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a b s t r a c t

Fractional calculus has been used to model physical and engineering processes that are
found to be best described by fractional differential equations. For that reason we need
a reliable and efficient technique for the solution of fractional differential equations. This
paper deals with the numerical solution of a class of fractional differential equations. The
fractional derivatives are described in the Caputo sense. Our main aim is to generalize
the Legendre operational matrix to the fractional calculus. In this approach, a truncated
Legendre series together with the Legendre operational matrix of fractional derivatives are
used for numerical integration of fractional differential equations. The main characteristic
behind the approach using this technique is that it reduces such problems to those of
solving a system of algebraic equations thus greatly simplifying the problem. The method
is applied to solve two types of fractional differential equations, linear and nonlinear.
Illustrative examples are included to demonstrate the validity and applicability of the
presented technique.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional differential operators have a long history, having been mentioned by Leibniz in a letter to L’Hospital in 1695.
A history of the development of fractional differential operators can be found in [1,2]. One of the most recent works on
the subject of fractional calculus, i.e. the theory of derivatives and integrals of fractional (non-integer) order, is the book
of Podlubny [3], which deals principally with fractional differential equations. Today, there are many works on fractional
calculus (see for example [4,5]).
For the past three centuries, this subject has been dealt with by the mathematicians, and only in the last few years, this

was pulled to several (applied) fields of engineering, science and economics [5]. However, the number of scientific and en-
gineering problems involving fractional calculus is already very large and still growing and perhaps the fractional calculus
will be the calculus of the twenty-first century. It was found that various, especially interdisciplinary applications can be
elegantly modeled with the help of the fractional derivatives. Fractional differentials and integrals provide more accurate
models of systems under consideration.Many authors have demonstrated applications of fractional calculus in the nonlinear
oscillation of earthquakes [6], fluid-dynamic trafficmodel [7], tomodel frequency dependent damping behavior ofmany vis-
coelastic materials [8,9], continuum and statistical mechanics [10], colored noise [11], solid mechanics [12], economics [13],
bioengineering [14–16], anomalous transport [17], and dynamics of interfaces between nanoparticles and substrates [18].
The analytic results on the existence and uniqueness of solutions to the fractional differential equations have been

investigated by many authors (see, for example [3,4]). During the last decades, several methods have been used to
solve fractional differential equations, fractional partial differential equations, fractional integro-differential equations and
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dynamic systems containing fractional derivatives, such as Adomian’s decomposition method [19–23], He’s variational
iterationmethod [24–26], homotopyperturbationmethod [27,28], homotopy analysismethod [29], collocationmethod [30],
Galerkin method [31] and other methods [32–34].
Orthogonal functions have received considerable attention in dealing with various problems. The main characteristic

behind the approach using this technique is that it reduces these problems to those of solving a systemof algebraic equations
thus greatly simplifying the problem. In this method, a truncated orthogonal series is used for numerical integration of
differential equations, with the goal of obtaining efficient computational solutions. Several papers have appeared in the
literature concerned with the application of shifted Legendre polynomials [35–38].
In the present paper we intend to extend the application of Legendre polynomials to solve fractional differential

equations. Ourmain aim is to generalize Legendre operationalmatrix to fractional calculus. It isworthy tomention here that,
the method based on using the operational matrix of an orthogonal function for solving differential equations is computer
oriented.
The article is organized as follows: We begin by introducing some necessary definitions and mathematical preliminaries

of the fractional calculus theory and Legendre polynomials which are required for establishing our results. In Section 3 the
Legendre operational matrix of fractional derivative is obtained. Section 4 is devoted to applying the Legendre operational
matrix of fractional derivative for solving multi-order fractional differential equation. In Section 5 the proposed method is
applied to several examples. Also a conclusion is given in Section 6.

2. Preliminaries and notations

2.1. The fractional derivative in the Caputo sense

In this section, let us start with recalling the essentials of the fractional calculus. The fractional calculus is a name
for the theory of integrals and derivatives of arbitrary order, which unifies and generalizes the notions of integer-order
differentiation and n-fold integration [4,5]. There are various definitions of fractional integration and differentiation,
such as Grunwald–Letnikov’s definition and Riemann–Liouville’s definition. The Riemann–Liouville derivative has certain
disadvantages when trying to model real-world phenomena with fractional differential equations. Therefore, we shall
introduce amodified fractional differential operator Dα proposed by Caputo in his work on the theory of viscoelasticity [39].

