylates, for example, Fak (Focal adhesion kinase) and
p130Cas (Crk-assocaited substrate), two proteins normally involved
in formation of new focal adhesion complexes and bacterial uptake
[4–6]. YopH is also involved in the inhibition of the host adaptative
immunity by impairing cytokines production or T-cell activation
[3]. Consistently, Yersinia mutants defective for YopH are severely
attenuated in vivo and rapidly eliminated from spleen and liver
of infected mice [3].

YpkA (called YopO in Y. enterocolitica) is another Yersinia effec-
tor, with a multidomain architecture, that leads to the disruption of
the actin cytoskeleton once injected into the host cell. The N-termi-
nal domain of YpkA displays a serine/threonine kinase activity [7].
This protein targets and phosphorylates host Gaq, a subfamily of G
proteins involved in signals transduction. This phosphorylation
inhibits Gaq binding to GTP and thereby prevents activation of
Gaq-mediated cellular responses [8]. Otubain-1, a host deubiquity-
lating enzyme, is also phosphorylated by YpkA [9]. However, the
exact roles of the phosphorylation of Otubain-1 and Gaq in Yersinia
infection, as well as the roles of the kinase activity of YpkA in actin
cytoskeleton disruption, remain elusive [8,10,11].

Besides phosphatase and kinase activities, some bacterial fac-
tors display another enzymatic activity called phosphothreonine
lyase, which irreversibly eliminates a phosphate group from phos-
phorylated host proteins. Shigella flexneri, the causative agent of
bacillary dysentery, produces a protein with phosphothreonine
lyase activity called OspF [12]. This T3SS effector, when translo-
cated into the host cell, mediates the irreversible elimination of a
phosphate group from phosphorylated threonine residues of host
MAPKs (Mitogen Activated Protein Kinases). The enzymatic reac-
tion catalyzed by OspF does not restore a phosphorylatable hydro-
xyl group, as do classical phosphatases. It generates, via a b-
elimination reaction called eliminylation, a modified threonine
residue which can no longer be phosphorylated [12,13]. Interest-
ingly, other bacterial factors share the same enzymatic activity as
OspF. This is the case for SpvC, a protein encoded by the intracel-
lular pathogenic bacterium Salmonella enterica serovar Typhimuri-
um (thereafter denominated S. Typhimurium) [12,14,15], and
HopAI1, an effector of the plant pathogen Pseudomonas syringae
[16]. The modification catalyzed by these phosphothreonine lyases
irreversibly inactivates MAPKs of the infected cells and was pro-
posed to contribute to the dampening of the host immune
response during bacterial infection [12,15,16].
3. Ubiquitylation

3.1. The ubiquitin system

Ubiquitin is a small protein of �9 kDa present in all eukaryotes.
Ubiquitylation, i.e. the covalent addition of one or several ubiqui-
tins on a target protein, is an essential post-translational modifica-
tion of eukaryotic cells. The conjugation of ubiquitin on a target
protein requires different enzymes: E1 activating enzymes, E2 con-
jugation enzymes and E3 ubiquitin ligases (Fig. 3). E3 ubiquitin li-
gases control substrates specificity by directly interacting with the
targeted proteins. All eukaryotes encode several E2s and E3s en-
zymes (up to several dozens of E2s and hundreds of E3s), allowing
the modification of many different proteins often under a strict
temporal and spatial control. Ubiquitylation is a reversible modifi-
cation as specific proteases, called deubiquitylating enzymes
(DUBs), can remove ubiquitin from a target protein (Fig. 3). The
conjugation of ubiquitin occurs most frequently on lysine residues
of target proteins, although linkages on cysteine, serine or threo-
nine residues or on the N-terminal amino group of target proteins
have also been reported. The addition of one or several ubiquitins
modifies the localization and/or the activity of the targeted protein.
Monoubiquitylation is involved in many cellular functions includ-
ing membrane-protein trafficking, endocytosis, signal transduc-
tion, DNA repair and transcription regulation. In the case of
polyubiquitylation, the lysine side chain of a ubiquitin moiety is
used as a target for the addition of another ubiquitin moiety. Ubiq-
uitin contains seven lysine residues, all of which can contribute to
such linkage. The topology of the ubiquitin chains formed influence
the fate of the modified substrate proteins. Lys-48-linked chains
are most commonly associated with proteasome binding and deg-
radation of the polyubiquitylated protein whereas Lys-63-linked
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chains participate in signal transduction, vesicular trafficking or
DNA repair (reviewed in [17]).

Not surprisingly, there are many examples of pathogens inter-
fering with ubiquitylation of the host cell.