Definition 2.1. The Caputo definition of the fractional-order derivative is defined as

Dα f (x) =
1

Γ (n− α)

∫ x

0

f (n)(t)
(x− t)α+1−n

dt, n− 1 < α ≤ n, n ∈ N, (1)

whereα > 0 is the order of the derivative and n is the smallest integer greater thanα. For the Caputo derivativewe have [40]

DαC = 0, (C is a constant), (2)

Dαxβ =

0, for β ∈ N0 and β < dαe,
Γ (β + 1)

Γ (β + 1− α)
xβ−α, for β ∈ N0 and β ≥ dαe or β 6∈ N and β > bαc. (3)

We use the ceiling function dαe to denote the smallest integer greater than or equal to α, and the floor function bαc to
denote the largest integer less than or equal to α. Also N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. Recall that for α ∈ N, the
Caputo differential operator coincides with the usual differential operator of an integer order.
Similar to the integer-order differentiation, the Caputo fractional differentiation is a linear operation:

Dα(λf (x)+ µg(x)) = λDα f (x)+ µDαg(x), (4)
where λ and µ are constants. In the present work, the fractional derivatives are considered in the Caputo sense. The reason
for adopting the Caputo definition, as pointed by [20], is as follows: to solve differential equations (both classical and frac-
tional), we need to specify additional conditions in order to produce a unique solution. For the case of the Caputo fractional
differential equations, these additional conditions are just the traditional conditions, which are akin to those of classical dif-
ferential equations, and are therefore familiar to us. In contrast, for the Riemann–Liouville fractional differential equations,
these additional conditions constitute certain fractional derivatives (and/or integrals) of the unknown solution at the initial
point x = 0,which are functions of x. These initial conditions are not physical; furthermore, it is not clear how suchquantities
are to bemeasured from experiment, say, so that they can be appropriately assigned in an analysis. Formore details see [41].

2.2. Properties of shifted Legendre polynomials

The well-known Legendre polynomials are defined on the interval [−1, 1] and can be determined with the aid of the
following recurrence formulae:

Li+1(z) =
2i+ 1
i+ 1

zLi(z)−
i
i+ 1

Li−1(z), i = 1, 2, . . . ,
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where L0(z) = 1 and L1(z) = z. In order to use these polynomials on the interval x ∈ [0, 1] we define the so-called shifted
Legendre polynomials by introducing the change of variable z = 2x− 1. Let the shifted Legendre polynomials Li(2x− 1) be
denoted by Pi(x). Then Pi(x) can be obtained as follows:

Pi+1(x) =
(2i+ 1)(2x− 1)

(i+ 1)
Pi(x)−

i
i+ 1

Pi−1(x), i = 1, 2, . . . , (5)

where P0(x) = 1 and P1(x) = 2x− 1. The analytic form of the shifted Legendre polynomial Pi(x) of degree i given by

Pi(x) =
i∑
k=0

(−1)i+k
(i+ k)!
(i− k)!

xk

(k!)2
. (6)

Note that Pi(0) = (−1)i and Pi(1) = 1. The orthogonality condition is∫ 1

0
Pi(x)Pj(x)dx =

{ 1
2i+ 1

for i = j,

0 for i 6= j.
(7)

A function y(x), square integrable in [0, 1], may be expressed in terms of shifted Legendre polynomials as

y(x) =
∞∑
j=0

cjPj(x),

where the coefficients cj are given by

cj = (2j+ 1)
∫ 1

0
y(x)Pj(x)dx, j = 1, 2, . . . .

In practice, only the first (m+ 1)-terms shifted Legendre polynomials are considered. Then we have

y(x) =
m∑
j=0

cjPj(x) = CTΦ(x),

where the shifted Legendre coefficient vector C and the shifted Legendre vectorΦ(x) are given by

CT = [c0, . . . , cm],

Φ(x) = [P0(x), P1(x), . . . , Pm(x)]T. (8)

The derivative of the vectorΦ(x) can be expressed by

dΦ(x)
dx
= D(1)Φ(x), (9)

where D(1) is the (m+ 1)× (m+ 1) operational matrix of derivative given by

D(1) = (dij) =

2(2j+ 1), for j = i− k,
{
k = 1, 3, . . . ,m, ifm odd,
k = 1, 3, . . . ,m− 1, ifm even,

0, otherwise ,

for example for evenmwe have

D(1) = 2



0 0 0 0 · · · 0 0 0
1 0 0 0 · · · 0 0 0
0 3 0 0 · · · 0 0 0
1 0 5 0 · · · 0 0 0
...