3.2. Ubiquitylation of bacterial effectors

In some cases, bacterial pathogens hijack host ubiquitylation to
trigger the degradation of their own effectors. This is the case for
two effectors of S. Typhimurium: SopE and SptP, that exhibit
opposing activities on host cell Rho GTPases. Rho GTPases act as
‘‘molecular switches” in many different signalling pathways and,
in particular, in the actin cytoskeleton dynamics. SopE display a
GEF-like activity (Guanine nucleotide Exchange Factor) that acti-
vates host Rho GTPases, resulting in actin cytoskeleton rearrange-
ments, membrane ruffling and subsequent bacterial uptake [18].
SptP, which is codelivered with SopE, deactivates Rho GTPases
and allows the recovery of the actin cytoskeleton’s normal archi-
tecture, a few hours after infection [19]. It has been shown that
SopE and SptP have different half-lives: SopE undergoes a rapid
polyubiquitylation and degradation after translocation in the host
cytoplasm, while SptP exhibits a much slower degradation kinetics
[20]. In this example, ubiquitylation is controlling the transient
activation of Rho GTPases and allows a temporal regulation of
cytoskeleton rearrangements, required for successful infection. Lis-
teria monocytogenes is another pathogenic bacterium that interacts
in several instances with host ubiquitylation. Listeria is a faculta-
tive intracellular bacterium responsible for listeriosis, a food-borne
disease. After induction of its own uptake into a host cell, Listeria is
able to escape from its internalization vacuole to reach the cyto-
plasm and replicate therein (Fig. 4). Escape from the vacuole re-
quires a toxin secreted by the bacterium, named Listeriolysin O
(LLO), which has a pore-forming activity and facilitates the disrup-
tion of the vacuolar membrane [21]. As this pore-forming toxin
may damage the host-cell plasma membrane and lead to cytotox-
icity, a tight restriction of LLO activity to the vacuolar membrane is
required to ensure bacterial intracellular lifestyle and avoid direct
exposure to the immune system. It has been reported that once Lis-
teria has reached the cytoplasm, LLO produced by the bacteria is
phosphorylated and polyubiquitylated and then targeted to the
proteasome for degradation [22]. However, inhibition of protea-
some does not increase the cytotoxicity of LLO in infected cells
and the exact role of LLO-proteasomal degradation in L. monocytog-
enes intracellular growth or virulence thus remains unclear [22,23].



Table 2
Bacterial effectors indirectly triggering host protein post-translational modifications.

Bacteria Effector Host targets Modification Reference(s)

B. anthracis Anthrax toxin TEM8, CMG2 Ubiquitylation [27,28]
L. monocytogenes InlB Met Phosphorylation/ubiquitylation [29–31]
L. monocytogenes InlA E-cadherin Phosphorylation/ubiquitylation [32]
R. conorii rOmpB Ku70 Ubiquitylation [33]
E. coli CNF1 Rho GTPases Polyubiquitylation/degradation [34]
Shigella OspG IjBa Inhibition of ubiquitylation [35]
L. monocytogenes LLO Histones Deacetylation/dephosphorylation [93]
L. monocytogenes LLO SUMOylated proteins DeSUMOylation/degradation [64]

Table 1
Bacterial effectors catalyzing post-translational modifications.

Bacteria Effector Bacterial effector activity PTM Host targets Reference(s)

Yersinia YopH Tyrosine phosphatase Dephosphorylation Fak, p130Cas, others [1–6]
Yersinia YpkA/YopO Kinase Phosphorylation Gaq, Otubain-1 [7–11]
Shigella OspF Phosphothreonine lyase Eliminylation MAPK [12,13]
S. Typhimurium SpvC Phosphothreonine lyase Eliminylation MAPK [12–15]
P. syringae HopAIl Phosphothreonine lyase Eliminylation MAPK [13,16]
Shigella IpaH9.8 E3-ubiquitin ligase Ubiquitylation IKKc/NEMO [36,37,46]
S. Typhimurium SopA E3-ubiquitin ligase Ubiquitylation Unknown [38,39,46]
L. pneumophila LubX E3-ubiquitin ligase Ubiquitylation Clk1 [40,46]
P. syringae AvrPtoB E3-ubiquitin ligase Ubiquitylation Fen [43–46]
S. Typhimurium SseL Deubiquitylase Deubiquitylation Unknown [51,52]
C. trachomatis ChlaDUB1, 2 Deubiquitylase/deneddylase Deubiquitylation/deneddylation Unknown [53]
X. campestris XopD DeSUMOylase DeSUMOylation Unknown [60–62]
X. campestris AvrXv4 DeSUMOylase DeSUMOylation Unknown [63]
V. parahaemolyticus VopS AMPylator AMPylation Rho GTPases [70,72]
H. somni IbpA AMPylator AMPylation Rho GTPases [71,72]
C. botulinum C3 exoenzyme ADP-ribosyl transferase ADP-ribosylation Rho GTPases [73,74,77]
B. cereus C3 transferase ADP-ribosyl transferase ADP-ribosylation Rho GTPases [75,77]
S. aureus EDIN toxins ADP-ribosyl transferase ADP-ribosylation Rho GTPases [76,77]
C. botulinum C2 toxin ADP-ribosyl transferase ADP-ribosylation Actin [78,79]
C. perfringens Iota toxin ADP-ribosyl transferase ADP-ribosylation Actin [79]
S. Typhimurium SpvB ADP-ribosyl transferase ADP-ribosylation Actin [80]
P. luminescens TccC3 ADP-ribosyl transferase ADP-ribosylation Actin [81]
V. cholerae Cholera toxin ADP-ribosyl transferase ADP-ribosylation G proteins [82]
B. pertussis Pertussis toxin ADP-ribosyl transferase ADP-ribosylation G proteins [83]
E. coli Heat-labile LT enterotoxin ADP-ribosyl transferase ADP-ribosylation G proteins [84]
P. aeruginosa Exotoxin A ADP-ribosyl transferase ADP-ribosylation EF2 [85]
C. diphtheriae Diphtheria toxin ADP-ribosyl transferase ADP-ribosylation EF2 [86]
P. aeruginosa Cytotoxin ExoS ADP-ribosyl transferase ADP-ribosylation ERMs, Ras [87,88]
P. aeruginosa Cytotoxin ExoT ADP-ribosyl transferase ADP-ribosylation Crk [89]
Yersinia YopJ/YopP Acetyltransferase Acetylation MAPK kinases, IKKa, IKKb [49,50]
V. parahaemolyticus VopA Acetyltransferase Acetylation MAPK kinases [90]
C. difficile Toxin A and B Glucosyltransferase Glucosylation Rho GTPases [95,96]
C. sordelli Hemorrhagic and lethal toxins Glucosyltransferase Glucosylation Rho GTPases [97,98]
C. novyi a-toxin N-acetyl-glucosamine transferase N-acetyl-glucosamination Rho GTPases [99]
L. pneumophila Lgt1, 2, 3 Glucosyltransferase Glucosylation eEF1A [100,101]
E. coli CNF1 Deamidase Deamidation Rho GTPases [102,103]
Bordetella DNT Deamidase/polyamine transferase Deamidation/polyamination Rho GTPases [104,105]
Y. enterocolitica YopT Protease Proteolysis Rho GTPases [106,107]
B. fragilis BFT Protease Proteolysis E-cadherin [108]
C. histolyticum Collagenase Collagenase Proteolysis Collagen, gelatin [109]
B. anthracis Anthrax LF Metalloprotease Proteolysis MAPK kinases [110]
C. botulinum Botulinum toxins Protease Proteolysis SNARE [109]
C. tetani Tetanus toxin Protease Proteolysis SNARE [109]
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It should be noted that the restriction of LLO activity to vacuolar
compartments is also due to pH regulation as this toxin is quickly
denatured and inactivated in compartments with neutral pH such
as cytoplasm [24].

In other cases, bacterial factors can hijack the host ubiquityla-
tion machinery to modify their localization in the host cell.
This is the case for SopB, a phosphoinositide phosphatase of
S. Typhimurium injected via a T3SS inside the host cell during
infection. This bacterial enzyme acts either at the plasma mem-
brane, where it modulates actin-mediated bacterial invasion or at
the level of Salmonella Containing Vacuole (SCV), a membrane-
bound compartment where bacteria reside and where SopB regu-
lates vesicular trafficking and bacterial intracellular growth. SopB
was shown to be multi-monoubiquitylated. These modifications
are required both for the regulation of SopB activity at the plasma
membrane and for the correct targeting of SopB to SCV compart-
ment [25,26].

3.3. Bacterial induced ubiquitylation of host proteins

Some bacterial effectors trigger pathways involving ubiquityla-
tion of host proteins. This is the case for some bacterial toxins, like
the tripartite anthrax toxin of Bacillus anthracis, which exploits
ubiquitylation to mediate its endocytosis into the host cell. The



Table 3
Bacterial effectors post-translationally modified upon infection.

Bacteria Effector Modification Reference(s)

L. monocytogenes SOD Phosphorylation [115]
L. monocytogenes ActA Phosphorylation [116]
Shigella OspG Autophosphorylation [35]
L. monocytogenes LLO Phosphorylation/polyubiquitylation/degradation [22,23]
S. Typhimurium SopE, SptP Polyubiquitylation/degradation [20]
S. Typhimurium SopB Ubiquitylation [25,26]
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Anthrax Protective Antigen (PA) component of this toxin enables
cell binding, endocytosis and injection of the two enzymatic com-
ponents, i.e. Anthrax Lethal Factor and Edema Factor, into the cyto-
plasm of the intoxicated cell. PA can bind two cell surface
receptors: TEM8 (Tumor Endothelial Marker 8) or CMG2 (Capillary
Morphogenesis Gene 2). These receptors are subsequently ubiqui-
tylated by the host E3 ubiquitin ligase Cbl, which triggers the inter-
nalization of the toxin complex into early endosomes by a clathrin-
dependent endocytosis [27,28]. This ubiquitylation is thus essen-
tial for the intracellular activity of this toxin. Interestingly, some
bacteria, like L. monocytogenes, also exploit ubiquitin-dependent
endocytosis machinery to mediate their internalization. Listeria
uses the surface protein InlB to invade a variety of cell types. This
protein interacts with and triggers the autophosphorylation of Met,
the hepatocyte growth factor receptor [29]. Met is then monoubiq-
uitylated by the E3 ligase Cbl which leads to the recruitment of the
endocytic machinery [30] (Fig. 4). This ubiquitin-dependent
recruitment of the endocytic machinery, and in particular the
recruitment of clathrin, is required for InlB-mediated invasion of
cells by Listeria [30,31]. In addition to InlB, Listeria can invade epi-
thelial cells using the InlA surface protein that interacts with the
junctional protein E-cadherin. InlA induces two successive post-
translational modifications on E-cadherin: a Src-mediated tyrosine
phosphorylation and an ubiquitylation by the Hakai E3 ubiquitin
ligase (Fig. 4). Again, this ubiquitylation of E-cadherin is required
for the recruitment of the endocytic machinery and optimal bacte-
rial internalization [32]. Finally, invasion of eukaryotic cells by
Rickettsia conorii, an obligate intracellular bacteria responsible for
spotted fever, also requires the Cbl-mediated ubiquitylation of
Ku70, a receptor for this bacteria [33].
Toxins secreted by bacteria, can target host factors to polyubiq-
uitylation and degradation. CNF1 (Cytotoxic Necrotizing Factor-1)
is a toxin encoded by uropathogenic Escherichia coli that, once
translocated in the host cell, catalyzes the permanent activation
of host Rho GTPases via deamidation of these proteins (see below).
However, this effect is only transient as the host cell triggers in re-
sponse the polyubiquitylation of deamidated Rho GTPases leading
to their proteasomal degradation [34]. Thus, CNF1 induces only a
transient activation of Rho GTPases, as subsequent recruitment of
the host cell ubiquitylation machinery leads to Rho GTPases
degradation.