...
...

...
...

...
...

...
1 0 5 0 · · · 2m− 3 0 0
0 3 0 7 · · · 0 2m− 1 0


.

3. Generalized Legendre operational matrix to fractional calculus

By using Eq. (9), it is clear that

dnΦ(x)
dxn

= (D(1))nΦ(x), (10)
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where n ∈ N and the superscript, in D(1), denotes matrix powers. Thus

D(n) = (D(1))n, n = 1, 2, . . . . (11)

Lemma 1. Let Pi(x) be a shifted Legendre polynomial then

DαPi(x) = 0, i = 0, 1, . . . , dαe − 1, α > 0. (12)

Proof. Using Eqs. (2)–(4) in Eq. (6) the lemma can be proved. �

In the following theoremwe generalize the operational matrix of derivative of shifted Legendre polynomials given in (9) for
fractional derivative.

Theorem 1. Let Φ(x) be shifted Legendre vector defined in (8) and also suppose α > 0 then

DαΦ(x) ' D(α)Φ(x), (13)

where D(α) is is the (m+ 1)× (m+ 1) operational matrix of fractional derivative of order α in the Caputo sense and is defined
as follows:

D(α) =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
dαe∑
k=dαe

θdαe,0,k

dαe∑
k=dαe

θdαe,1,k · · ·

dαe∑
k=dαe

θdαe,m,k

...
... · · ·

...
i∑

k=dαe

θi,0,k

i∑
k=dαe

θi,1,k · · ·

i∑
k=dαe

θi,m,k

...
... · · ·

...
m∑

k=dαe

θm,0,k

m∑
k=dαe

θm,1,k · · ·

m∑
k=dαe

θm,m,k



, (14)

where θi,j,k is given by

θi,j,k = (2j+ 1)
j∑

`=0

(−1)i+j+k+`(i+ k)!(`+ j)!
(i− k)!k!Γ (k− α + 1)(j− `)!(`!)2(k+ `− α + 1)

. (15)

Note that in D(α), the first dαe rows, are all zero.

Proof. Using Eqs. (3), (4) and (6) we have

DαPi(x) =
i∑
k=0

(−1)i+k(i+ k)!
(i− k)!(k!)2

Dα(xk) =
i∑

k=dαe

(−1)i+k(i+ k)!
(i− k)!(k!)Γ (k− α + 1)

xk−α, i = dαe, . . . ,m. (16)

Now, approximate xk−α by (m+ 1) terms of shifted Legendre series, we have

xk−α '
m∑
j=0

bk,jPj(x), (17)

where

bk,j = (2j+ 1)
∫ 1

0
xk−αPj(x)dx = (2j+ 1)

j∑
`=0

(−1)j+`(j+ `)!
(j− `)!(`!)2

∫ 1

0
xk+`−αdx

= (2j+ 1)
j∑

`=0

(−1)j+`(j+ `)!
(j− `)!(`!)2(k+ `− α + 1)

. (18)
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Employing Eqs. (16)–(18) we get

DαPi(x) '
i∑

k=dαe

m∑
j=0

(−1)i+k(i+ k)!
(i− k)!(k!)Γ (k− α + 1)

bk,jPj(x)

=

m∑
j=0

(
i∑

k=dαe

θi,j,k

)
Pj(x), i = dαe, . . . ,m, (19)

where θi,j,k is given in Eq. (15). Rewrite Eq. (19) as a vector form we have

DαPi(x) '

[
i∑

k=dαe

θi,0,k,

i∑
k=dαe

θi,1,k, . . . ,

i∑
k=dαe

θi,m,k

]
Φ(x), i = dαe, . . . ,m. (20)

Also according to Lemma 1, we can write

DαPi(x) = [0, 0, . . . , 0]Φ(x), i = 0, 1, . . . , dαe − 1. (21)

A combination of Eqs. (20) and (21) leads to the desired result. �

Remark. If α = n ∈ N, Then Theorem 1 gives the same result as Eq. (11).

4. Applications of the operational matrix of fractional derivative

In this section, in order to show the high importance of operational matrix of fractional derivative, we apply it to solve
multi-order fractional differential equation. The existence and uniqueness and continuous dependence of the solution to
this problem are discussed in [42].

4.1. Linear multi-order fractional differential equation

Consider the linear multi-order fractional differential equation

Dαy(x) = a1Dβ1y(x)+ · · · + akDβky(x)+ ak+1y(x)+ ak+2g(x), (22)

with initial conditions

y(i)(0) = di, i = 0, . . . n, (23)

where aj, for j = 1, . . . , k+ 2 are real constant coefficients and also n < α ≤ n+ 1, 0 < β1 < β2 < · · · < βk < α, and Dα
denotes the Caputo fractional derivative of order α.
To solve problem (22) and (23) we approximate y(x) and g(x) by the shifted Legendre polynomials as

y(x) '
m∑
i=0

ciPi(x) = CTΦ(x), (24)

g(x) '
m∑
i=0

giPi(x) = GTΦ(x), (25)

where vector G = [g0, . . . , gm]T is known but C = [c0, . . . , cm]T is an unknown vector. By using Eqs. (13) and (24) we have

Dαy(x) ' CTDαΦ(x) ' CTD(α)Φ(x), (26)

Dβjy(x) ' CTDβjΦ(x) ' CTD(βj)Φ(x), j = 1, . . . k. (27)

Employing Eqs. (24)–(27) the residual Rm(x) for Eq. (22) can be written as

Rm(x) '

(
CTD(α) − CT

k∑
j=1

ajD(βj) − ak+1CT − ak+2GT
)
Φ(x). (28)

As in a typical tau method [43] we generatem− n linear equations by applying

〈Rm(x), Pj(x)〉 =
∫ 1

0
Rm(x)Pj(x)dx = 0, j = 0, 1, . . . ,m− n− 1. (29)
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Also, by substituting Eqs. (11) and (24) in Eq. (23) we get

y(0) = CTΦ(0) = d0,
y(1)(0) = CTD(1)Φ(0) = d1,
...

y(n)(0) = CTD(n)Φ(0) = dn. (30)

Eqs. (29) and (30) generate (m − n) and (n + 1) set of linear equations, respectively. These linear equations can be solved
for unknown coefficients of the vector C . Consequently, y(x) given in Eq. (24) can be calculated.

4.2. Nonlinear multi-order fractional differential equation

Consider the nonlinear multi-order fractional differential equation

Dαy(x) = F
(
x, y(x),Dβ1y(x), . . . ,Dβky(x)

)
, (31)

with initial conditions

y(i)(0) = di, i = 0, . . . n, (32)

where n < α ≤ n+ 1, 0 < β1 < β2 < · · · < βk < α, and Dα denotes the Caputo fractional derivative of order α. It should
be noted that F can be nonlinear in general.
In order to use shifted Legendre polynomials for this problem, we first approximate y(x),Dαy(x) and Dβjy(x), for

j = 0, . . . , k as Eqs. (24), (26) and (27) respectively. By substituting these equations in Eq. (31) we get

CTD(α)Φ(x) ' F
(
x, CTΦ(x), CTD(β1)Φ(x), . . . , CTD(βk)Φ(x)

)
. (33)

Also, by substituting Eqs. (11) and (24) in Eq. (32) we obtain

y(0) = CTΦ(0) = d0,

y(i)(0) = CTD(i)Φ(0) = di, i = 1, 2, . . . , n. (34)

To find the solution y(x), we first collocate Eq. (33) at (m− n) points. For suitable collocation points we use the first (m− n)
shifted Legendre roots of Pm+1(x). These equations together with Eq. (34) generate (m+ 1) nonlinear equations which can
be solved using Newton’s iterative method. Consequently y(x) given in Eq. (24) can be calculated.

5. Illustrative examples

We applied the method presented in this paper and solved some examples.

Example 1. As the first example, we consider the following initial value problem in the case of the inhomogeneous
Bagley–Torvik equation [44]

D2y(x)+ D
3
2 y(x)+ y(x) = 1+ x,

y(0) = 1, y′(0) = 1.

The exact solution of this problem is y(x) = 1 + x. By applying the technique described in Section 4.1 with m = 2, we
approximate solution as

y(x) = c0P0(x)+ c1P1(x)+ c2P2(x) = CTΦ(x).