3.4. Targeting of the host ubiquitylation machinery by bacterial
effectors

Bacterial effectors can target components of the ubiquitylation
machinery of the host cell, thereby altering ubiquitylation of host
proteins. This is the case for OspG, a T3SS effector of S. flexneri. This
effector binds to various E2 ubiquitin-conjugating enzymes of the
host cell. Among them, UbcH5 is an E2 enzyme involved in the
ubiquitylation and degradation of IjBa, an essential inhibitor of
the NF-jB pathway [35]. NF-jB has a pivotal role in many cellular
processes, including the inflammatory and immune responses and,
therefore, is tightly regulated. Activation of the NF-jB pathway
proceeds via the activation of the IjB kinase (IKK) complex, leading
to the phosphorylation of IjBa, an inhibitor of this pathway
sequestrating NF-jB in the cytoplasm. Phosphorylated IjBa is then
recognized by the host ubiquitylation machinery, polyubiquitylat-
ed and finally degraded by the proteasome. This allows the release
and translocation of NF-jB in the nucleus where it acts as a tran-
scription factor on a large set of genes, including genes of the im-
mune response. OspG, by interacting with specific E2 ubiquitin
conjugating enzymes, interferes with the ubiquitylation of IjBa
[35], prevents it degradation and thus impairs NF-jB activation in-
duced by TNFa stimulation. OspG thereby negatively regulates the
NF-jB-mediated inflammatory response upon invasion of the
intestinal epithelium. Consistently, a Shigella strain defective for
OspG induces a stronger inflammatory response than the wild type
strain during infection of rabbit ileal loops [35].

3.5. Bacterial effectors mimicking components of the host
ubiquitylation machinery

Bacterial effectors can directly mimic enzymes of the host ubiq-
uitylation machinery, like E3 ubiquitin ligases or DUBs. IpaH9.8, a
S. flexneri T3SS effector, displays an E3 ubiquitin ligase activity and
dampens the NF-jB-mediated inflammatory response to bacterial
infection [36,37]. IpaH9.8 is indeed able to mediate the polyubiqui-
tylation of the NEMO/IKKc protein, a component of the IKK com-
plex, which then undergoes proteasome-dependent degradation
thereby perturbing NF-jB activation [37]. SopA, a T3SS effector
of S. Thyphimurium, is another example of a bacterial factor with
E3 ubiquitin ligase activity, which is involved in the host inflam-
matory response against Salmonella [38,39]. Legionella pneumophil-
a, the etiological agent of pneumonia Legionnaire’s disease, also



Fig. 4. Post-translational modifications occurring during Listeria infection. After
entry into a host cell, Listeria monocytogenes is entrapped in an intracellular vacuole
(1). The membrane of this vacuole is disrupted by the secretion of two bacterial
phospholipases and the pore-forming toxin Listeriolysin O (LLO) (2). This allows the
escape of bacteria into the cytoplasm where they replicate (3) and start to
polymerize actin, leading to the formation of the so-called actin comet tails (4).
Actin polymerization allows bacteria to move in the host cell cytoplasm and to pass
into a neighbouring cell by forming protrusions in the plasma membrane (5).
During Listeria infectious process, several host proteins (in purple) are post-
translationally modified, including E-cadherin (E-cad), Met receptor, histones H3
and H4. Bacterial effectors (in green) such as LLO, SOD (SuperOxide Dismutase) or
ActA, can also been post-translationally modified. In addition, Listeria can counter-
act some host proteins PTMs such as SUMOylation, acetylation or phosphorylation.
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codes for different factors mimicking eukaryotic E3 ubiquitin li-
gase, including LubX, a Legionella effector mediating in vitro the
ubiquitylation of the host protein Clk1 (Cdc2-like kinase 1) [40–
42]. Factors with E3 ubiquitin ligase activity can also be encoded
by plant pathogens. P. syringae factor AvrPtoB, for example, is able
to bind a plant E2 ubiquitin conjugating enzyme (AtUBC8) and pos-
sesses E3 ubiquitin ligase activity. This factor is essential for inhi-
bition of host programmed cell death defences in susceptible
plants, and enabling of bacterial growth [43–45]. Of note, SopA,
LubX and AvrPtoB share sequence and structural homologies with
the two major classes of eukaryotic E3 ubiquitin ligases (i.e. HECT
and RING E3 ligases, respectively) and may have been acquired
through horizontal gene transfer from a eukaryotic host. In con-
trast, some bacterial E3 ubiquitin ligases, including IpaH9.8, have
interestingly evolved a novel structure to functionally mimic the
activity of eukaryotic E3 ubiquitin ligases [46].

The first bacterial factor displaying deubiquitylase activities
was identified in Yersinia. It is a T3SS effector named YopJ (YopP
in Y. enterocolitica) that plays an important role in the inhibition
of the NF-jB-mediated inflammatory response and the induction
of apoptosis in macrophages. This protein shares structural
homologies with cysteine proteases and was initially proposed
to act as a deSUMOylating enzyme by removing SUMO, an ubiq-
uitin-like protein, from its target proteins [47]. However, subse-
quent studies have shown that YopJ displays deubiquitylase
rather than deSUMOylase activity [48] although the exact roles
of this activity in the inhibiton of the NF-jB pathway remain un-
clear. Furthermore, YopJ was shown to have also an acetyltrans-
ferase activity and to acetylate MKKs (MAPK Kinases) on critical
serine or threonine residues thereby preventing MKKs activation
[49,50] (see below). In addition to YopJ, SseL, a S. Thyphimurium
effector, also shares structural homologies with cysteine prote-
ases and displays deubiquitylating activity in vitro [51,52]. Con-
sistently, infection of epithelial cells and macrophages with an
sseL mutant strain of Salmonella leads to the accumulation of host
or bacterial ubiquitylated proteins at, or in vicinity of SCV mem-
branes [51]. SseL mutant strains do not display replication defect
but are defective for late-stage cytotoxic effect on macrophages
and are attenuated for virulence in the systemic phase of infec-
tion in mice. SseL was shown to inhibit IjBa ubiquitylation in
response to TNFa, suggesting that it may act directly on K48-
linked chains that targets IjBa to proteasomal degradation. This
is in agreement with the observed in vivo activation of the
NF-jB pathway induced by SseL-deficient bacteria [52]. Finally,
Chlamydia trachomatis, an obligate intracellular bacterium, also
encodes two proteases (ChlaDUB1 and 2) that were shown to
have deubiquitylating activities in vitro [53]. However, the roles
of these bacterial proteases in Chlamydia infection remain to be
established [53].
4. SUMOylation and conjugation of other ubiquitin-like
proteins

Besides ubiquitin, a whole family of small proteins can be cova-
lently linked to protein substrates (Fig. 3). These ubiquitin-like pro-
teins share a common three-dimensional structure. SUMO (Small
Ubiquitin-like MOdifier) is a �10 kDa polypeptide belonging to
UBLs and found ubiquitously in the eukaryotic kingdom. The hu-
man genome encodes three functional SUMO proteins that can
be linked to distinct and overlapping sets of proteins [54]. SUMOy-
lation, i.e. the covalent linkage of SUMO on a lysine residue of a
substrate protein, requires a set of different enzymes, in a fashion
analogous to ubiquitylation. In humans, the SUMOylation machin-
ery is composed of an E1 SUMO enzyme (the SAE1/SAE2 heterodi-
mer), an E2 SUMO enzyme (Ubc9), and E3 SUMO enzymes that
enhance SUMO conjugation of specific targets. SUMOylation, as
ubiquitylation, is essential for many different cellular functions.
Several hundreds of SUMO targets have now been identified, in-
volved in transcription regulation, maintenance of genome integ-
rity, intracellular transport, stress responses, protein stability and
many other biological processes [55,56].

Consistent with the essential role of SUMOylation in the host
cell, it has been shown that pathogens can interfere with this
post-translational modification. Proteins from pathogens can
either be substrate for SUMOylation or alter the SUMOylation of
some host proteins. Such mechanisms were first documented with
viruses for which several viral proteins were shown to be SUMOy-
lated during infection. There are also some examples of viral pro-
teins which either impair SUMOylation of some specific host
targets or modify the SUMOylation machinery itself [57]. Among
these viral proteins, Gam1, an avian adenoviral protein, targets
the E1 SUMO enzyme by inducing the recruitment of an ubiquitin
ligase complex on the SAE1/SAE2 heterodimer leading to the pro-
teasomal degradation of SAE1 [58,59]. This blockade of the
SUMOylation machinery leads to a global deSUMOylation of host
proteins. The precise biological role of the interference of viruses
on the SUMOylation of the host cell remains, however, often elu-
sive [57].

In contrast to viruses, little is known concerning the putative
link between pathogenic bacteria and SUMOylation. XopD is a
T3SS effector of the plant pathogen Xanthomonas campestris path-
ovar vesicatoria that promotes bacterial growth and suppresses
host defence and pathogen-induced cell death [60]. XopD displays
a cysteine protease activity with a strong specificity for plant
SUMO substrates. It triggers a global deSUMOylation of host pro-
teins when expressed in plant cells [61,62]. The exact roles of
these deSUMOylations in the repression of transcription of host
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genes during infection, as well as the targets of this protease, re-
main to be characterized [60]. Xanthomonas possesses another
T3SS effector, named AvrXv4, that shares structural homologies
with known deSUMOylases. This factor, when expressed in plant
cells, leads to a reduction of host SUMO-conjugated proteins.
However, its contribution in Xanthomonas virulence remains to
be determined [63].

The first putative link between SUMOylation and a human bac-
terial pathogen was reported in the case of the Yersinia YopJ effec-
tor (see above). This protein, which shares structural homologies
with the yeast ubiquitin-like protease 1 (Ulp1), was proposed to
target SUMOylated proteins of the host cell [47]. However, as
aforementioned, this protein displays instead deubiquitylase and/
or acetyltransferase activities [48–50].

A recent study that focused on L. monocytogenes has revealed that
this pathogenic bacterium can directly target the SUMOylation
machinery [64] (Fig. 4). Listeriolysin O (LLO), the pore-forming toxin
secreted by Listeria, was shown to trigger the degradation of Ubc9
(the human E2 SUMO enzyme) in infected cells. As there is only
one E2 SUMO enzyme in humans, in contrast to the situation for
the ubiquitylation machinery in which dozens of E2 enzyme are
found, degradation of Ubc9 leads to a blockade of SUMOylation
and a global deSUMOylation of host proteins in infected cells. In
addition, LLO was also shown to induce the degradation of some host
SUMOylated proteins. This loss of SUMO-conjugated proteins was
shown to be beneficial for efficient infection by Listeria. Interestingly,
other pore-forming toxins closely related to Listeriolysin O were also
shown to induce Ubc9 degradation, indicating that inhibition
of SUMOylation by pathogens may be a widespread phenomenon
[64].