Here, we have

D(1) =

(0 0 0
2 0 0
0 6 0

)
, D(2) =

( 0 0 0
0 0 0
12 0 0

)
, D(

3
2 ) =

(
16
√
π

)0 0 0
0 0 0

1
3
5
−
1
7

 , G =


3
2
1
2
0

 .
Therefore using Eq. (29) we obtain

c0 +
(
12+

16
√
π

)
c2 −

3
2
= 0. (35)

Now, by applying Eq. (30) we have

c0 − c1 + c2 − 1 = 0, (36)
2c1 − 6c2 − 1 = 0. (37)
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Table 1
Absolute error for α = 0.85 and different values ofm for Example 2.

x m = 2 m = 5 m = 8

0.1 2.6× 10−2 2.0× 10−3 8.0× 10−4

0.2 2.0× 10−2 3.0× 10−3 1.2× 10−3

0.3 8.2× 10−3 6.2× 10−4 6.6× 10−4

0.4 4.8× 10−3 2.9× 10−3 8.0× 10−4

0.5 1.5× 10−2 2.0× 10−3 7.5× 10−4

0.6 2.2× 10−2 7.2× 10−4 5.9× 10−4

0.7 2.4× 10−2 2.5× 10−3 7.6× 10−4

0.8 1.9× 10−2 1.3× 10−3 1.8× 10−4

0.9 8.3× 10−3 1.5× 10−3 6.2× 10−4

1.0 1.1× 10−2 5.5× 10−4 1.5× 10−4

Fig. 1. Comparison of y(x) form = 10 and with α = 0.5, 0.75, 0.95, 1, for Example 2.

Finally by solving Eqs. (35)–(37) we get

c0 =
3
2
, c1 =

1
2
, c2 = 0.

Thus we can write

y(x) =
(
3
2
,
1
2
, 0
) 1

2x− 1
6x2 − 6x+ 1

 = 1+ x,
which is the exact solution.

Example 2. Consider the following linear initial value problem [29,32]

Dαy(x)+ y(x) = 0, 0 < α < 2,
y(0) = 1, y′(0) = 0.

The second initial condition is for α > 1 only. The exact solution of this problem is as follows [45]:

y(x) =
∞∑
k=0

(−xα)k

Γ (αk+ 1)
,

we solved the problem, by applying the technique described in Section 4.1. The absolute error for α = 0.85 and m = 2, 5
and 8 are shown in Table 1. From Table 1, we see that we can achieve a good approximation with the exact solution by using
a few terms of shifted Legendre polynomials. Also the numerical results for y(x) for m = 10 and α = 0.5, 0.75, 0.95, and
1 are plotted in Fig. 1. For α = 1, the exact solution is given as y(x) = exp(−x). Note that as α approaches 1, the numerical
solution converges to the analytical solution y(x) = exp(−x). i.e. in the limit, the solution of the fractional differential
equations approaches to that of the integer-order differential equations. Nowwe present results for α > 1. Fig. 2 shows the
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Fig. 2. Comparison of y(x) form = 10 and with α = 1.5, 1.75, 1.95, 2, for Example 2.

Table 2
Absolute error for different values of α and form = 10 for Example 2.

α x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

0.2 2.9× 10−1 4.5× 10−1 7.4× 10−1 3.7× 10−1 2.0× 10−1

0.4 3.9× 10−1 5.1× 10−1 7.3× 10−1 3.3× 10−1 2.2× 10−1

0.6 6.7× 10−3 2.0× 10−5 5.2× 10−3 4.4× 10−3 4.6× 10−3

0.8 1.1× 10−3 2.1× 10−4 8.4× 10−4 8.7× 10−4 5.8× 10−4

1.2 3.1× 10−3 2.8× 10−3 4.5× 10−3 3.6× 10−3 1.8× 10−3

1.4 1.0× 10−3 7.0× 10−4 1.3× 10−3 1.1× 10−3 2.4× 10−4

1.6 3.0× 10−4 1.3× 10−4 3.1× 10−4 3.0× 10−4 6.2× 10−7

1.8 6.1× 10−5 1.4× 10−5 4.9× 10−5 5.3× 10−5 8.8× 10−6

numerical results for y(x) form = 10 and α = 1.5, 1.75, 1.95, and 2. For α = 2, the exact solution is given as y(x) = cos(x).
Once again, from Fig. 2, we see that as α approaches 2, the numerical solution converges to that of integer-order differential
equation. The absolute error for different values of α and m = 10 are shown in Table 2. From Table 2, we see that as α
approaches an integer value the error is reduced, as expected.

Example 3. In this example we consider the following nonlinear initial value problem [32]

Dαy(x) =
40320

Γ (9− α)
x8−α − 3

Γ (5+ α/2)
Γ (5− α/2)

x4−α/2 +
9
4
Γ (α + 1)+

(
3
2
xα/2 − x4

)3
− [y(x)]

3
2 ,

y(0) = 0, y′(0) = 0, 0 < α < 2.

As before, the second initial condition is for α > 1 only. The exact solution of this problem is given as [45]

y(x) = x8 − 3x(4+α/2) +
9
4
xα.