Besides SUMO, there are many other ubiquitin-like proteins en-
coded in the human genome including NEDD8 or ISG15 (reviewed
in [65]). The roles of these ubiquitin-like modifications in bacterial
infection remain to be established. In the case of NEDD8, it was re-
ported that non-pathogenic commensal bacteria act on the neddy-
lation (i.e. the covalent linkage to NEDD8) of some host factors.
Indeed, bacterial fermentation products, like butyrate or other
short-chained fatty acids, can induce the local production of reac-
tive oxygen species in intestinal epithelial cells. This induces the
inactivation of redox-sensitive proteins such as Ubc12, the NEDD8
E2 enzyme, and thus blocks the neddylation machinery. This inac-
tivation leads, in particular, in the alteration of Cullin-1 neddyla-
tion and in suppressive effects on the NF-jB pathway [66–68]. It
has been proposed that this mechanism may participate to the
inflammatory tolerance of the mammalian intestinal epithelium
towards commensal bacteria [66]. In addition to these commensal
bacteria, the aforementioned ChlaDUB1 and 2 proteases from C.
trachomatis that possess deubiquitylase activities in vitro were also
reported to have deneddylating activities [53]. Again, the roles of
these bacterial proteases in Chlamydia infection remain unknown.
In the case of ISG15, an interferon-stimulated gene, there is no re-
ported link between this UBL and bacterial pathogens. However,
this issue is to be explored as this protein is well-known for its
antiviral functions (reviewed in [69]).

In conclusion, the study of these other ubiquitin-like modifica-
tions and their roles in bacterial infection might provide insights
into unknown mechanisms used by pathogens to manipulate activ-
ities of key host proteins.

5. AMPylation

AMPylation is a recently discovered post-translational modifi-
cation triggered by bacteria. Indeed, two virulence factors encoded
by two different pathogenic bacteria, namely VopS from Vibrio
parahaemolyticus and IbpA from Histophilus somni, use ATP to cova-
lently add an adenosine monophosphate (AMP) moiety to threo-
nine or tyrosine residues of some Rho GTPases [70,71]. This
activity involves a conserved domain of VopS and IbpA called fic
domain (for filamentation induced by cAMP domain), which is also
found in eukaryotic proteins [70–72]. The addition of AMP to Rho
GTPases prevents their interaction with downstream effectors
leading to the disruption of host actin cytoskeleton in the infected
cells. Although firstly described as a modification triggered by bac-
terial effectors, AMPylation has now been shown to be naturally
occurring in eukaryotic cells [70–72].

6. ADP-ribosylation

ADP-ribosylation is a post-translational modification catalyzed
by many different bacterial toxins and has been described more
than four decades ago. These toxins transfer the ADP-ribose group
from NAD (Nicotinamide Adenine Dinucleotide) to Arg, Cys and
Asn residues of various host target proteins to alter their function
and, subsequently, key metabolic processes.

Clostridium botulinum C3 exoenzyme, as well as other C3-like
exoenzymes (like Bacillus cereus C3 transferase or Staphylococcus
aureus EDIN toxins), mediates the ADP-ribosylation of Rho GTPases
[73–76]. This modification blocks the Rho GTPases activation by
GEFs, leading to major changes in the signalling pathways regu-
lated by these proteins and, in particular, to actin polymerization
(reviewed in [77]). In addition to Rho GTPases, actin can also be
ADP-ribosylated by several bacterial toxins thereby deregulating
the host cell cytoskeleton. C. botulinum C2 toxin was the first dis-
covered toxin with such an activity [78]. C. perfringens iota toxin,
Salmonella SpvB toxin and Photorhabdus luminescens TccC3 toxin
are other examples of bacterial proteins that all mediate ADP-ribo-
sylation of actin [79–81].

Another important class of host proteins ADP-ribosylated by
bacterial toxins are G proteins, which are targeted by cholera toxin
(Vibrio cholerae), pertussis toxin (Bordetella pertussis) and heat-la-
bile LT enterotoxins (E. coli) [82–84]. Other cellular targets that
can be ADP-ribosylated include Elongation Factor 2 modified by
Pseudomonas aeruginosa Exotoxin A and Corynebacterium diphthe-
riae diphtheria toxin (DT) [85,86], ERMs (for Ezrin, Radixin and
Moesin) and Ras, modified by P. aeruginosa cytotoxin ExoS
[87,88], and Crk proteins, modified by P. aeruginosa cytotoxin ExoT
[89].

7. Acetylation

Extensive studies on the inhibition of MAPK and NF-jB signal-
ling by the Yersinia YopJ effector have led to the discovery that this
virulence factor was able to mediate acetylation of host proteins,
including the MAPK kinases MEK2, MKK6 and the IKKa and b ki-
nases of the IKK complex [49,50]. This acetylation occurs on serine
and threonine residues in the activation loop of the targeted ki-
nases and prevents the phosphorylation of these residues, a step
required for kinase activation. Similarly, VopA, a YopJ-like protein
encoded by V. parahaemolyticus, acetylates a lysine residue of
MAPK kinases that blocks the binding of ATP to these enzymes
and leads to inactive phosphorylated kinases [90].

Another important class of host proteins modified by acetyla-
tion, and other modifications as well, are histones [91]. The acet-
ylation of lysine residues in histone tails is one of the many
modifications that can affect these proteins and that constitutes
the so-called ‘‘histone code”, which plays a fundamental role in
transcription regulation. Acetylation is often associated with ac-
tive transcription, probably by rendering chromosomal domains
more accessible to the transcription machinery. Some bacteria
modify the acetylation of histones upon infection and thereby
alter the transcription of specific genes (Fig. 4). For example,
L. monocytogenes infection of endothelial cells was linked to the
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activation of p38 and ERK MAPK pathways. This activation corre-
lates with an increase in acetylation of histone H3 and H4 (to-
gether with an increase in phosphorylation of histone H3) and
the transcriptional activation of MAPK induced genes, such as
IL-8 [92]. Another report demonstrated that Listeriolysin O, the
pore-forming toxin produced by Listeria, induces a decrease in
the acetylation of histone H4 in epithelial cells, together with a
decrease in the phosphorylation of histone H3 [93]. A transcrip-
tome analysis of the host genes whose expression is modulated
by LLO revealed a downregulation of some genes involved in
immunity, in correlation with the LLO-induced modifications of
histones. In addition, infection of epithelial cells by L. monocytog-
enes leads to a decrease in the acetylation of histone H3, in an
LLO-independent manner [93].

Another example of intracellular bacterium modulating acetyla-
tion of histones is Anaplasma phagocytophilum, a tick-transmitted
Rickettsia. It was demonstrated that infection of macrophages by
this intracellular bacterium leads to silencing of host defence gene
expression. This was correlated to an increase in the activity of
HDAC1 and a decrease in histone H3 acetylation on the promoters
of defence genes [94].
8. Glycosylation

Two major groups of bacterial toxins have been described to
possess glycosyltransferase activity. The first one is composed of
toxins produced by Clostridium species. Toxins A and B from C. dif-
ficile, as well as hemorrhagic and lethal toxins from C. sordelli,
transfer the glucose moiety from UDP-glucose to threonine
residues of Rho GTPases [95–98]. This modification occurs in the
so-called switch-I region of Rho GTPases, a conserved domain
involved in interactions of these proteins with their effectors.
Glucosylation of Rho-GTPases leads to the inhibition of effector
coupling, nucleotide exchange by GEFs and membrane cycling of
Rho GTPases that stay at the membrane even in their inactive form.
This impairment of Rho GTPases results in extensive morphological
changes by redistribution of the actin cytoskeleton and several
other cellular alterations (reviewed in [77]). In addition, C. novyi
a-toxin can modify Rho proteins by attachment of another type
of sugar, N-acetyl glucosamine, which has similar consequences
on Rho GTPases functions as glucosylation [99].

A second group of glycosyltransferases are toxins produced by L.
pneumophila. These toxins glucosylate a serine residue of the
GTPase domain of eEF1A (eukaryotic Elongation Factor 1A) and
thereby inhibit host cell protein synthesis and induce death of tar-
get cells [100,101].
9. Deamidation and polyamination

CNF1, the lethal toxin causing tissue damage produced by some
pathogenic strains of E. coli, induces the deamidation of a specific
glutamine residue of Rho GTPases into glutamic acid. This gener-
ates ‘‘constitutively” active Rho GTPases and leads to alteration
of the actin cytoskeleton dynamic [102,103]. As mentioned above,
this constitutive activation of Rho GTPases is only transient as it is
followed by its polyubiquitylation and subsequent degradation
[34]. The dermonecrotizing toxin (DNT), produced by various Bor-
detella species, also activates Rho proteins and leads to the massive
formation of actin stress fibers and focal adhesions in intoxicated
cultured cells. Although DNT shares sequence homologies with
CNF and is also able to deamidate Rho GTPases, the preferred reac-
tion catalyzed by this toxin is polyamination, i.e. the attachment of
polyamines, such as putrescine, spermine and spermidine, on a
glutamine residue of Rho GTPases that becomes constitutively ac-
tive [104,105].
10. Proteolysis

Proteolysis is an irreversible post-translational modification. It
is, as other PTMs, a very common process used to regulate the
activity of host factors. Proteolysis events during infection can be
triggered either by host cellular proteases or by bacterial factors
displaying proteolytic activities. We will focus here on the bacte-
rial effectors that cleave host proteins and will not detail all the
cellular pathways induced by pathogens that involve proteolytic
events, such as induction of apoptosis via caspase proteolytic
activities.

Several bacterial proteins possess proteolytic activities. YopT,
an effector of Y. enterocolitica, displays such an activity. It triggers
the cleavage of Rho GTPases at a specific site, which releases the
isoprenylated C-terminal cysteine of these proteins [106]. As iso-
prenylation of Rho GTPases is essential for their membrane binding
and proper function, YopT cleavage impairs the cellular functions
of these enzymes. This results in the disruption of the actin cyto-
skeleton and contributes to the antiphagocytic effect induced by
Yersinia, in addition to the effects of other effectors like YopH or
YpkA/YopO (see above) [107].

Host cell surface molecules can also be targeted by bacterially
encoded proteases. For example, Bacteroides fragilis enterotoxin
(BFT) is a secreted protein with characteristics of metalloproteases
found in strains of B. fragilis associated with diarrheal diseases.
When added to tissue-cultured cells, this toxin cleaves the extra-
cellular portion of E-cadherin, a transmembrane protein responsi-
ble for cell-cell adhesion in epithelial cells [108]. BFT thus alters
tight junction function in polarized intestinal epithelial cells. Clos-
tridium histolyticum collagenases are other examples of bacterial
metalloproteases that specifically target collagen and gelatin, two
proteins of the extracellular matrix. These bacterial enzymes play
an important role in the degradation of the connective tissue ob-
served during myonecrosis and gangrene associated with C. histo-
lyticum (reviewed in [109]).

The Anthrax Lethal Factor (LF), which is a part of the Anthrax
tripartite toxin encoded by B. anthracis, is a metalloprotease
responsible for the shock-like symptoms observed in systemic an-
thrax infection. This toxin is translocated in the cytoplasm of tar-
geted cells via the Anthrax Protective Antigen. Once in the
cytoplasm, LF cleaves the N-terminus of MAPK kinases. This cleav-
age prevents the activation of downstream MAPKs, by disrupting a
critical docking interaction, and functionally impairs cells of both
the innate and adaptative immune systems of the host (reviewed
in [110]).