We applied the method presented in Section 4.2 and solved this problem. Fig. 3 shows the analytical and numerical results
form = 6, 8, 10 and α = 0.75, 1.5.
Furthermore the numerical results for y(x) form = 9 and α = 0.5, 0.75, 0.95, and 1 are plotted in Fig. 4. Again we see

that asα approaches 1, the solution of the fractional differential equations approaches to that of the integer-order differential
equations. Also the absolute error for different values of α and m = 10 are shown in Table 3. Again, from Table 3, we see
that as the α approaches an integer value, the error is reduced, as expected.

Example 4. We next consider the following nonlinear initial value problem [21,28]

D3y(x)+ D
5
2 y(x)+ y2(x) = x4, y(0) = y′(0) = 0, y′′(0) = 2.

We solved the above problem, by applying the technique described in Section 4.2 withm = 3, we approximate solution as

y(x) = c0P0(x)+ c1P1(x)+ c2P2(x)+ c3P3(x) = CTΦ(x).
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Fig. 3. Comparison of y(x) form = 6, 8, 10 and (Left) α = 0.75, (Right) α = 1.5, with exact solution, for Example 3.

Fig. 4. Comparison of y(x) form = 9 and α = 0.5, 0.75, 0.95, 1, for Example 3.

Table 3
Absolute error for different values of α and form = 10 for Example 3.

α x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

0.2 2.2× 10−1 2.3× 10−1 3.6× 10−2 5.3× 10−1 1.7× 100

0.4 6.3× 10−2 6.0× 10−2 2.4× 10−2 1.2× 10−1 3.0× 10−1

0.6 1.5× 10−2 1.3× 10−2 9.6× 10−3 2.1× 10−2 3.7× 10−2

0.8 2.9× 10−3 2.1× 10−3 2.3× 10−3 2.5× 10−3 2.1× 10−3

1.2 1.9× 10−3 1.6× 10−3 2.8× 10−2 2.9× 10−3 1.6× 10−2

1.4 2.0× 10−4 1.6× 10−3 7.6× 10−3 4.9× 10−3 3.3× 10−2

1.6 6.3× 10−5 7.3× 10−4 1.7× 10−3 2.3× 10−3 1.3× 10−2

1.8 3.8× 10−5 2.0× 10−4 2.6× 10−4 5.9× 10−4 2.8× 10−3

Here, we have

D(1) =

0 0 0 0
2 0 0 0
0 6 0 0
2 0 10 0

 , D(2) =

 0 0 0 0
0 0 0 0
12 0 0 0
0 60 0 0

 , D(3) =

 0 0 0 0
0 0 0 0
0 0 0 0
120 0 0 0

 ,

D(
5
2 ) =


0 0 0 0
0 0 0 0
0 0 0 0
160
√
π

96
√
π
−
160
7
√
π

32
3
√
π

 , C =

c0c1c2
c3

 .
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Using Eq. (33) we have

CTD(3)Φ(x)+ CTD(
5
2 )Φ(x)+

[
CTΦ(x)

]2
− x4 = 0. (38)

Now we collocate Eq. (38) at the first root of P4(x), i.e.

x0 =
1
2
+

√
525− 70

√
30

70
' 0.069431844.

Also by using Eq. (34) we get

CTΦ(0) = c0 − c1 + c2 − c3 = 0,
CTD(1)Φ(0) = 2c1 + 12c3 − 6c2 = 0,

CTD(2)Φ(0) = 12c2 − 60c3 = 2. (39)

By solving Eqs. (38) and (39) we obtain

c0 =
1
3
, c1 =

1
2
, c2 =

1
6
, c3 = 0.

Therefore

y(x) =
(
1
3
,
1
2
,
1
6
, 0
)

1
2x− 1

6x2 − 6x+ 1
20x3 − 30x2 + 12x− 1

 = x2,
which is the exact solution of this problem.

It is clear that in Examples 1–4 the present method can be considered as an efficient method.

6. Conclusion

A general formulation for the Legendre operational matrix of fractional derivative has been derived. The fractional
derivatives are described in the Caputo sense. This matrix is used to approximate numerical solution of a class of fractional
differential equations. Our approach was based on the shifted Legendre tau and shifted Legendre collocation methods. In
the limit, as α approaches an integer value, the scheme provides solution for the integer-order differential equations. The
solution obtained using the suggested method shows that this approach can solve the problem effectively. Moreover, only
a small number of shifted Legendre polynomials is needed to obtain a satisfactory result.
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