C. botulinum and C. tetani neurotoxins constitute other exam-
ples of bacterial factors displaying proteolytic activities. Botulinum
toxins are ingested through contaminated food or, in the case of an
intestinal colonization by C. botulinum, are produced by bacteria
directly in the intestine. These toxins then cross the digestive mu-
cosa by transcytosis, target motoneuron endings, and are delivered
in the cytoplasm of intoxicated neurons where they exert their
proteolytic activities. Botulinum toxins trigger the cleavage of neu-
ronal VAMP-1 (Vesicular-Associated Membrane Protein-1),
SNAP25 (Soluble N-ethylmaleimide-sensitive factor Accessory Pro-
tein 25) or Syntaxin, which all belong to the family of SNARE (SNAP
Receptor) proteins. These cleavages lead to the blockade of exocy-
tosis of the neuronal neurotransmettors containing vacuoles and
thus the release of acetylcholine in the neuromuscular junction,
leading to flaccid paralysis. In the case of C. tetani, the tetanus toxin
is produced in wounds colonized by the bacterium and targets all
types of nervous endings, although it acts mainly on motoneurons.
In contrast to botulinum toxins, tetanus toxin, once internalized in
a motoneuron, follows a retrograde transport and is delivered into
the cytoplasm of the upstream inhibitory interneuron. The toxin
then cleaves VAMP-1 and blocks the release of glycine or GABA
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from the inhibitory interneuron leading to a permanent excitation
of the downstream motoneuron and muscles (reviewed in [109]).
Botulinum and tetanus neurotoxins constitute striking examples
of bacterial factors modifying host proteins at the post-transla-
tional level that directly play a pivotal role in the infection-associ-
ated pathogenesis.
11. Conclusion

Interference with the host PTMs by bacterial pathogens is a
widely used strategy allowing modification of host or bacterial
key factor activities involved in infection.

Interestingly, some host proteins seem to be preferential targets
for bacterial-induced PTMs. This is the case for example of Rho
GTPases that are targeted by a wide variety of modifications, lead-
ing either to their constitutive activation (via their deamidation or
polyamination), their inactivation (via their AMPylation, ADP-ribo-
sylation, glucosylation or proteolysis) or their degradation (via
their polyubiquitylation). Rho GTPases constitute central molecu-
lar switches of eukaryotic cells. Targeting these regulators might
thus be an efficient strategy developed by pathogens to modify
the activity of many different proteins of a given pathway, and thus
trigger a coordinated response of the host cell, by targeting only
one factor. Targeting of Rho GTPases also reflects the well estab-
lished pivotal roles of the remodelling of host cell cytoskeleton in
many aspects of bacterial infection. Consistently, many other com-
ponents of the cell cytoskeleton have been reported to be post-
translationally modified by bacterial pathogens. However, target-
ing of Rho GTPases by pathogens probably go beyond the alteration
of cytoskeleton as these proteins are involved in many other path-
ways and, in particular, in the innate and adaptative immune
response.

Other central pathways involved in the host immune response,
like the MAPK or the NF-jB signalling pathways, are also preferen-
tial targets for pathogens. Interestingly, there has also been a re-
cent emergence in the number of reports of bacterial effectors
manipulating histones PTMs. These modifications, constituting
the ‘‘histone code”, allow a finely tuned regulation of host genes
transcription. Histone modifications and chromatin remodelling
induced by bacterial pathogens constitute a new exciting field of
study of host-pathogen interactions [111].

One very interesting aspect of PTM is the possibility of cross
talks between different types of modifications. The first situation
corresponds to competition between different PTMs. This occurs
in particular when two PTMs target the same residue (or closeby
residues) in a substrate protein. SUMOylation, for example, can
compete with ubiquitylation and proteasome degradation [55].
Acetylation was also shown to compete with phosphorylation
[49,50]. The other case corresponds to synergies between different
PTMs. For example, some studies have highlighted that ubiquitin
can interact with SUMO to trigger proteasomal degradation of pro-
teins. This interaction requires SUMO-dependent ubiquitin ligases,
that specifically mediate the polyubiquitylation and degradation of
polySUMOylated proteins (reviewed in [112]). In addition, phos-
phorylation, when localized downstream of a SUMOylation site,
can increase the SUMOylation level of a protein by increasing the
binding of Ubc9 on the target protein [113]. PTMs are thus orga-
nized in very complex networks.

Of note, ‘‘post-synthesis” modifications can occur on other mol-
ecules than proteins. Indeed, there are many examples of modifica-
tions of lipids (by phosphorylation, glycosylation) or nucleic acid
(by methylation, ADP-ribosylation) that play fundamental roles
in the biology of the cell. Pathogens also interfere with the modifi-
cations of these other cellular components as they do with proteins
in the context of infection. This is the case for example with phos-
phoinositides lipids, with which pathogens can interfere in many
different ways [114].

We have in this review focused on the major PTMs regulated by
bacteria. However, there are many other types of modifications
that may modulate infection like nitrosylation, addition of lipids
or even disulfide bond formation/disruption. It is very likely that
the number of cellular proteins reported to be post-translationally
modified by bacterial pathogens will increase in the near future, as
well as the diversity of the involved PTMs. Interestingly, some
eukaryotic PTM, like AMPylation, were discovered through the
study of bacterial pathogens. Future research in this domain will
thus undoubtedly lead to exciting new discoveries into the field
of host-pathogen interactions and the biology of mammalian cells.
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